JOVE User Manual
\Version 4.17

Jonathan Payne
(with revisions by Doug Kingston, Mark Seiden, D. Hugh Redelmeieir, Mark Moraes and Charles Lindsey)

1. Introduction

JOVE™* is an advanced, self-documenting, customizable, display editor. It (and this tutorial introduction) are based on
the original EMACS editor and user manual written at M.1.T. by Richard Stallmant.

JOVE is considered a display editor because normally the text being edited is visible on the screen and is updated au-
tomatically as you type your commands. What You See Is What You Get.

JOVE provides many facilities that go beyond simple insertion and deletion. Some of the more advanced features
are:

cut and paste (or kill and yank in our terminology);

search and replace using regular-expressions;

multiple files, buffers and windows available simultaneously;
filling of text, both on demand and as you type;

manipulation of words, lines, sentences and paragraphs;
automatic indentation of programs;

automatic location of procedure definitions;

executing programs, capturing their output in buffers;
automatic location of spelling and compilation errors;
parenthesis matching.

JOVE is self-documenting insofar as you can call up descriptions of commands, variables and key bindings.
JOVE is customizable insofar as you can

change its behavior by changing appropriate variables;

change its behavior by setting appropriate modes;

automatically set the modes for a buffer from its filename;

define macros to perform complex tasks;

change the key bindings to match features of the particular keyboard.

All of these options can be exercised by the system administrator, or by the user at startup, or even in the middle of a
job.

Finally, mouse support is available (on screens which support the X-Windows package from M.I.T.) using the front
end program xjove (or alternatively via the mouse-reporting facilities of the terminal emulator xterm).

*JoVE stands for Jonathan’s Own Version of EMAcs.

tAlthough Jove is meant to be compatible with EmAcs, and indeed many of the basic commands are very similar, there are some ma-
jor differences between the two editors, and you should not rely on their behaving identically.

2 JOVE User Manual

2. The Organization of the Screen
JOVE divides the screen into several sections.

#include <stdio.h>

void main()

{
printf("Hello world!\n");

return O; < the Window

}

JOVE (C OvrWt) [Main:1] "hello.c’ [CAhome/foo|< the Mode Line
: write-file (default hello.c) aloha.co < the Message Line

2.1. The Window

The Window section is used to display the text you are editing. The terminal’s cursor shows the position of point,
the location at which editing takes place. While the cursor appears to point at a character, point should be thought of
as between characters; it points before the character that the cursor appears to be on top of. Terminals have only one
cursor, and when output is in progress it must appear where the typing is being done. This doesn’t mean that point is
moving; it is only that JOVE has no way of showing you the location of point except when the terminal is idle. In the
example, the user is in the middle of issuing a write-file command, so the cursor is at the end of the message line.

2.1.1. Typeout

The lines of the window are usually available for displaying text but sometimes are pre-empted by typeout from cer-
tain commands (such as a listing of all the buffers). You can always recognize such typeout because it is terminated
by either an --end-- line or a --more-- line. Most of the time, output from commands like these is only desired for a
short period of time, usually just long enough to glance at it. When you have finished looking at the output, you can
type Space to make the text reappear (usually a Space that you type inserts itself, but when there is typeout in the
window, it does nothing but get rid of that). Any other command executes normally, after redrawing your text.

You will see --more-- on the line above the last mode line when typeout from a command is too long to fit on the
screen. It means that if you type a Space the next screenful of typeout will be printed. If you are not interested, typ-
ing "G will cause the rest of the output to be discarded. Typing any other key will discard the rest of the output and
that key will be taken as the next keyboard input. Similarly, --end-- signifies that typeout is complete; the same re-
sponses are accepted.

Sometimes you may wish to keep a permanent record of the typeout from these commands. To do this, set the vari-
able send-typeout-to-buffer to on. The typeout will then be put into a newly-created buffer, which you can arrange to
save to a permanent file.

2.2. The Mode Line

The Mode Line gives information about the window above it. There is a variable mode-line which determines the
layout of the mode line. For the example above, this was set as described in the section on customizing JOVE.

(C OvrWwit) shows that C is the name of the current major mode and that the Over Write minor mode is turned on.

At any time, JOVE can be in only one major mode. Currently there are four major modes: Fundamental, Text, Lisp
and C. New ones may be added in the future.

JOVE User Manual 3

The words which indicate which minor modes are turned on are:

Abbrev meaning that Word Abbrev mode is on;

Al meaning that Auto Indent mode is on;

Fill meaning that Auto Fill mode is on;

OvrWt meaning that Over Write mode is on;

RO meaning that Read Only mode is on.

DBX meaning that DBX mode is on.

Def meaning that you are in the process of defining a keyboard macro.
This is not really a mode, but it’s useful to be reminded about it.

The meanings of these modes are described later in this document.

[Main:1] shows that the name of the currently selected buffer is Main and its number is 1. Each buffer has its own
name and holds a file being edited, which is how JOVE can hold several files at once. But at any given time you are
editing only one of them, the selected buffer. When we speak of what some command does to “the buffer”, we are
talking about the currently selected buffer. Multiple buffers make it easy to switch around between several files, and
then it is very useful that the mode line tells you which one you are editing at any time.

"hello.c™ shows the name of the file being edited in buffer Main. This is also the default filename for commands
that expect a filename as input, as can be seen in the message line which follows.

The [ih the mode line means that there are changes in the buffer that have not been saved in the file. If the buffer
had not been changed since it was read in or last saved, there would be a minus instead.

Sometimes a file is changed “behind Jove’s back™: something changes the file (not the buffer) after it has been
loaded into or saved from a buffer. This can be quite dangerous, so JOVE tests for this when it reads, writes, or finds
the file. Jove indicates the problem by displaying a # before the change indicator. It also asks for confirmation be-
fore performing the read or write.

/home/foo shows the name of the current directory.
15.23 shows the time.

2.3. The Message Line

The Message Line is reserved for printing messages and for accepting input from the user, such as filenames or
search strings. When Jove prompts for input, the cursor will temporarily appear on the bottom line, waiting for you
to type a string. When you have finished typing your input, you can type a Return to send it to JOve. If you change
your mind about running the command that is waiting for input, you can type "G to abort, and you can then continue
with your editing.

The message line and the list of filenames from the shell command that invoked JOVE are kept in a special buffer
called Minibuf that can be edited like any other buffer. It is instructive to view the Minibuf in a window and to ob-
serve how it changes as parameters to commands are typed, and as the "N and “P functions are invoked.

2.4. Multiple Windows

The window area, described above, can in fact be split into several windows, each showing a different buffer, or pos-
sibly different parts of the same buffer. Each window has its own mode line beneath it. The methods of creating and
destroying windows will be described presently.

3. Input Conventions

3.1. Keyboard Usage

In this manual, “Control” characters (that is, characters that are typed with the Control key and some other key at the
same time) are represented by a circumflex () followed by another character. Thus, "A is the character you get
when you type A with the Control key (sometimes labeled CTRL) held down. Control characters in the Jove buffer
are displayed with a caret; thus, "A for Control-A. DEL is displayed as "?, ESC as [.

If the keyboard has extra keys, such as Function keys, Arrow keys and the like, then JOVE can be customized to use
them.

4 JOVE User Manual

3.2. The Character Set

JoVvE normally accepts the ASCII character set, with its 95 printing characters, including Space, (which appear on
the screen as themselves) and its 33 Control characters (which, except for TAB, appear on the screen as, e.g. “"C”).
There are, however, two characters that may not appear. One is the NL character (because it is always converted into
a line-separator, which is not quite a character) and the other is the NUL character (@) which is used internally
within JOVE to delimit lines (lines also have a maximum length, which is 1023 in most systems).

However, JOVE is “8-bit clean”, so if your keyboard is able to produce all 256 8-bit characters, the extra ones will ap-
pear in octal (e.g. “\277”). Moreover, if your system supports the Locale facility (as most modern ones do), you
may set the variable Ic-ctype to “C” (the default, which corresponds to pure ASCII), or to “iso_8859 1" (which cor-
responds to the Latin-1 alphabet with a total of 192 printing characters, all of which Jove should be able to display),
or to any other Locale available on your system. The initial value of Ic-ctype is taken from your LC_CTYPE envi-
ronment variable, and otherwise defaults to “C”. With each Locale Jove will know which of the extra characters are
upper-case letters, lower-case letters, etc.

3.3. Name Completion

JOVE knows the names of all sorts of objects, such as Jove Commands, JOVE Variables, Macros, Keymaps, Buffers
and even (with some help from the directories) Files. Since names must be entered often, JOVE has features to make
this easier.

For many names, JOVE is willing to supply a default if you enter an empty answer. For example, when you are
telling select-buffer which buffer to select, it will default to the previous buffer. When the prompt mentions a de-
fault, this is the value that will be used in place of an empty answer.

If the default isn’t the name you want, name completion can help you enter a name. When you are prompted for a
name, you need type only enough letters to make it unambiguous. At any point in the course of typing the name,
you can type question mark (?) to see a list of all the relevant names which begin with the characters you have al-
ready typed; you can type Tab to have JOVE supply as many characters as it can; or you can type Return to terminate
your input, or you can type Space to do both (supply the characters and terminate). For example, you are typing a
Command and you have so far typed the letters “au” and you then type a question mark, you will see the list

auto-execute-command
auto-execute-macro
auto-fill-mode
auto-indent-mode

If you type a Return at this point, Jove will complain by ringing the bell, because the letters you have typed do not
unambiguously specify a single command. But if you type Tab or Space, Jove will supply the characters “to-" be-
cause all commands that begin “au” also begin “auto-". You could then type the letter “f” followed by either Space
or Return, and Jove would complete and obey the entire command.

There are in fact two cases that can arise.

1. The name you are typing is supposed to exist already (Commands, Variables and Keymaps always, Macros
and Buffers except when you are trying to create a new one).
If you type Return and what you have typed is not an unambiguous prefix of any name of the right kind, you
will hear the bell; otherwise, it will complete what you have typed and then use it. Tab will complete what it
can (you can then type Return if it looks right). Space will complete what it can and use it if it then matches.

2. The name you are typing may be a new one (Files always, Macros (including the Keyboard Macro) and
Buffers if you are allowed to create or rename one at that point).
If you type Return, and it does not match any name, then it will take exactly what you have typed as a new
name. Tab and Space try to complete as before.

If you type "R, it will insert a name that might be useful. Even if this name is not the one you wish to enter, it is of-
ten convenient to edit this name into the desired one. The inserted name will be the default (if there is one), or the
current value (if there is one). When JOVE is asking for a command or variable name, "R will insert the last one
named.

JOVE User Manual 5

Buffers, keymaps, and macros are also numbered (if you type “?” when first prompted, you will see the numbers as
well as the possible names), and the number may be used in place of the name.

3.3.1. Filename Completion

Whenever JOVE is prompting you for a filename, say in the find-file command, things happen as just described and
Return always accepts the name just as it is (because you might be wanting to create a new file with a name similar
to that of an existing one). The variable bad-filename-extensions contains a list of words separated by spaces which
are to be considered bad filename extensions; any filename with one of these extensions will not be counted in file-
name completion. The default includes “.0” so if you have jove.c and jove.o in the same directory, the filename
completion will not complain of an ambiguity because it will ignore jove.o.

When JOVE is prompting for a filename, it has the following extra functions:
"N Insert the next filename from the argument list in the Minibuf.
"P Insert the previous filename from the argument list in the Minibuf.

4. Commands and Variables

4.1. Commands

JOVE uses commands which have long names such as next-line. Then keys such as "N are connected to commands
through the command dispatch table. When we say that "N moves the cursor down a line, we are glossing over a
distinction which is unimportant for ordinary use, but essential for simple customization: it is the command next-line
which knows how to move down a line, and "N moves down a line because it is connected to that command. The
name for this connection is a binding; we say that the key "N is bound to the command next-line (or vice versa).
JOVE has many bindings already built-in, but you (or your system administrator) may also add your own, e.g. to
make full use of any Function Keys provided on your particular keyboard.

Thus there may be three ways to refer to a command — by its full name, or by its standard (built-in) binding, or by
your customized binding. Throughout this manual, we shall always use the standard bindings, followed by the full
name (in italics). The standard bindings are designed to work on any ASCII keyboard, and can always be used so
long as you (or your system administrator) have not actually changed them. But they are hard to remember, so you
may well prefer to use your own, particularly if you always use the same terminal. See the section on Customization
for more details.

Some terminals and modems cannot accept characters flat out at a reasonable baud rate, and therefore require the use
of a flow control protocol using the characters ”S and "Q (see the variable allow-"S-and-"Q). These characters can-
not, therefore, be typed by the user. It has therefore been arranged that whenever a standard binding requires °S ("Q)
to be typed, a spare standard binding for that facility is also provided in which "\ (") can be typed in its place.

Not all commands are bound to keys. To invoke a command that isn’t bound to a key, you can type the sequence
ESC X, which is bound to the command execute-named-command. You will then be able to type the name of what-
ever command you want to execute on the message line.

4.2. Prefix Characters

Because there are more command names than keys, JOVE allows a sequence of keystrokes to be bound to a com-
mand. Usually, the first character of the sequence will be one of the two prefix characters "X or ESC. When you
type such a prefix character Jove will wait for the next character before deciding what to do. If you wait more than a
second or so, JOVE will print the prefix character on the message line as a reminder and leave the cursor down there
while you type the rest of the sequence. Many JOVE commands are bound to a 2-stroke sequence starting with "X or
ESC. How the next character is interpreted depends on which of them you typed. For example, if you type ESC fol-
lowed by B you will run backward-word, but if you type "X followed by B you will run select-buffer.

4.3. Variables

Sometimes the description of a command will say “to change this, set the variable mumble-foo”. A variable is a
name used to remember a value. JOVE contains variables which are there so that you can change them if you want to
customize. The variable’s value may be examined by some command, and changing that value makes the command

6 JOVE User Manual

behave differently. However, the facilities provided are pretty limited: you cannot invent new variables, or use them
for other than their built-in purposes, and their values apply globally to all buffers irrespective of mode settings.

set Sets the value of a variable.
print Displays the current value of a variable.

To set or change the value of a variable, type ESC X set <variable-name> <value><return>. Values may be on of off
(for Boolean variables) or numbers (numeric variables) or strings (string variables). To inspect the current value of a
variable, type ESC X print <variable-name><return>.

4.4. Giving Numeric Arguments to JOVE Commands

Many JOVE commands can be given a numeric argument. Many commands interpret the argument as a repetition
count (possibly negative). For example, giving an argument of ten to the "F command (forward-character) moves
forward ten characters. With these commands, no argument is equivalent to an argument of 1.

Some commands use the value of the argument, or even just its presence or absence, in highly idiosyncratic ways.
For example, the commands which change the minor modes (such as auto-fill-mode) toggle the mode if there is no
argument, but turn the more off with a zero argument, and on with any other argument.

The fundamental way of specifying an argument is to use ESC followed by the digits of the argument, for example,
ESC 123 ESC G to go to line 123. Negative arguments are allowed, although not all commands know what to do
with them. Unless otherwise stated, ESC Minus ... is equivalent to ESC Minus 1 Note that when giving argu-
ments to sourced commands (described later under Customization) different rules apply.

Typing "U means “supply an argument of 4”. Two such "U’s supply sixteen. Thus, "U "U "F moves forward sixteen
characters. This is a good way to move forward quickly, since it moves about 1/4 of a line on most terminals. Other
useful combinations are: "U "U "N (move down a good fraction of the screen), and "U "U "O (make “a lot” of blank
lines).

There are other, terminal-dependent, ways of specifying arguments. They have the same effect but may be easier to
type. If your terminal has a numeric keypad which sends something recognizably different from the ordinary digits,
it is possible to customize JoVE to allow use of the numeric keypad for specifying arguments.

4.5. Help

To get a list of keys and their associated commands, you type ESC X describe-bindings (warning: the list runs to
many screenfuls; type Space to see the next one, or "G when you have seen enough). If you want to describe a sin-
gle key, "X ? (describe-key) will work. A description of an individual command is available by using ESC ? (de-
scribe-command), and descriptions of variables by using ESC X describe-variable. If you can’t remember the name
of the thing you want to know about, ESC X apropos will tell you if a command or variable has a given string in its
name. For example, ESC X apropos describe will list the names of the four describe commands just mentioned.

5. Basic Editing Commands

5.1. Inserting Text

To insert printing characters into the text, just type them. All such printing characters you type are inserted into the
text at the cursor (that is, at point), and the cursor moves forward. Any characters after the cursor move forward too.
If the text in the buffer is FOOBAR, with the cursor before the B, then if you type XX you get FOOXXBAR, with
the cursor still before the B.

To correct text you have just inserted, you can use DEL. DEL deletes the character before the cursor (not the one
that the cursor is on top of or under; that is the character after the cursor). The cursor and all characters after it move
backwards. Therefore, if you typing a printing character and then type DEL, they cancel out.

To end a line and start typing a new one, type Return. Return operates by inserting a line-separator, so if you type
Return in the middle of a line, you break the line in two. Because a line-separator behaves like a single character,
you can type DEL at the beginning of a line to delete the line-separator and join it with the preceding line. Note that
the line separator is not a character (it is not the ASCII NL character, for example) so that you cannot include it in
search or replace strings.

JOVE User Manual 7

As a special case, if you type Return at the end of a line and there are two or more empty lines just below it, JOVE
does not insert a line-separator but instead merely moves to the next (empty) line. This behavior is convenient when
you want to add several lines of text in the middle of a buffer. You can use the "O (newline-and-backup) command
to “open” several empty lines at once; then you can insert the new text, filling up these empty lines. The advantage
is that JOVE does not have to redraw the bottom part of the screen for each Return you type, as it would ordinarily.
That “redisplay” can be both slow and distracting.

If you add too many characters to one line, without breaking it with Return, the line will grow too long to display on
one screen line. When this happens, JOVE puts an “!”” at the extreme right margin, and doesn’t bother to display the
rest of the line unless the cursor happens to be in it. The “I” is not part of your text; conversely, even though you
can’t see the rest of your line, it is still there, and if you break the line, the “!”” will go away.

Direct insertion works for printing characters and space, but other characters act as editing commands and do not in-
sert themselves. If you need to insert a control character, ESC, or DEL, you must first quote it by typing the "Q
command (quoted-insert) first, for example "Q "C to insert a genuine "C.

5.2. Moving the Cursor
To do more than insert characters, you have to know how to move the cursor. Here are the commands for doing that.

“A beginning-of-line Move to the beginning of the line.

"E end-of-line Move to the end of the line.

“For > forward-character Move forward over one character.

"Bor ~ backward-character Move backward over one character.

"Nor ! next-line Move down one line, vertically. If you start in the middle of one line,
you end in the middle of the next.

“Por 1 previous-line Move up one ling, vertically.

ESC < beginning-of-file Move to the beginning of the entire buffer.

ESC > end-of-file Move to the end of the entire buffer.

ESC, beginning-of-window Move to the beginning of the visible window.

ESC. end-of-window Move to the end of the visible window.

Z scroll-up Move the lines in the window upwards. If this brings the cursor outside
of the window, it is automatically relocated.

ESCZ scroll-down Move the lines in the window downwards.

Observe the use of the arrow keys (-, «, | and 1) as alternatives for "F, "B, "N and "P. These should be available
on just about any terminal. You (or your system administrator) may find it convenient to bind other Function Keys
available on your keyboard to some of these commands, especially if those keys already have appropriate engravings
on them. See the section on Customizing JOVE.

5.3. Deleting Text

DEL delete-previous-character Delete the character before the cursor.

"D delete-next-character Delete the character after the cursor.
ESC\ delete-white-space Delete spaces and tabs around point.

"X 0 delete-blank-lines Delete blank lines around the current line.

You already know about the DEL command which deletes the character before the cursor. Another command, "D,
deletes the character after the cursor, the one the cursor is “on top of” or “underneath”, causing the rest of the text on
the line to shift left. Line-separators act like normal characters when deleted, so if "D is typed at the end of a line,
that line and the next line are joined together.

The other delete commands are those which delete only formatting characters: spaces, tabs, and line-separators.
ESC\ (delete-white-space) deletes all the spaces and tab characters before and after point. "X "O (delete-blank-
lines) deletes all blank lines after the current line, and if the current line is blank deletes all the blank lines preceding
the current line as well (leaving one blank line, the current line).

8 JOVE User Manual

5.4. Files — Saving Your Work

The commands above are sufficient for creating text in the Jove buffer. The more advanced JOvE commands just
make things easier. But to keep any text permanently you must put it into a file. Files are the objects which uses for
storing data for a length of time. To tell JoVE to read text into a file, choose a filename, such as foo.bar, and type
"X “F foo.bar<return> (find-file). This reads the file foo.bar so that its contents appear in a new buffer on the screen
for editing. Alternatively, type "X "R foo.bar<return> (read-file) to have the file appear in an existing buffer. You
can make changes, and then save the file by typing "X °S (save-file). This makes the changes permanent and actually
changes the file foo.bar. Until then, the changes are only inside JovEe, and the file foo.bar is not really changed. If
the file foo.bar does not exist, and you want to create it, read it as if it did exist. When you save your text with
"X7S, the file will be created then.

5.5. Exiting and Pausing — Leaving JOVE

The command "X "C (exit-jove) will terminate the JOVE session and return to the shell. If there are modified but un-
saved buffers, Jove will ask you for confirmation, and you can abort the command, look at what buffers are modified
but unsaved using "X "B (list-buffers), save the valuable ones, and then exit. If what you want to do, on the other
hand, is to preserve the editing session but return to the shell temporarily you can (under most modern versions of is-
sue the command ESC S (pause-jove), do your work within your shell, and then return to JOVE using the fg com-
mand to resume editing at the point where you paused. Alternatively, for this sort of situation, you might consider
using an interactive shell (that is, a shell in a Jove window) which lets you use the editor to issue your commands
and manipulate their output, while never leaving the editor (the interactive shell feature is described later).

6. Kill and Yank (or Cut and Paste)

Any editor needs a facility for dealing with large blocks of text — deleting them or moving them to other places.
The usual terminology speaks of “Cut” (to remove a block of text), “Paste” (to replace it somewhere else) and
“Copy” (to copy it for subsequent pasting without removal from its original place). For historical reasons, editors
based on EMACS use the terms Kill, Yank and Copy with essentially the same meanings, and we shall continue to do
so in this manual. However, it may be sensible, if your keyboard has keys marked Cut, Paste and Copy, to bind ap-
propriate Kill, Yank and Copy commands to them as part of your local customization.

6.1. The Mark and the Region

In general, a command that processes an arbitrary part of the buffer must know where to start and where to stop. In
JOVE, such commands usually operate on the text between point and the mark. On most terminals, the position of
the mark is indicated by underlining. This body of text is called the region. To specify a region, you set point at one
end of it and mark at the other. It doesn’t matter which one comes earlier in the text.

@ set-mark Set the mark where point is.
XX exchange-point-and-mark Interchange point and mark.
pop-mark Move to the previous mark in the ring.

The way to set the mark is with the "@ command or (on some terminals) the "Space command. They set the mark
where point is. Then you can move point away, leaving the mark behind. When the mark is set, “[Point pushed]” is
printed on the message line.

For example, if you wish to convert part of the buffer to all upper-case, you can use the case-region-upper command,
which operates on the text in the region. You can first go to the beginning of the text to be capitalized, put the mark
there, move to the other end, and then type ESC X case-region-upper. Or, you can set the mark at the end of the
text, move to the beginning, and then type the same thing.

On terminals with the requisite capabilities, the marked character is underlined. Otherwise, you have to remember
where it is (the usual method is to set the mark and then use it soon). Alternatively, you can see where the mark is
with the command "X "X which puts the mark where point was and point where the mark was. The extent of the re-
gion is unchanged, but the cursor and point are now at the previous location of the mark.

JOVE User Manual 9

6.2. The Ring of Marks

Aside from delimiting the region, the mark is also useful for remembering a spot that you may want to go back to.
To make this feature more useful, JOVE remembers 16 previous locations of the mark. Most commands that set the
mark push the old mark onto this stack. To return to a marked location, use "U "@ (equivalent to pop-mark). This
moves point to where the mark was, and restores the mark from the stack of former marks. So repeated use of this
command moves point to all of the old marks on the stack, one by one. Since the stack is actually a ring, enough
uses of "U “@ bring point back to where it was originally.

Some commands whose primary purpose is to move point a great distance take advantage of the stack of marks to
give you a way to undo the command. The best example is ESC < (beginning-of-file), which moves to the beginning
of the buffer. If there are more than 22 lines between the beginning of the buffer and point, ESC < sets the mark
first, so that you can use "U “@ or "X "X to go back to where you were. You can change the number of lines from 22
since it is kept in the variable mark-threshold. By setting it to 0, you can make these commands always set the mark
and by setting it to a very large number you can make them never set it. If a command decides to set the mark, it
prints the message [Point pushed].

6.3. Killing and Moving Text

The way of moving text with JOVE is to kill (cut) it, and yank (paste) it back again later in one or more places. This
is very safe because the last several pieces of killed text are all remembered, and it is versatile because the many
commands for killing syntactic units can also be used for moving those units.

6.3.1. Deletion and Killing

Most commands which erase text from the buffer save it so that you can get it back if you change your mind, or you
can copy it to other parts of the buffer (even to a different buffer). These commands are known as kill commands.
The rest of the commands that erase text do not save it; they are known as delete commands. The delete commands
include "D and DEL, which delete only one character at a time, and those commands that delete only spaces or line-
separators. Commands that can destroy significant amounts of nontrivial data generally kill. A command’s name
and description will use the words kill or delete to say which it does.

"D delete-next-character Delete next character.

DEL delete-previous-character Delete previous character.

ESC\ delete-white-space Delete spaces and tabs around point.

"X 0 delete-blank-lines Delete blank lines around the current line.
“K kill-to-end-of-line Kill rest of line or one or more lines.

W kill-region Kill the region (from point to mark).
ESCD kill-next-word Kill word.

ESC DEL kill-previous-word Kill word backwards.

ESC K kill-to-end-of-sentence Kill to end of sentence.

"X DEL kill-to-beginning-of-sentence Kill to beginning of sentence.

ESC K kill-s-expression Kill from point to the end of an s-expression.
6.3.2. Deletion

The various delete commands have already been described. Actually, "D and DEL aren’t always delete commands;
if you give an argument, they kill instead. This prevents you from losing a great deal of text by typing a large argu-
ment to a "D or DEL.

6.3.3. Killing (and Copying) the region, and Yanking it back again

The commonest kill command is "W (kill-region), which kills everything between point and the mark*. With this
command, you can kill and save contiguous characters, if you first set the mark at one end of them and then go to the
other end.

W kill-region Kill everything between point and mark.
ESCW copy-region Save the region without killing.

*Often users switch this binding from "W to "X "K because it is too easy to hit "W accidentally.

10 JOVE User Manual

Yanking (un-killing) is getting back text which was killed. The usual way to move or copy text is to kill or copy it
and then yank it one or more times.

Y yank Yank (re-insert) the last killed text.
ESCY yank-pop Replace re-inserted killed text with the previously killed text.

Killed text is pushed onto a ring buffer called the kill ring that remembers the last sixteen blocks of text that were
killed (why it is called a ring buffer will be explained below). The command "Y (yank) reinserts the text of the most
recent kill. The yanked text becomes the new region. Thus, a single "Y undoes the "W and vice versa.

If you wish to copy a block of text, you might want to use ESC W (copy-region), which copies the region into the
kill ring without removing it from the buffer.

There is only one kill ring shared among all the buffers. After reading a new file or selecting a new buffer, whatever
was last killed in the previous file or buffer is still on top of the kill ring. This is important for moving text between
buffers.

6.3.4. Other Kill commands

Other syntactic units can be killed, too; words, with ESC DEL (kill-previous-word) and ESC D (kill-next-word); and
sentences, with ESC K (kill-to-end-of-sentence) and "X DEL (kill-to-beginning-of-sentence).

6.3.5. Killing by Lines

Another kill command is the "K command (kill-to-end-of-line). If issued at the beginning of a line, it kills all the
text on the line, leaving it blank. If given in the middle of a line, it kills all the text up to the end of the line. If given
on a line that is empty or contains only white space (blanks and tabs) the line disappears. If "K is done at the end of
a line, it joins that line and the next line. As a consequence, if you go to the front of a non-blank line and type two
"K’s, the line disappears completely (but be careful, because one “K is sufficient to remove an empty line).

In general, "K kills from point up to the end of the line, unless it is at the end of a line, in which case it kills the line-
separator following the line, thus merging the next line into the current one. Invisible spaces and tabs at the end of
the line are ignored when deciding which case applies, so if point appears to be at the end of the line, you can be
sure the line-separator will be killed.

“K with an argument Kills that many lines, including their line separators (whether the lines are empty or not). With-
out an argument, "K behaves as described in the previous paragraph. "U “K kills four lines (but note that typing "K
four times would kill only 2 lines)

“K with an argument of zero kills all the text before point on the current line.

6.3.6. Appending Kills

Normally, each kill command pushes a new block onto the kill ring. However, two or more kill commands immedi-
ately in a row (without any other intervening commands) combine their text into a single entry on the ring, so that a
single Y (yank) command gets it all back as it was before it was killed. This means that you don’t have to kill all
the text in one command; you can keep killing line after line, or word after word, until you have killed it all, and you
can still get it all back at once.

Commands that kill forward from point add onto the end of the previously killed text. Commands that kill backward
from point add onto the beginning. This way, any sequence of mixed forward and backward kill commands puts all
the killed text into one entry without needing rearrangement.

Suppose, for example you have a line containing FOO BAR BAZ with the cursor at the start of BAR. Type ESC D
(kill-next-word), then ESC DEL (kill-previous-word), then ESC F (forward-word) to put the cursor after BAZ, and
Space to insert a space. Then type "Y (yank) and your line will contain BAZ FOO BAR.

6.4. The Kill Ring

To recover killed text that is no longer the most recent kill, you need the ESC Y (yank-pop) command. The ESC Y
command can be used only immediately after a Y (yank) command or another ESC Y. It takes the yanked text in-
serted by the "Y and replaces it with the text from an earlier kill. So, to recover the text of the next-to-the-last kill,
you first use "Y to recover the last kill, and then discard it by use of ESC Y to move back to the previous one.

JOVE User Manual 11

You can think of all the last few kills as living on a ring. After a Y command, the text at the front of the ring is still
present in the buffer. ESC Y “rotates” the ring bringing the previous string of text to the front and this text replaces
the other text in the buffer as well. Enough ESC Y commands can rotate any part of the ring to the front, so you can
get at any killed text so long as it is recent enough to be still in the ring. Eventually the ring rotates all the way
round and the most recently killed text comes to the front (and into the buffer) again. ESC Y with a negative argu-
ment rotates the ring backwards.

When the text you are looking for is brought into the buffer, you can stop doing ESC Y’s and the text will stay there.
It is really just a copy of what’s at the front of the ring, so editing it does not change what’s in the ring. And the
ring, once rotated, stays rotated, so that doing another "Y gets another copy of what you rotated to the front with
ESCY.

If you change your mind about yanking, "W (kill-region) gets rid of the yanked text, even after any number of
ESC Y’s.

7. Searching and Replacing

7.1. Searching

The search commands are useful for finding and moving to arbitrary positions in the buffer in one swift motion. For
example, if you just ran the spell program on a document and you want to correct some word, you can use the search
commands to move directly to that word. There are two flavors of search: string search and incremental search.
The former is the default flavor — if you want to use incremental search you must rearrange the key bindings (see
below).

7.1.1. Conventional Search

“Sor”\ search-forward Search forward.
R search-reverse Search backward.

To search for the string “FOO” you type “S FOO<return>. If Jove finds FOO it moves point to the end of it; other-
wise JOVE prints an error message and leaves point unchanged. “S searches forward from point so only occurrences
of FOO after point are found. To search in the other direction use "R. It is exactly the same as "S except that it
searches in the opposite direction, and if it finds the string it leaves point at the beginning of it, not at the end as in
“S.

While JOVE is searching it displays the search string on the message line. This is so you know what JOVE is doing.
When the system is heavily loaded and editing in exceptionally large buffers, searches can take several (sometimes
many) seconds.

JOVE remembers the last search string you used, so if you want to search for the same string again you can type
S <return>. If you mistyped the last search string, you can type "S followed immediately by "R (which is not the
search-reverse command in this context) which inserts the default search string, and then you can fix it up.

Note that the precise interpretation of the search string is dependent on the variable match-regular-expressions and is
subject to the rules for regular-expressions to be described shortly.

7.1.2. Incremental Search

This search command is unusual in that is is incremental; it begins to search before you have typed the complete
search string. As you type in the search string, JOVE shows you where it would be found. When you have typed
enough characters to identify the place you want, you can stop. Depending on what you will do next, you may or
may not need to terminate the search explicitly with a Return.

To use the incremental searches, you first have to bind them to suitable keys, for example to "S and "R if you want
all your searching to become incremental. To do this, type

ESC X bind-to-key i-search-forward °S
ESC X bind-to-key i-search-reverse "R

The command to search is now “S (i-search-forward). “S reads in characters and positions the cursor at the first oc-
currence of the characters that you have typed so far. If you type °S and then F, the cursor moves in the text just after

12 JOVE User Manual

the next “F”. Type an “O”, and see the cursor move to after the next “FO”. After another “O”, the cursor is after the
next “FOO”. At the same time, “FOO” has echoed on the message line.

If you type a mistaken character, you can rub it out. After the FOO, typing a DEL makes the “O” disappear from the
message line, leaving only “FO”. The cursor moves back in the buffer to the “FO”. Rubbing out the “O” and “F”
moves the cursor back to where you started the search.

When you are satisfied with the place you have reached, you can type a Return, which stops searching, leaving the
cursor where the search brought it. Also, any command not specially meaningful in searches stops the searching and
is then executed. Thus, typing "A would exit the search and then move to the beginning of the line. Return is neces-
sary only if the next character you want to type is a printing character, DEL, Return, or another search command,
since those are the characters that have special meanings inside the search.

Sometimes you search for “FOO” and find it, but not the one you hoped to find. Perhaps there is a second FOO after
the one you just found. Then type another “°S” and the cursor will find the next FOO. This can be done any number
of times. If you overshoot, you can return to previous finds by rubbing out the “°S”s. Note that, in this context, *“°S”
(alternatively “°\”) is a built-in use of the ”S character and not another invocation of i-search-forward (which is why
I have shown it in “quotes”).

After you exit a search, you can search for the same string again by typing just °S "S: one "S command to start the
search and then another “°S” to mean “search again for the same string”.

If your string is not found at all, the message line says “Failing I-search”. The cursor is after the place where JOVE
found as much of your string as it could. Thus, if you search for FOOT and there is no FOOT, you might see the
cursor after the FOO in FOOL. At this point there are several things you can do. If your string was mistyped, you
can rub some of it out and correct it. If you like the place you have found, you can type Return or some other JOVE
command to “accept what the search offered”. Or you can type "G, which undoes the search altogether and posi-
tions you back where you started the search.

You can also type "R (i-search-reverse) at any time to start searching backwards. If a search fails because the place
you started was too late in the file, you should do this. Repeated “"R”s keep looking backward for more occurrences
of the last search string. A “°S” starts going forward again. “"R”s can be rubbed out just like anything else.

Unlike conventional searching, incremental searching does not use the rules for regular-expressions.

7.2. Replacing

In addition to the simple Replace operation which is like that found in most editors, there is a Query Replace opera-
tion which asks, for each occurrence of the pattern, whether to replace it or not.

ESCR replace-string Replace every occurrence of the string from point to the end of the buffer.
replace-in-region Replace every occurrence of the string within the region.
ESCQ query-replace-string Replace occurrences of the string from point to the end of the buffer, but

asking for confirmation before each replacement.

7.2.1. Global replacement

To replace every occurrence of FOO after point with BAR, you can do, ESC R FOO<return>BAR<return> (replace-
string). Replacement takes place only between point and the end of the buffer, so if you want to cover the whole
buffer you must go to the beginning first.

Another alternative is to use replace-in-region which is just like replace-string except it searches only within the re-
gion.

7.2.2. Query Replace

If you want to change only some of the occurrences of FOO, not all, then the global replace-string is inappropriate;
instead, use, e.g., ESC Q FOO<return>BAR<return> (query-replace-string). This moves the cursor to each occur-
rence of FOO and waits for you to say whether to replace it with BAR. The things you can type when you are
shown an occurrence of FOO are:

Spaceor Y ory
to replace the FOO with BAR.

JOVE User Manual 13

Period
to replace this FOO and then stop.

DEL or BSor N orn
to skip to the next FOO without replacing this one.

"RorRorr

to enter a recursive editing level, in case the FOO needs to be edited rather than just replaced with a BAR. When
you are done, exit the recursive editing level with "X "C (exit-jove) and the next FOO will be displayed.

"W

to delete the FOO, and then start editing the buffer. When you are finished editing whatever is to replace the FOO,
exit the recursive editing level with "X "C (exit-jove) and the query-replace will continue at the next FOO.

“"UorUoru
move to the last replacement and undo all changes made on that line.

lorPorp
to replace all remaining FOO’s without asking, as in replace-string.

Returnor Q or q

to stop without doing any more replacements.
"L

redraw the screen.

7.3. Searching with Regular Expressions

When we use the searching and replacement facilities described above, JOVE can search for patterns using regular-
expressions. The handling of regular-expressions in JOVE is somewhat like that of ed(1) or vi(1), but with some no-
table additions. The precise behavior depends on the setting of the variable match-regular-expressions. If this vari-
able is on, we use true regular-expressions. If it is off, we have just simple-expressions. In what follows, the term
expression should be interpreted as simple-expression or regular-expression according to the state of that variable.

Another variable that affects searching is case-ignore-search. If this variable is set to on then upper case and lower
case letters are considered equal (except, of course, within regular-expressions such as [A-Za-z]).

Note that the rules which follow are complex, arbitrary, and different from those in other editors. Hence they may
be changed significantly in future versions of JOVE.

7.3.1. Simple Regular Expressions
If the variable match-regular-expressions is off, the search pattern is interpreted as follows:

" (at the start of a pattern or sub-pattern)
Matches the empty string at the beginning of a line.

$ (at the end of a pattern or sub-pattern)
Matches the empty string at the end of a line.

\< Matches the empty string at the beginning of a word. What makes up a word depends on the major
mode of the buffer that you are searching in. In all modes a word is a contiguous sequence of char-
acters which have some defined pattern, bounded by characters that don’t fit that pattern or by the
beginning or end of the line. The individual modes’ word patterns are as follows:

Fundamental upper and lower case letters and digits.

Text upper and lower case letters and digits plus apostrophe (7).
C upper and lower case letters and digits plus “$” and “_" (underscore).
Lisp upper and lower case letters and digits plus “!$%& [F-/:<=>?"_{|} " and
Delete.
\> Matches the empty string at the end of a word.
\c Matches the character ¢ where c is not one of <, >, (,), {, } or |. In particular, \", \$ and \\ match

the characters ~, $ and \. When full regular-expressions are in use, \., \[Cand \[will also be

14

\{cl..cN\}

\(cl..cNV)

\n

cl..cN

cl..cN\|d1..dN

JOVE User Manual

required.

Matches the character ¢ where c is not \ or ~ (at the start of a pattern) or $ (at the end of a pattern)
(plus a few further things if match-regular-expressions is on).

Matches whatever the sequence of regular-expressions cl1..cN would have matched. Note that full
regular-expression capability (even the \| construct described below) is provided within \{...\}
whatever the setting of the variable match-regular-expressions. \{..\} provides a grouping con-
struct like parentheses in algebraic expressions. Thus “aa\{xx\|yy\}bb” searches for “aaxxbb” or
“aayybb”.

Matches whatever the sequence of expressions c1..cN would have matched, where the expressions
are any of those described above (and also the additional full regular-expressions if match-regular-
expressions is on). This is used to tag part of the search text for later reference via \n (see below).
\(c1..cN\) patterns may be nested. Observe that use of the \| construct (see below) directly within a
\(...\) is precluded.

Matches the n’th \(c1..cN\) pattern where n is between 1 and 9. The \(c1..cN\) patterns are num-
bered by counting the \(sequences starting from the beginning of the search pattern, resetting to 1
(or to the value at the start of an enclosing \{...\}) whenever a \| is encountered. To avoid confusion
in the counting, it is required that each alternative (separated by \|) within a \{...\} should contain
the same number of \(...\)s. For example, the search pattern “"\(\{ab\|cd\}\)\1$" searches for all
non-empty lines which contain just “abab” or “cdcd” (but not “abcd™). It is an error in the search
pattern to reference a \(c1..cN\) pattern that follows the occurrence of \n.

Matches the longest string matched by c1, followed by the longest string matched by c2, and so on.
The expressions c1..cN are any of those described above (and also the additional full regular-ex-
pressions if match-regular-expressions is on).

Matches the longest string matched by c1..cN, if any, and otherwise the longest string matched by
dl..dN. Multiple \| sequences may be used to indicate more alternatives. The sequences cl..cN
and d1..dN are any of those described above, which means that \| has lower precedence than any of
the other operators. Each alternative must have the same number of \(...\) groups, as already ex-
plained. Thus, “\<foo\|bar\|baz\>" matches any word beginning with “foo”, any occurrence of the
string “bar”, or any word ending in “baz”.

In the replacement string:

\n

\0
\c
c

Is replaced with the characters matched by the n’th \(c1..cN\) in the search pattern where n is be-
tween 1 and 9. For example, one could replace “\<\(\{FOO\|BAR\|BAZ\}\)\>" with “[\1]” to en-
close every occurrence of the words FOO, BAR and BAZ within [...].

Is replaced with the characters matched by the entire search pattern.
Inserts the character ¢ where c is not a digit.
Inserts the character ¢ where c is not \.

7.3.2. Full Regular Expressions

If the variable match-regular-expressions is on, the following additional special matching rules are used. Observe
that special meanings now attach to the characters ., [ahd [, which can therefore no longer stand for themselves.

In the search pattern:

C

[cl..cN]

Matches the character ¢ where c is not one of ., [], \, ” (at the start of a line) or $ (at the end of a
line).

Matches any character, but not a line-separator.

Matches any of the characters in the sequence of characters c1..cN provided circumflex (7) is not
the first character of the sequence (see below). The only special characters recognized while pars-
ing the sequence are “1”, “=" and “\”. All may be represented by escaping them with a backslash
(\): “\]7, “\=", *“\\". Ranges of characters may be indicated by a—b where a is the first character of
the range and b is the last. The special meaning of — is lost if it appears as the first or last character
of the sequence. The special meaning of] is lost if it appears as the first character of the sequence.

JOVE User Manual 15

[(cl..cN] Matches any character except those contained in the sequence of characters c1..cN. The circumflex
(%) is not special except immediately following the left bracket.

cl Matches zero or more occurrences of the expression c. The expression ¢ may be any of the expres-
sions covered above except for ~ and $ (which match null strings), \(c1..cN\) and c1..cN\|d1..dN
(which would not work), and \{c1...cN\} (arbitrarily forbidden).

8. Commands for English Text

JOVE has many commands that work on the basic units of English text: words, sentences and paragraphs.

8.1. Word Commands
JOVE has commands for moving over or operating on words. By convention, they are all ESC commands.

ESCF forward-word Move Forward over a word.

ESCB backward-word Move Backward over a word.

ESC D kill-next-word Kill forward to the end of a word.

ESC DEL kill-previous-word Kill backward to the beginning of a word.

Notice how these commands form a group that parallels the character-based commands, “F, "B, "D, and DEL.

The commands ESC F and ESC B move forward and backward over words. They are thus analogous to “F and "B,
which move over single characters. Like their Control- analogues, ESC F and ESC B move over several words if
given an argument (and in the opposite direction with negative arguments). Forward motion stops right after the last
letter of the word; backward motion stops right before the first letter.

ESC D kills the word after point. To be precise, it kills everything from point to the place ESC F would move to.
Thus, if point is in the middle of a word, only the part after point is killed. If some punctuation comes after point,
and before the next word, it is killed along with the word. If you wish to kill only the next word but not the punctua-
tion, simply do ESC F to get to the end, and kill the word backwards with ESC DEL. ESC D takes arguments just
like ESC F.

ESC DEL kills the word before point. It kills everything from point back to where ESC B would move to. If point
is after the space in “FOO, BAR”, then “FOQ, ” is killed. If you wish to kill just “FOQO”, then do an ESC B and an
ESC D instead of an ESC DEL.

Note that the term “word” in all of these commands refers simply to a sequence of upper and lower case letters and
digits. It is not dependent on the major mode of the buffer as was the case with regular-expressions involving \< and
\>. Thus it will require two uses of ESC D to remove a word such as “isn’t”, even if the major mode is Text mode.

8.2. Sentence Commands

The Jove commands for manipulating sentences and paragraphs are mostly ESC commands, so as to resemble the
word-handling commands.

ESCA backward-sentence Move back to the beginning of the sentence.
ESCE forward-sentence Move forward to the end of the sentence.
ESC K kill-to-end-of-sentence Kill forward to the end of the sentence.

"X DEL kill-to-beginning-of-sentence Kill back to the beginning of the sentence.

The commands ESC A and ESC E move to the beginning and end of the current sentence, respectively. They were
chosen to resemble "A and "E, which move to the beginning and end of a line. Unlike them, ESC A and ESC E if re-
peated or given numeric arguments move over successive sentences. JOVE considers a sentence to end wherever
there is a “.”, “?”, or “I” followed by the end of a line or by one or more spaces. Neither ESC A nor ESC E moves
past the end of the line or the spaces which delimit the sentence.

Just as "A and "E have a kill command, “K, to go with them, so ESC A and ESC E have a corresponding kill com-
mand ESC K which kills from point to the end of the sentence. With minus one as an argument it kills back to the
beginning of the sentence. Positive arguments serve as a repeat count.

There is a special command "X DEL for killing back to the beginning of a sentence, because this is useful when you
change your mind in the middle of composing text.

16 JOVE User Manual

8.3. Paragraph Commands
The Jove commands for handling paragraphs are

backward-paragraph Move back to the start of the previous paragraph.
ESC] forward-paragraph Move forward to the end of the next paragraph.

Note that “ESC [” is not bound to backward-paragraph, as might have been expected, on most (i.e. ANSI-compli-
ant) terminals because that sequence is used as a prefix for codes generated by the Function Keys.

Backward-paragraph moves to the beginning of the current or previous paragraph, while forward-paragraph moves
to the end of the current or next paragraph. Paragraphs are delimited by lines of differing indent, or lines with text
formatter commands, or blank lines. Jove knows how to deal with most indented paragraphs correctly, although it
can get confused by one- or two-line paragraphs delimited only by indentation.

8.4. Text Indentation Commands

Tab handle-tab Indent “appropriately” in a mode-dependent fashion.
Linefeed newline-and-indent Is the same as Return, except it copies the indent of the line you just left.
ESCM first-non-blank Moves to the line’s first non-blank character.

The way to request indentation is with the Tab command. Its precise effect depends on the major mode. In Text
mode, it indents to the next tab stop (as determined by the variable tab-width, whose default value is 8). In C mode
or Lisp mode, it indents to the “right” position for those programs (see later).

To move over the indentation on a line, do ESC M (first-non-blank). This command, given anywhere on a line, posi-
tions the cursor at the first non-blank, non-tab character on the line.

8.5. Text Filling
auto-fill-mode Toggle the minor mode auto fill.

ESCJ fill-paragraph Refill the paragraph containing the cursor.
fill-region Refill the region.
fill-comment Refill a comment, depending on the major mode.
left-margin-here Sets the variable left-margin from point.
right-margin-here Sets the variable right-margin from point.

Auto Fill mode is a minor mode that causes text to be filled (broken up into lines that fit in a specified width) auto-
matically as you type it in. If you alter existing text so that it is no longer properly filled, Jove can fill it again if you
ask.

Entering Auto Fill mode is done with ESC X auto-fill-mode. From then on, lines are broken automatically at spaces
when they get longer than the desired width. To leave Auto Fill mode, once again execute ESC X auto-fill-mode.
When Auto Fill mode is in effect, the word Fill appears in the mode line.

If you edit the middle of a paragraph, it may no longer be filled correctly. To refill a paragraph, use the command
ESC J (fill-paragraph). It causes the paragraph that point is inside to be filled. All the line breaks are removed and
new ones inserted where necessary. Similarly, fill-region may be used to refill a region other than a paragraph. The
special command fill-comment is only meaningful in those major modes, currently C mode and Lisp mode, which
support it.

The maximum line width for filling is in the variable right-margin. Both ESC J and auto-fill make sure that no line
exceeds this width. The value of right-margin is initially 78.

Normally ESC J figures out the indent of the paragraph and uses that same indent when filling. If you want to force
some other indent for a paragraph, you set left-margin to the new position and type "U ESC J, since fill-paragraph
uses the value of left-margin when supplied with a numeric argument.

If you know where you want to set the variable right-margin but you don’t know the actual value, move to where
you want to set the value and use the right-margin-here command. left-margin-here does the same for the left-mar-
gin variable.

JOVE User Manual 17

8.6. Case Conversion Commands

ESCL case-word-lower Convert the following word to lower case.

ESCU case-word-upper Convert the following word to upper case.

ESCC case-word-capitalize Capitalize the following word.
case-character-capitalize Capitalize the character after point.
case-region-lower Convert the region to lower case.
case-region-upper Convert the region to upper case.

The word conversion commands are most useful. ESC L converts the word after point to lower case, moving past it.
Thus, successive ESC L’s convert successive words. ESC U converts to all capitals instead, while ESC C puts the
first letter of the word into upper case and the rest into lower case. All these commands convert several words at
once if given an argument. They are especially convenient for converting a large amount of text from all upper case
to mixed case, because you can move through the text using ESC L, ESC U or ESC C on each word as appropriate.

When given a negative argument, the word case conversion commands apply to the appropriate number of words be-
fore point, but do not move point. This is convenient when you have just typed a word in the wrong case. You can
give the case conversion command and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to the part of the word which
follows the cursor, treating it as a whole word.

8.7. Commands for Fixing Typos

In this section we summarize the commands that are especially useful for the times when you catch a mistake in
your text just after you have made it, or you change your mind while composing text on a line.

DEL delete-previous-character Delete last character.

ESC DEL kill-previous-word Kill last word.

"X DEL kill-to-beginning-of-sentence Kill to beginning of sentence.

T transpose-characters Transpose two characters.

XTT transpose-lines Transpose two lines.

ESC Minus ESC L Convert last word to lower case.

ESC Minus ESC U Convert last word to upper case.

ESC Minus ESC C Convert last word to lower case with initial capital.

8.7.1. Killing Your Mistakes

The DEL command is the most important correction command. When used among printing (self-inserting) charac-
ters, it can be thought of as canceling the last character typed.

When your mistake is longer than a couple of characters, it might be more convenient to use ESC DEL or "X DEL.
"X DEL is particularly useful when you are thinking of what to write as you type it, in case you change your mind
about phrasing. ESC DEL and "X DEL save the killed text for subsequent yanking.

ESC DEL is often useful even when you have typed only a few characters wrong, if you know you are confused in
your typing and aren’t sure what you typed. At such a time, you cannot correct with DEL except by looking at the
screen to see what you did. It requires less thought to kill the whole word and start over again.

8.7.2. Transposition

The common error of transposing two characters can be fixed with the T (transpose-characters) command. Nor-
mally, "T transposes the two characters on either side of the cursor and moves the cursor forward one character. Re-
peating the command several times “drags” a character to the right. When given at the end of a line, rather than
switching the last character of the line with the line-separator, which would be useless, “T transposes the last two
characters on the line. So, if you catch your transposition error right away, you can fix it with justa “T. If you don’t
catch it so quickly, you must move the cursor back to between the two characters.

To transpose two lines, use the "X "T (transpose-lines) command. The line containing the cursor is exchanged with
the line above it; the cursor is left at the beginning of the line following its original position.

18 JOVE User Manual

8.8. Checking and Correcting Spelling

When you write a paper, you should correct its spelling at some point close to finishing it. To correct the entire
buffer, do ESC X spell-buffer. This invokes the spell program, which prints a list of all the misspelled words. Jove
catches the list and places it in a Jove buffer called Spell. You now edit the Spell buffer (technically, you are in a re-
cursive edit at this point) by deleting from that buffer any words that aren’t really errors. Next, type "X "C (exit-jove)
to escape from the recursive edit, and JOVE now positions you at the first misspelled word in the original buffer. Cor-
rect that mistake with the usual editor commands. Then you can go forward to each other misspelled word with
"X N (next-error) or backward with "X "P (previous-error). If, in the course of editing a mistake, you get com-
pletely lost, the command current-error will put you back at the error you were supposed to be correcting.

9. Buffers

When we speak of “the buffer”, which contains the text you are editing, we may have given the impression that there
is only one. In fact, there may be many of them, each with its own body of text. At any time only one buffer can be
current and available for editing, but it is easy to switch to a different one. Each buffer individually remembers
which file it contains, what modes are in effect, and whether there are any changes that need saving.

XB select-buffer Select or create a buffer.

“X"B list-buffers List the existing buffers.

XK delete-buffer Delete the contents of a buffer and destroy it.
erase-buffer Delete the contents of a buffer.
kill-some-buffers Destroy unwanted buffers.
rename-buffer Rename the selected buffer.
buffer-position Report the position of point within the buffer.

ESC” make-buffer-unmodified Tell JovE to forget that the buffer has been changed.

"XF find-file Read a file into its own buffer.

"X7Sor"X\ save-file Save the selected buffer.

XM write-modified-files Save all modified buffers.

Each buffer in Jove has a single name which normally doesn’t change. A buffer’s name can be any length. The
name of the currently selected buffer and the name of the file contained in it are visible in the mode line of any win-
dow displaying that buffer. A newly started JOVE has only one buffer, named Main, unless you specified files to edit
in the shell command that started JOVE.

9.1. Creating and Selecting Buffers

To create a new buffer, you need only think of a name for it (say, FOO) and then type "X B FOO<return> (select-
buffer). This makes a new, empty buffer (if one by that name didn’t exist previously) and selects it for editing. The
new buffer does not contain any file, so if you try to save it you will be asked for the filename to use. Each buffer
has its own major mode; the new buffer’s major mode is Text mode by default.

To return to buffer FOO later after having switched to another, the same command "X B FOO<return> is used, since
"X B can tell whether a buffer named FOO exists already or not. Just "X B<return> reselects the previous buffer.
Repeated "X B<return>’s alternate between the last two buffers selected.

9.2. Using Existing Buffers

To get a list of all the buffers that exist, type "X "B (list-buffers). Each buffer’s type, name, and contained filename is
printed. An asterisk before the buffer name indicates that there are changes that have not yet been saved. The num-
ber that appears at the beginning of a line in a "X "B listing is that buffer’s buffer number. You can select a buffer by
typing its number in place of its name. If a buffer with that number doesn’t already exist, a new buffer is created
with that number as its name.

If several buffers have modified text in them, you can save them with "X "M (write-modified-files). This finds all the
buffers that need saving and then saves them. Saving the buffers this way is much easier and more efficient (but
more dangerous) than selecting each one and typing "X °S (save-file). If you give "X "M an argument, JOVE will ask
for confirmation before saving each buffer.

JOVE User Manual 19

ESC X rename-buffer <new name><return> changes the name of the selected buffer.
ESC X erase-buffer <buffer name><return> erases the contents of <buffer name> without destroying it entirely.

ESC X buffer-position reports the position of point within the selected buffer, both as lines/total-lines, chars/total-
chars, and as a percentage.

Sometimes you will change a buffer by accident. Even if you undo the effect of the change by editing, JoVE still
knows that “the buffer has been changed”. You can tell JOVE to pretend that there have been no changes with the
ESC ™ command (make-buffer-unmodified). This command simply clears the “modified” flag which says that the
buffer contains changes which need to be saved. Even if the buffer really is changed Jove will still act as if it were
not.

9.2.1. Killing Buffers

After you use a Jove for a while, it may fill up with buffers which you no longer need. Eventually you can reach a
point where trying to create any more results in an “out of memory” or “out of lines” error. When this happens you
will want to destroy some buffers with the "X K (delete-buffer) command. You can destroy the buffer FOO by doing
"X K FOO<return>. If you type "X K <return> Jove will kill the previously selected buffer. If you try to kill a
buffer that needs saving Jove will ask you to confirm it.

If you need to Kill several buffers, use the command kill-some-buffers. This prompts you with the name of each
buffer and asks for confirmation before killing it.

10. File Handling

The basic unit of stored data is the file. Each program, each document, lives usually in its own file. To edit a pro-
gram or document, the file that contains it must first be brought into a buffer, either an existing one (visit-file) or one
created specifically for that file (find-file). To make your changes to the file permanent on disk, you must save the
file.

10.1. Reading Files

“XF find-file Read a file into its own buffer.
XV visit-file Visit a file.

“X'R visit-file An alternative to "X "V.

X7 insert-file Insert a file at point.

JOVE remembers the name of the file that is contained in each buffer (remember the "X "B (list-buffers) command).
The name of the buffer is visible in its mode line together with the name of its file.

You can read a file into its own newly created buffer by typing "X “F (find-file), followed by the filename. The name
of the new buffer will be the last element of the file’s pathname. You can abort the command by typing "G, or edit
the filename with any of the standard Jove commands (e.g., A, "E, "F, ESC F, ESC DEL). If the filename you wish
to visit is similar to the filename in the current mode line (the default filename), you can type "R to insert the default
and then edit it. For more about this and other special methods of constructing filenames, see the sections on The
Message Line and Name Completion earlier in this manual. When you are satisfied type Return, and the new file’s
text will appear on the screen, and its name in the mode line.

The “F in "X "F stands for “Find”, because if the specified file already resides in some buffer, that buffer is simply re-
selected. So you need not remember whether you have brought the file in already or not. A buffer created by "X "F
can be reselected later with "X B or "X "F, whichever you find more convenient.

Visiting a file means copying its contents into an existing buffer so that you can edit them. To visit a file, use the
command "X "V or "X "R (visit-file), followed by the filename. The name of the new file will appear in the mode
line but the name of the buffer will be unchanged.

If you alter one file and then visit another in the same buffer, JOVE offers to save the old one. If you answer YES (or
y), the old file is saved; if you answer NO (or n), all the changes you have made to it since the last save are lost. You
should not type ahead after a file visiting command, because your type-ahead might answer an unexpected question
in a way that you would regret.

20 JOVE User Manual

"X I (insert-file) followed by a filename reads the file and inserts it into the buffer at point, leaving point before the
file contents and the mark at their end.

The changes you make with JOVE are made in a copy inside Jove. The file itself is not changed. The changed text is
not permanent until you save it in a file. The first time you change the text, an asterisk appears in the mode line; this
indicates that the text contains fresh changes which will be lost unless you save them.

What if you want to create a file? Just read it with find-file or visit-file. JOVE prints (New file) but aside from that be-
haves as if you had read an existing empty file. If you make any changes and save them, the file is created then. If
you read a nonexistent file unintentionally (because you typed the wrong filename), go ahead and read the file you
meant. The unwanted file will not have been created.

10.2. Writing files

"X7Sor"X"\ save-file Save the file in the selected buffer.

XTW write-file Write the selected buffer to a different file.
write-region Write the region to the specified file.
append-region Append the region to the specified file.

If you wish to save the file and make your changes permanent, type "X °S. After the save is finished, "X °S prints the
filename and the number of characters and lines that it wrote to the file. If there are no changes to save (no asterisk
in the mode line), the file is not saved; otherwise the changes are saved and the asterisk in the mode line disappears.

If JOVE is about to save a file and sees that the date of the version on disk does not match what JOVE last read or
wrote, JOVE notifies you of this fact, and asks what to do, because this probably means that something is wrong. For
example, somebody else may have been editing the same file. If this is so, there is a good chance that your work or
his work will be lost if you don’t take the proper steps. You should first find out exactly what is going on. If you de-
termine that somebody else has modified the file, save your file under a different filename and then DIFF the two
files to merge the two sets of changes. (The “patch” command is useful for applying the results of context diffs di-
rectly). Also get in touch with the other person so that the files don’t diverge any further.

"X "W <filename><return> (write-file) writes the contents of the buffer into the file <filename>, changing the name
of the file recorded in the mode line accordingly. It can be thought of as a way of “changing the name” of the file in
the buffer. Unlike "X "S, write-file saves even if the buffer has not been changed.

ESC X write-region <file><return> writes the region (the text between point and mark) to the specified file. It does
not change the buffer’s filename.

ESC X append-region <file><return> appends the region to <file>. The text is added to the end of <file>.

10.3. How to Undo Drastic Changes to a File

If you have made several extensive changes to a file and then change your mind about them, and you haven’t yet
saved them, you can get rid of them by reading in the previous version of the file. You can do this with the "X "V
(visit-file) command, to visit the unsaved version of the file. Remember to tell it not to save your existing changes
when it asks.

11. Windows

11.1. Multiple Windows

JoVE allows you to split the screen into two or more windows and use them to display parts of different buffers, or
different parts of the same buffer.

JOVE User Manual 21

#define getchar() getc(stdin)

#define putchar(x) putc((x), stdout) < first Window
JOVE (C RO) [stdio.h:1] "/usr/include/stdio.h™ -- ||< the Mode Line
{
printf("Hello world!\n");
return O; < second Window
jim
JOVE (C OvrWt) [Main:1] "aloha.c’ —— /home/foo||< the Mode Line
[Point pushed] < the Message Line
X2 split-current-window Divide the active window into two smaller ones.
X1 delete-other-windows Delete all windows but the current one.
XD delete-current-window Delete the active window.
XN next-window Switch to the next window.
“XP previous-window Switch to the previous window.
X0 previous-window Same as "X P.
X grow-window Make this window bigger.
shrink-window Make this window smaller.
ESC"V page-next-window Scroll the other window.
X4 window-find Combination window command.

When using multiple window mode, the window portion of the screen is divided into windows, which can display
different pieces of text. Each window can display different buffers, or different parts of the same buffer. Only one
of the windows is active, viz. the window which the cursor is in. Editing normally takes place in that window alone.
To edit in another window, you would give a command to move the cursor to the other window, and then edit there.

Each window includes a mode line for the buffer it is displaying. This is useful to keep track of which window cor-
responds with which buffer and which file. In addition, the mode line serves as a separator between windows. Nor-
mally, the variable mode-line-should-standout is on so that Jove displays the mode-line in reverse video (assuming
your particular terminal has the reverse video capability). However, if the variable scroll-bar is also on, a portion of
the mode line is left clear to indicate how the window is located within the buffer.

The command "X 2 (split-current-window) divides the active window into two. A new mode line appears across the
middle of the original window, dividing its display area into two halves. Both windows contain the same buffer and
display the same position in it, namely where point was at the time you issued the command. The cursor moves to
the second window.

To return to viewing only one window, use the command "X 1 (delete-other-windows). The active window expands
to fill the whole screen, and the other windows disappear until the next "X 2. (The buffers and their contents are un-
affected by any of the window operations).

While there is more than one window, you can use "X N (next-window) to switch to the next window, and "X P (pre-
vious-window) to switch to the previous one. If you are in the bottom window and you type "X N, you will be
placed in the top window, and the opposite thing happens when you type "X P in the top window. "X O is the same
as "X P. It stands for “other window” because, when there are only two windows, repeated use of this command will
switch between them.

Often you will be editing one window while using the other just for reference. Then, the command ESC "V (page-
next-window) is very useful. It scrolls the next window up, just as if you switched to the next window, typed "V, and
switched back. With a negative argument, ESC "V will scroll down.

When a window splits, both halves are approximately the same size. You can redistribute the screen space between
the windows with the "X~ (grow-window) command. It makes the active window grow one line bigger, or as many
lines as is specified with a numeric argument. Use ESC X shrink-window to make the active window smaller.

22 JOVE User Manual

11.2. Multiple Buffers in Multiple Windows

Buffers can be selected independently in each window. The "X B (select-buffer) command selects a different buffer
in the active window (i.e. the one containing the cursor). Other windows’ buffers do not change. Likewise, the
"X °F (find-file) command reads a new file into a new buffer in the active window.

You can view the same buffer in more than one window. Although the same buffer appears in both windows, they
have different values of point, so you can move around in one window while the other window continues to show the
same text. If you make changes in one window, and the same place in the buffer happens to be visible in the other
window, your changes will appear simultaneously in both places.

If you have the same buffer in both windows, you must beware of trying to visit a different file in one of the win-
dows with "X "V, because if you bring a new file into this buffer it will replace the old file in both windows. To view
different files in different windows, you must switch buffers in one of the windows first (with "X B) or use "X "F
(find-file).

A convenient “combination” command for viewing something in another window is "X 4 (window-find). With this
command you can ask to see any specified buffer, file or tag in the other window. Follow the "X 4 with either B and
a buffer name, F and a filename, or T and a tag name. This switches to the other window and finds there what you
specified. If you were previously in one-window mode, multiple-window mode is entered. "X 4 B is similar to "X 2
"X B; "X 4 Fis similar to "X 2 "X F; "X 4 T is similar to "X 2 "X T. The difference is one of efficiency, and also
that "X 4 works equally well if you are already using two windows.

11.3. Controlling the Display

Since only part of a large file will fit in a window, JOVE tries to show the portion that is likely to be interesting. The
display control commands allow you to bring a different portion of the buffer within the active window.

"L redraw-display Reposition point at a specified vertical position, OR clear and redraw the
window