
cattrs Documentation
Release 23.1.2

Tin Tvrtković

Aug 28, 2023

CONTENTS

1 Global converter 3

2 Converter objects 5

3 cattrs.Converter 7

4 cattrs.BaseConverter 9

5 Common Usage Examples 11
5.1 Using Pendulum for Dates and Time . 11
5.2 Using factory hooks . 12
5.3 Using fallback key names . 15

6 What You Can Structure and How 17
6.1 Primitive Values . 17
6.2 Collections and Other Generics . 18
6.3 attrs Classes and Dataclasses . 24
6.4 Using Attribute Types and Converters . 24
6.5 Registering Custom Structuring Hooks . 26
6.6 Structuring Hook Factories . 27

7 What You Can Unstructure and How 29
7.1 Primitive Types and Collections . 29
7.2 pathlib.Path . 30
7.3 Customizing Collection Unstructuring . 31
7.4 typing.Annotated . 32
7.5 typing.NewType . 32
7.6 attrs Classes and Dataclasses . 32
7.7 Mixing and Matching Strategies . 33
7.8 Unstructuring Hook Factories . 33

8 Strategies 35
8.1 Tagged Unions Strategy . 35
8.2 Include Subclasses Strategy . 37

9 Validation 41
9.1 Detailed Validation . 41
9.2 Non-detailed Validation . 43

10 Preconfigured Converters 45
10.1 Standard Library json . 46

i

10.2 ujson . 46
10.3 orjson . 46
10.4 msgpack . 46
10.5 cbor2 . 47
10.6 bson . 47
10.7 pyyaml . 47
10.8 tomlkit . 47

11 Customizing class un/structuring 49
11.1 Using cattr.Converter . 49
11.2 Manual un/structuring hooks . 49
11.3 Using cattrs.gen generators . 49

12 Tips for handling unions 53
12.1 Unstructuring unions with extra metadata . 53

13 Benchmarking 55
13.1 A Sample Workflow . 55

14 Contributing 57
14.1 Types of Contributions . 57
14.2 Get Started! . 58
14.3 Pull Request Guidelines . 59
14.4 Tips . 59

15 History 61
15.1 23.1.2 (2023-06-02) . 61
15.2 23.1.1 (2023-05-30) . 61
15.3 23.1.0 (2023-05-30) . 61
15.4 22.2.0 (2022-10-03) . 62
15.5 22.1.0 (2022-04-03) . 62
15.6 1.10.0 (2022-01-04) . 63
15.7 1.9.0 (2021-12-06) . 63
15.8 1.8.0 (2021-08-13) . 63
15.9 1.7.1 (2021-05-28) . 64
15.10 1.7.0 (2021-05-26) . 64
15.11 1.6.0 (2021-04-28) . 64
15.12 1.5.0 (2021-04-15) . 64
15.13 1.4.0 (2021-03-21) . 64
15.14 1.3.0 (2021-02-25) . 65
15.15 1.2.0 (2021-01-31) . 65
15.16 1.1.2 (2020-11-29) . 65
15.17 1.1.1 (2020-10-30) . 65
15.18 1.1.0 (2020-10-29) . 66
15.19 1.0.0 (2019-12-27) . 66
15.20 0.9.1 (2019-10-26) . 66
15.21 0.9.0 (2018-07-22) . 66
15.22 0.8.1 (2018-06-19) . 66
15.23 0.8.0 (2018-04-14) . 67
15.24 0.7.0 (2018-04-12) . 67
15.25 0.6.0 (2017-12-25) . 67
15.26 0.5.0 (2017-12-11) . 67
15.27 0.4.0 (2017-07-17) . 67
15.28 0.3.0 (2017-03-18) . 68
15.29 0.2.0 (2016-10-02) . 68

ii

15.30 0.1.0 (2016-08-13) . 68

16 cattrs 69
16.1 Features . 71
16.2 Additional documentation and talks . 71
16.3 Credits . 72

17 Indices and tables 73

iii

iv

cattrs Documentation, Release 23.1.2

All cattrs functionality is exposed through a cattrs.Converter object. Global cattrs functions, such as cattrs.
unstructure(), use a single global converter. Changes done to this global converter, such as registering new structure
and unstructure hooks, affect all code using the global functions.

CONTENTS 1

cattrs Documentation, Release 23.1.2

2 CONTENTS

CHAPTER

ONE

GLOBAL CONVERTER

A global converter is provided for convenience as cattrs.global_converter. The following functions implicitly
use this global converter:

• cattrs.structure()

• cattrs.unstructure()

• cattrs.structure_attrs_fromtuple()

• cattrs.structure_attrs_fromdict()

Changes made to the global converter will affect the behavior of these functions.

Larger applications are strongly encouraged to create and customize a different, private instance of cattrs.
Converter.

3

cattrs Documentation, Release 23.1.2

4 Chapter 1. Global converter

CHAPTER

TWO

CONVERTER OBJECTS

To create a private converter, simply instantiate a cattrs.Converter. Currently, a converter contains the following
state:

• a registry of unstructure hooks, backed by a singledispatch and a function_dispatch.

• a registry of structure hooks, backed by a different singledispatch and function_dispatch.

• a LRU cache of union disambiguation functions.

• a reference to an unstructuring strategy (either AS_DICT or AS_TUPLE).

• a dict_factory callable, used for creating dicts when dumping attrs classes using AS_DICT.

Converters may be cloned using the cattrs.Converter.copy() method. The new copy may be changed through
the copy arguments, but will retain all manually registered hooks from the original.

5

https://docs.python.org/3/library/functools.html#functools.singledispatch

cattrs Documentation, Release 23.1.2

6 Chapter 2. Converter objects

CHAPTER

THREE

CATTRS.CONVERTER

The Converter is a converter variant that automatically generates, compiles and caches specialized structuring and
unstructuring hooks for attrs classes and dataclasses.

Converter differs from the cattrs.BaseConverter in the following ways:

• structuring and unstructuring of attrs classes is slower the first time, but faster every subsequent time

• structuring and unstructuring can be customized

• support for attrs classes with PEP563 (postponed) annotations

• support for generic attrs classes

• support for easy overriding collection unstructuring

The Converter used to be called GenConverter, and that alias is still present for backwards compatibility reasons.

7

cattrs Documentation, Release 23.1.2

8 Chapter 3. cattrs.Converter

CHAPTER

FOUR

CATTRS.BASECONVERTER

The BaseConverter is a simpler and slower Converter variant. It does no code generation, so it may be faster on first-
use which can be useful in specific cases, like CLI applications where startup time is more important than throughput.

9

cattrs Documentation, Release 23.1.2

10 Chapter 4. cattrs.BaseConverter

CHAPTER

FIVE

COMMON USAGE EXAMPLES

This section covers common use examples of cattrs features.

5.1 Using Pendulum for Dates and Time

To use the excellent Pendulum library for datetimes, we need to register structuring and unstructuring hooks for it.

First, we need to decide on the unstructured representation of a datetime instance. Since all our datetimes will use the
UTC time zone, we decide to use the UNIX epoch timestamp as our unstructured representation.

Define a class using Pendulum’s DateTime:

>>> import pendulum
>>> from pendulum import DateTime

>>> @define
... class MyRecord:
... a_string: str
... a_datetime: DateTime

Next, we register hooks for the DateTime class on a new Converter instance.

>>> from cattrs import Converter

>>> converter = Converter()

>>> converter.register_unstructure_hook(DateTime, lambda dt: dt.timestamp())
>>> converter.register_structure_hook(DateTime, lambda ts, _: pendulum.from_
↪→timestamp(ts))

And we can proceed with unstructuring and structuring instances of MyRecord.

>>> my_record = MyRecord('test', pendulum.datetime(2018, 7, 28, 18, 24))
>>> my_record
MyRecord(a_string='test', a_datetime=DateTime(2018, 7, 28, 18, 24, 0, tzinfo=Timezone(
↪→'UTC')))

>>> converter.unstructure(my_record)
{'a_string': 'test', 'a_datetime': 1532802240.0}

>>> converter.structure({'a_string': 'test', 'a_datetime': 1532802240.0}, MyRecord)
(continues on next page)

11

https://pendulum.eustace.io/

cattrs Documentation, Release 23.1.2

(continued from previous page)

MyRecord(a_string='test', a_datetime=DateTime(2018, 7, 28, 18, 24, 0, tzinfo=Timezone(
↪→'UTC')))

After a while, we realize we will need our datetimes to have timezone information. We decide to switch to using the
ISO 8601 format for our unstructured datetime instances.

>>> converter = cattrs.Converter()
>>> converter.register_unstructure_hook(DateTime, lambda dt: dt.to_iso8601_string())
>>> converter.register_structure_hook(DateTime, lambda isostring, _: pendulum.
↪→parse(isostring))

>>> my_record = MyRecord('test', pendulum.datetime(2018, 7, 28, 18, 24, tz='Europe/Paris
↪→'))
>>> my_record
MyRecord(a_string='test', a_datetime=DateTime(2018, 7, 28, 18, 24, 0, tzinfo=Timezone(
↪→'Europe/Paris')))

>>> converter.unstructure(my_record)
{'a_string': 'test', 'a_datetime': '2018-07-28T18:24:00+02:00'}

>>> converter.structure({'a_string': 'test', 'a_datetime': '2018-07-28T18:24:00+02:00'},␣
↪→MyRecord)
MyRecord(a_string='test', a_datetime=DateTime(2018, 7, 28, 18, 24, 0, tzinfo=Timezone(
↪→'+02:00')))

5.2 Using factory hooks

For this example, let’s assume you have some attrs classes with snake case attributes, and you want to un/structure them
as camel case.

Warning: A simpler and better approach to this problem is to simply make your class attributes camel case.
However, this is a good example of the power of hook factories and cattrs’ component-based design.

Here’s our simple data model:

@define
class Inner:

a_snake_case_int: int
a_snake_case_float: float
a_snake_case_str: str

@define
class Outer:

a_snake_case_inner: Inner

Let’s examine our options one by one, starting with the simplest: writing manual un/structuring hooks.

We just write the code by hand and register it:

12 Chapter 5. Common Usage Examples

cattrs Documentation, Release 23.1.2

def unstructure_inner(inner):
return {

"aSnakeCaseInt": inner.a_snake_case_int,
"aSnakeCaseFloat": inner.a_snake_case_float,
"aSnakeCaseStr": inner.a_snake_case_str

}

>>> converter.register_unstructure_hook(Inner, unstructure_inner)

(Let’s skip the other unstructure hook and 2 structure hooks due to verbosity.)

This will get us where we want to go, but the drawbacks are immediately obvious: we’d need to write a ton of code
ourselves, wasting effort, increasing our maintenance burden and risking bugs. Obviously this won’t do.

Why write code when we can write code to write code for us? In this case this code has already been written for
you. cattrs contains a module, cattrs.gen, with functions to automatically generate hooks exactly like this. These
functions also take parameters to customize the generated hooks.

We can generate and register the renaming hooks we need:

>>> from cattrs.gen import make_dict_unstructure_fn, override

>>> converter.register_unstructure_hook(
... Inner,
... make_dict_unstructure_fn(
... Inner,
... converter,
... a_snake_case_int=override(rename="aSnakeCaseInt"),
... a_snake_case_float=override(rename="aSnakeCaseFloat"),
... a_snake_case_str=override(rename="aSnakeCaseStr"),
...)
...)

(Again skipping the other hooks due to verbosity.)

This is still too verbose and manual for our tastes, so let’s automate it further. We need a way to convert snake case
identifiers to camel case, so let’s grab one from Stack Overflow:

def to_camel_case(snake_str: str) -> str:
components = snake_str.split("_")
return components[0] + "".join(x.title() for x in components[1:])

We can combine this with attrs.fields to save us some typing:

from attrs import fields
from cattrs.gen import make_dict_unstructure_fn, override

converter.register_unstructure_hook(
Inner,
make_dict_unstructure_fn(

Inner,
converter,
**{a.name: override(rename=to_camel_case(a.name)) for a in fields(Inner)}

)
)

(continues on next page)

5.2. Using factory hooks 13

https://www.attrs.org/en/stable/api.html#attrs.fields

cattrs Documentation, Release 23.1.2

(continued from previous page)

converter.register_unstructure_hook(
Outer,
make_dict_unstructure_fn(

Outer,
converter,
**{a.name: override(rename=to_camel_case(a.name)) for a in fields(Outer)}

)
)

(Skipping the structuring hooks due to verbosity.)

Now we’re getting somewhere, but we still need to do this for each class separately. The final step is using hook factories
instead of hooks directly.

Hook factories are functions that return hooks. They are also registered using predicates instead of being attached to
classes directly, like normal un/structure hooks. Predicates are functions that given a type return a boolean whether
they handle it.

We want our hook factories to trigger for all attrs classes, so we need a predicate to recognize whether a type is an attrs
class. Luckily, attrs comes with attrs.has, which is exactly this.

As the final step, we can combine all of this into two hook factories:

from attrs import has, fields
from cattrs import Converter
from cattrs.gen import make_dict_unstructure_fn, make_dict_structure_fn, override

converter = Converter()

def to_camel_case(snake_str: str) -> str:
components = snake_str.split("_")
return components[0] + "".join(x.title() for x in components[1:])

def to_camel_case_unstructure(cls):
return make_dict_unstructure_fn(

cls,
converter,
**{

a.name: override(rename=to_camel_case(a.name))
for a in fields(cls)

}
)

def to_camel_case_structure(cls):
return make_dict_structure_fn(

cls,
converter,
**{

a.name: override(rename=to_camel_case(a.name))
for a in fields(cls)

}
)

(continues on next page)

14 Chapter 5. Common Usage Examples

https://www.attrs.org/en/stable/api.html#attrs.has

cattrs Documentation, Release 23.1.2

(continued from previous page)

converter.register_unstructure_hook_factory(
has, to_camel_case_unstructure

)
converter.register_structure_hook_factory(

has, to_camel_case_structure
)

The converter instance will now un/structure every attrs class to camel case. Nothing has been omitted from this
final example; it’s complete.

5.3 Using fallback key names

Sometimes when structuring data, the input data may be in multiple formats that need to be converted into a common
attribute.

Consider an example where a data store creates a new schema version and renames a key (ie, {'old_field':
'value1'} in v1 becomes {'new_field': 'value1'} in v2), while also leaving existing records in the system
with the V1 schema. Both keys should convert to the same field.

Here, builtin customizations such as rename are insufficient - cattrs cannot structure both old_field and new_field
into a single field using rename, at least not on the same converter.

In order to support both fields, you can apply a little preprocessing to the default cattrs structuring hooks. One approach
is to write the following decorator and apply it to your class.

from attrs import define
from cattrs import Converter
from cattrs.gen import make_dict_structure_fn

converter = Converter()

def fallback_field(
converter_arg: Converter,
old_to_new_field: dict[str, str]

):
def decorator(cls):

struct = make_dict_structure_fn(cls, converter_arg)

def structure(d, cl):
for k, v in old_to_new_field.items():

if k in d:
d[v] = d[k]

return struct(d, cl)

converter_arg.register_structure_hook(cls, structure)

return cls

return decorator

(continues on next page)

5.3. Using fallback key names 15

cattrs Documentation, Release 23.1.2

(continued from previous page)

@fallback_field(converter, {"old_field": "new_field"})
@define
class MyInternalAttr:

new_field: str

cattrs will now structure both key names into new_field on your class.

converter.structure({"new_field": "foo"}, MyInternalAttr)
converter.structure({"old_field": "foo"}, MyInternalAttr)

16 Chapter 5. Common Usage Examples

CHAPTER

SIX

WHAT YOU CAN STRUCTURE AND HOW

The philosophy of cattrs structuring is simple: give it an instance of Python built-in types and collections, and a type
describing the data you want out. cattrs will convert the input data into the type you want, or throw an exception.

All structuring conversions are composable, where applicable. This is demonstrated further in the examples.

6.1 Primitive Values

6.1.1 typing.Any

Use typing.Any to avoid applying any conversions to the object you’re structuring; it will simply be passed through.

>>> cattrs.structure(1, Any)
1
>>> d = {1: 1}
>>> cattrs.structure(d, Any) is d
True

6.1.2 int, float, str, bytes

Use any of these primitive types to convert the object to the type.

>>> cattrs.structure(1, str)
'1'
>>> cattrs.structure("1", float)
1.0

In case the conversion isn’t possible, the expected exceptions will be propagated out. The particular exceptions are the
same as if you’d tried to do the conversion yourself, directly.

>>> cattrs.structure("not-an-int", int)
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: 'not-an-int'

17

cattrs Documentation, Release 23.1.2

6.1.3 Enums

Enums will be structured by their values. This works even for complex values, like tuples.

>>> @unique
... class CatBreed(Enum):
... SIAMESE = "siamese"
... MAINE_COON = "maine_coon"
... SACRED_BIRMAN = "birman"

>>> cattrs.structure("siamese", CatBreed)
<CatBreed.SIAMESE: 'siamese'>

Again, in case of errors, the expected exceptions will fly out.

>>> cattrs.structure("alsatian", CatBreed)
Traceback (most recent call last):
...
ValueError: 'alsatian' is not a valid CatBreed

6.1.4 pathlib.Path

pathlib.Path objects are structured using their string value.

>>> from pathlib import Path

>>> cattrs.structure("/root", Path)
PosixPath('/root')

In case the conversion isn’t possible, the resulting exception is propagated out.

New in version 23.1.0.

6.2 Collections and Other Generics

6.2.1 Optionals

Optional primitives and collections are supported out of the box.

>>> cattrs.structure(None, int)
Traceback (most recent call last):
...
TypeError: int() argument must be a string, a bytes-like object or a number, not
↪→'NoneType'
>>> cattrs.structure(None, Optional[int])
>>> # None was returned.

Bare Optional s (non-parameterized, just Optional, as opposed to Optional[str]) aren’t supported, use
Optional[Any] instead.

The Python 3.10 more readable syntax, str | None instead of Optional[str], is also supported.

This generic type is composable with all other converters.

18 Chapter 6. What You Can Structure and How

https://docs.python.org/3/library/pathlib.html#pathlib.Path

cattrs Documentation, Release 23.1.2

>>> cattrs.structure(1, Optional[float])
1.0

6.2.2 Lists

Lists can be produced from any iterable object. Types converting to lists are:

• Sequence[T]

• MutableSequence[T]

• List[T]

• list[T]

In all cases, a new list will be returned, so this operation can be used to copy an iterable into a list. A bare type, for
example Sequence instead of Sequence[int], is equivalent to Sequence[Any].

>>> cattrs.structure((1, 2, 3), MutableSequence[int])
[1, 2, 3]

These generic types are composable with all other converters.

>>> cattrs.structure((1, None, 3), list[Optional[str]])
['1', None, '3']

6.2.3 Deques

Deques can be produced from any iterable object. Types converting to deques are:

• Deque[T]

• deque[T]

In all cases, a new unbounded deque (maxlen=None) will be returned, so this operation can be used to copy an iterable
into a deque. If you want to convert into bounded deque, registering a custom structuring hook is a good approach.

>>> cattrs.structure((1, 2, 3), deque[int])
deque([1, 2, 3])

These generic types are composable with all other converters.

>>> cattrs.structure((1, None, 3), deque[Optional[str]])
deque(['1', None, '3'])

New in version 23.1.0.

6.2. Collections and Other Generics 19

cattrs Documentation, Release 23.1.2

6.2.4 Sets and Frozensets

Sets and frozensets can be produced from any iterable object. Types converting to sets are:

• Set[T]

• MutableSet[T]

• set[T]

Types converting to frozensets are:

• FrozenSet[T]

• frozenset[T]

In all cases, a new set or frozenset will be returned, so this operation can be used to copy an iterable into a set. A bare
type, for example MutableSet instead of MutableSet[int], is equivalent to MutableSet[Any].

>>> cattrs.structure([1, 2, 3, 4], Set)
{1, 2, 3, 4}

These generic types are composable with all other converters.

>>> cattrs.structure([[1, 2], [3, 4]], set[frozenset[str]])
{frozenset({'1', '2'}), frozenset({'4', '3'})}

6.2.5 Dictionaries

Dicts can be produced from other mapping objects. To be more precise, the object being converted must expose
an items() method producing an iterable key-value tuples, and be able to be passed to the dict constructor as an
argument. Types converting to dictionaries are:

• Dict[K, V]

• MutableMapping[K, V]

• Mapping[K, V]

• dict[K, V]

In all cases, a new dict will be returned, so this operation can be used to copy a mapping into a dict. Any type parameters
set to typing.Any will be passed through unconverted. If both type parameters are absent, they will be treated as Any
too.

>>> from collections import OrderedDict
>>> cattrs.structure(OrderedDict([(1, 2), (3, 4)]), Dict)
{1: 2, 3: 4}

These generic types are composable with all other converters. Note both keys and values can be converted.

>>> cattrs.structure({1: None, 2: 2.0}, dict[str, Optional[int]])
{'1': None, '2': 2}

20 Chapter 6. What You Can Structure and How

cattrs Documentation, Release 23.1.2

6.2.6 Typed Dicts

TypedDicts can be produced from mapping objects, usually dictionaries.

>>> from typing import TypedDict

>>> class MyTypedDict(TypedDict):
... a: int

>>> cattrs.structure({"a": "1"}, MyTypedDict)
{'a': 1}

Both total and non-total TypedDicts are supported, and inheritance between any combination works (except on 3.8
when typing.TypedDict is used, see below). Generic TypedDicts work on Python 3.11 and later, since that is the
first Python version that supports them in general.

typing.Required and typing.NotRequired are supported.

On Python 3.7, using typing_extensions.TypedDict is required since typing.TypedDict doesn’t exist there.
On Python 3.8, using typing_extensions.TypedDict is recommended since typing.TypedDict doesn’t support
all necessary features, so certain combinations of subclassing, totality and typing.Required won’t work.

Similar to attrs classes, structuring can be customized using cattrs.gen.typeddicts.
make_dict_structure_fn().

>>> from typing import TypedDict
>>> from cattrs import Converter
>>> from cattrs.gen import override
>>> from cattrs.gen.typeddicts import make_dict_structure_fn

>>> class MyTypedDict(TypedDict):
... a: int
... b: int

>>> c = Converter()
>>> c.register_structure_hook(
... MyTypedDict,
... make_dict_structure_fn(
... MyTypedDict,
... c,
... a=override(rename="a-with-dash")
...)
...)

>>> c.structure({"a-with-dash": 1, "b": 2}, MyTypedDict)
{'b': 2, 'a': 1}

See also:

Unstructuring TypedDicts.

New in version 23.1.0.

6.2. Collections and Other Generics 21

https://peps.python.org/pep-0589/
https://peps.python.org/pep-0589/#totality
https://peps.python.org/pep-0655/

cattrs Documentation, Release 23.1.2

6.2.7 Homogeneous and Heterogeneous Tuples

Homogeneous and heterogeneous tuples can be produced from iterable objects. Heterogeneous tuples require an iter-
able with the number of elements matching the number of type parameters exactly. Use:

• Tuple[A, B, C, D]

• tuple[A, B, C, D]

Homogeneous tuples use:

• Tuple[T, ...]

• tuple[T, ...]

In all cases a tuple will be returned. Any type parameters set to typing.Any will be passed through unconverted.

>>> cattrs.structure([1, 2, 3], tuple[int, str, float])
(1, '2', 3.0)

The tuple conversion is composable with all other converters.

>>> cattrs.structure([{1: 1}, {2: 2}], tuple[dict[str, float], ...])
({'1': 1.0}, {'2': 2.0})

6.2.8 Unions

Unions of NoneType and a single other type are supported (also known as Optional s). All other unions require a
disambiguation function.

Automatic Disambiguation

In the case of a union consisting exclusively of attrs classes, cattrs will attempt to generate a disambiguation
function automatically; this will succeed only if each class has a unique field. Given the following classes:

>>> @define
... class A:
... a = field()
... x = field()

>>> @define
... class B:
... a = field()
... y = field()

>>> @define
... class C:
... a = field()
... z = field()

cattrs can deduce only instances of A will contain x, only instances of B will contain y, etc. A disambiguation
function using this information will then be generated and cached. This will happen automatically, the first time an
appropriate union is structured.

22 Chapter 6. What You Can Structure and How

cattrs Documentation, Release 23.1.2

Manual Disambiguation

To support arbitrary unions, register a custom structuring hook for the union (see Registering custom structuring hooks).

Another option is to use a custom tagged union strategy (see Strategies - Tagged Unions).

6.2.9 typing.Final

PEP 591 Final attribute types (Final[int]) are supported and structured appropriately.

New in version 23.1.0.

See also:

Unstructuring Final.

6.2.10 typing.Annotated

PEP 593 annotations (typing.Annotated[type, ...]) are supported and are matched using the first type present
in the annotated type.

6.2.11 typing.NewType

NewTypes are supported and are structured according to the rules for their underlying type. Their hooks can also be
overriden using :py:attr:cattrs.Converter.register_structure_hook.

>>> from typing import NewType
>>> from datetime import datetime

>>> IsoDate = NewType("IsoDate", datetime)

>>> converter = cattrs.Converter()
>>> converter.register_structure_hook(IsoDate, lambda v, _: datetime.fromisoformat(v))

>>> converter.structure("2022-01-01", IsoDate)
datetime.datetime(2022, 1, 1, 0, 0)

New in version 22.2.0.

See also:

Unstructuring NewTypes.

Note: NewTypes are not supported by the legacy BaseConverter.

6.2. Collections and Other Generics 23

https://peps.python.org/pep-0591/
https://www.python.org/dev/peps/pep-0593/
https://docs.python.org/3/library/typing.html#newtype

cattrs Documentation, Release 23.1.2

6.3 attrs Classes and Dataclasses

6.3.1 Simple attrs Classes and Dataclasses

attrs classes and dataclasses using primitives, collections of primitives and their own converters work out of the box.
Given a mapping d and class A, cattrs will simply instantiate A with d unpacked.

>>> @define
... class A:
... a: int
... b: int

>>> cattrs.structure({'a': 1, 'b': '2'}, A)
A(a=1, b=2)

Classes like these deconstructed into tuples can be structured using structure_attrs_fromtuple() (fromtuple
as in the opposite of attr.astuple and converter.unstructure_attrs_astuple).

>>> @define
... class A:
... a: str
... b: int

>>> cattrs.structure_attrs_fromtuple(['string', '2'], A)
A(a='string', b=2)

Loading from tuples can be made the default by creating a new Converter with unstruct_strat=cattr.
UnstructureStrategy.AS_TUPLE.

>>> converter = cattrs.Converter(unstruct_strat=cattr.UnstructureStrategy.AS_TUPLE)
>>> @define
... class A:
... a: str
... b: int

>>> converter.structure(['string', '2'], A)
A(a='string', b=2)

Structuring from tuples can also be made the default for specific classes only; see registering custom structure hooks
below.

6.4 Using Attribute Types and Converters

By default, structure() will use hooks registered using register_structure_hook(), to convert values to the
attribute type, and fallback to invoking any converters registered on attributes with attrib.

>>> from ipaddress import IPv4Address, ip_address
>>> converter = cattrs.Converter()

Note: register_structure_hook has not been called, so this will fallback to 'ip_address
↪→'

(continues on next page)

24 Chapter 6. What You Can Structure and How

cattrs Documentation, Release 23.1.2

(continued from previous page)

>>> @define
... class A:
... a: IPv4Address = field(converter=ip_address)

>>> converter.structure({'a': '127.0.0.1'}, A)
A(a=IPv4Address('127.0.0.1'))

Priority is still given to hooks registered with register_structure_hook(), but this priority can be inverted by
setting prefer_attrib_converters to True.

>>> converter = cattrs.Converter(prefer_attrib_converters=True)

>>> converter.register_structure_hook(int, lambda v, t: int(v))

>>> @define
... class A:
... a: int = field(converter=lambda v: int(v) + 5)

>>> converter.structure({'a': '10'}, A)
A(a=15)

6.4.1 Complex attrs Classes and Dataclasses

Complex attrs classes and dataclasses are classes with type information available for some or all attributes. These
classes support almost arbitrary nesting.

Type information is supported by attrs directly, and can be set using type annotations when using Python 3.6+, or by
passing the appropriate type to attr.ib.

>>> @define
... class A:
... a: int

>>> attr.fields(A).a
Attribute(name='a', default=NOTHING, validator=None, repr=True, eq=True, eq_key=None,␣
↪→order=True, order_key=None, hash=None, init=True, metadata=mappingproxy({}), type=
↪→<class 'int'>, converter=None, kw_only=False, inherited=False, on_setattr=None, alias=
↪→'a')

Type information, when provided, can be used for all attribute types, not only attributes holding attrs classes and
dataclasses.

>>> @define
... class A:
... a: int = 0

>>> @define
... class B:
... b: A

>>> cattrs.structure({'b': {'a': '1'}}, B)
B(b=A(a=1))

6.4. Using Attribute Types and Converters 25

cattrs Documentation, Release 23.1.2

Finally, if an attrs or dataclass class uses inheritance and as such has one or several subclasses, it can be structured
automatically to its exact subtype by using the include subclasses strategy.

6.5 Registering Custom Structuring Hooks

cattrs doesn’t know how to structure non-attrs classes by default, so it has to be taught. This can be done by registering
structuring hooks on a converter instance (including the global converter).

Here’s an example involving a simple, classic (i.e. non-attrs) Python class.

>>> class C:
... def __init__(self, a):
... self.a = a
... def __repr__(self):
... return f'C(a={self.a})'

>>> cattrs.structure({'a': 1}, C)
Traceback (most recent call last):
...
StructureHandlerNotFoundError: Unsupported type: <class '__main__.C'>. Register a␣
↪→structure hook for it.

>>> cattrs.register_structure_hook(C, lambda d, t: C(**d))
>>> cattrs.structure({'a': 1}, C)
C(a=1)

The structuring hooks are callables that take two arguments: the object to convert to the desired class and the type to
convert to. (The type may seem redundant but is useful when dealing with generic types.)

When using cattrs.register_structure_hook(), the hook will be registered on the global converter. If you want
to avoid changing the global converter, create an instance of cattrs.Converter and register the hook on that.

In some situations, it is not possible to decide on the converter using typing mechanisms alone (such as with attrs
classes). In these situations, cattrs provides a register_unstructure_hook_func() hook instead, which accepts
a predicate function to determine whether that type can be handled instead.

The function-based hooks are evaluated after the class-based hooks. In the case where both a class-based hook and a
function-based hook are present, the class-based hook will be used.

>>> class D:
... custom = True
... def __init__(self, a):
... self.a = a
... def __repr__(self):
... return f'D(a={self.a})'
... @classmethod
... def deserialize(cls, data):
... return cls(data["a"])

>>> cattrs.register_structure_hook_func(
... lambda cls: getattr(cls, "custom", False), lambda d, t: t.deserialize(d)
...)

(continues on next page)

26 Chapter 6. What You Can Structure and How

cattrs Documentation, Release 23.1.2

(continued from previous page)

>>> cattrs.structure({'a': 2}, D)
D(a=2)

6.6 Structuring Hook Factories

Hook factories operate one level higher than structuring hooks; structuring hooks are functions registered to a class or
predicate, and hook factories are functions (registered via a predicate) that produce structuring hooks.

Structuring hooks factories are registered using Converter.register_structure_hook_factory().

Here’s a small example showing how to use factory hooks to apply the forbid_extra_keys to all attrs classes:

>>> from attrs import define, has
>>> from cattrs.gen import make_dict_structure_fn

>>> c = cattrs.Converter()
>>> c.register_structure_hook_factory(
... has,
... lambda cl: make_dict_structure_fn(
... cl, c, _cattrs_forbid_extra_keys=True, _cattrs_detailed_validation=False
...)
...)

>>> @define
... class E:
... an_int: int

>>> c.structure({"an_int": 1, "else": 2}, E)
Traceback (most recent call last):
...
cattrs.errors.ForbiddenExtraKeysError: Extra fields in constructor for E: else

A complex use case for hook factories is described over at Using factory hooks.

6.6. Structuring Hook Factories 27

cattrs Documentation, Release 23.1.2

28 Chapter 6. What You Can Structure and How

CHAPTER

SEVEN

WHAT YOU CAN UNSTRUCTURE AND HOW

Unstructuring is intended to convert high-level, structured Python data (like instances of complex classes) into simple,
unstructured data (like dictionaries).

Unstructuring is simpler than structuring in that no target types are required. Simply provide an argument to
Converter.unstructure() and cattrs will produce a result based on the registered unstructuring hooks. A number
of default unstructuring hooks are documented here.

7.1 Primitive Types and Collections

Primitive types (integers, floats, strings. . .) are simply passed through. Collections are copied. There’s relatively little
value in unstructuring these types directly as they are already unstructured and third-party libraries tend to support
them directly.

A useful use case for unstructuring collections is to create a deep copy of a complex or recursive collection.

>>> # A dictionary of strings to lists of tuples of floats.
>>> data = {'a': [[1.0, 2.0], [3.0, 4.0]]}

>>> copy = cattrs.unstructure(data)
>>> data == copy
True
>>> data is copy
False

7.1.1 Typed Dicts

TypedDicts unstructure into dictionaries, potentially unchanged (depending on the exact field types and registered
hooks).

>>> from typing import TypedDict
>>> from datetime import datetime, timezone
>>> from cattrs import Converter

>>> class MyTypedDict(TypedDict):
... a: datetime

>>> c = Converter()
>>> c.register_unstructure_hook(datetime, lambda d: d.timestamp())

(continues on next page)

29

https://peps.python.org/pep-0589/

cattrs Documentation, Release 23.1.2

(continued from previous page)

>>> c.unstructure({"a": datetime(1970, 1, 1, tzinfo=timezone.utc)}, unstructure_
↪→as=MyTypedDict)
{'a': 0.0}

Generic TypedDicts work on Python 3.11 and later, since that is the first Python version that supports them in general.

On Python 3.7, using typing_extensions.TypedDict is required since typing.TypedDict doesn’t exist there.
On Python 3.8, using typing_extensions.TypedDict is recommended since typing.TypedDict doesn’t support
all necessary features, so certain combinations of subclassing, totality and typing.Required won’t work.

Similar to attrs classes, unstructuring can be customized using cattrs.gen.typeddicts.
make_dict_unstructure_fn().

>>> from typing import TypedDict
>>> from cattrs import Converter
>>> from cattrs.gen import override
>>> from cattrs.gen.typeddicts import make_dict_unstructure_fn

>>> class MyTypedDict(TypedDict):
... a: int
... b: int

>>> c = Converter()
>>> c.register_unstructure_hook(
... MyTypedDict,
... make_dict_unstructure_fn(
... MyTypedDict,
... c,
... a=override(omit=True)
...)
...)

>>> c.unstructure({"a": 1, "b": 2}, unstructure_as=MyTypedDict)
{'b': 2}

See also:

Structuring TypedDicts.

New in version 23.1.0.

7.2 pathlib.Path

pathlib.Path objects are unstructured into their string value.

>>> from pathlib import Path

>>> cattrs.unstructure(Path("/root"))
'/root'

New in version 23.1.0.

30 Chapter 7. What You Can Unstructure and How

https://docs.python.org/3/library/pathlib.html#pathlib.Path

cattrs Documentation, Release 23.1.2

7.3 Customizing Collection Unstructuring

Important: This feature is supported for Python 3.9 and later.

Sometimes it’s useful to be able to override collection unstructuring in a generic way. A common example is using a
JSON library that doesn’t support sets, but expects lists and tuples instead.

Using ordinary unstructuring hooks for this is unwieldy due to the semantics of singledispatch; in other words, you’d
need to register hooks for all specific types of set you’re using (set[int], set[float], set[str]. . .), which is not
useful.

Function-based hooks can be used instead, but come with their own set of challenges - they’re complicated to write
efficiently.

The Converter supports easy customizations of collection unstructuring using its
unstruct_collection_overrides parameter. For example, to unstructure all sets into lists, try the follow-
ing:

>>> from collections.abc import Set
>>> converter = cattrs.Converter(unstruct_collection_overrides={Set: list})

>>> converter.unstructure({1, 2, 3})
[1, 2, 3]

Going even further, the Converter contains heuristics to support the following Python types, in order of decreasing
generality:

• Sequence, MutableSequence, list, deque, tuple

• Set, frozenset, MutableSet, set

• Mapping, MutableMapping, dict, defaultdict, OrderedDict, Counter

For example, if you override the unstructure type for Sequence, but not for MutableSequence, list or tuple, the
override will also affect those types. An easy way to remember the rule:

• all MutableSequence s are Sequence s, so the override will apply

• all list s are MutableSequence s, so the override will apply

• all tuple s are Sequence s, so the override will apply

If, however, you override only MutableSequence, fields annotated as Sequence will not be affected (since not all
sequences are mutable sequences), and fields annotated as tuples will not be affected (since tuples are not mutable
sequences in the first place).

Similar logic applies to the set and mapping hierarchies.

Make sure you’re using the types from collections.abc on Python 3.9+, and from typing on older Python versions.

7.3. Customizing Collection Unstructuring 31

https://docs.python.org/3/library/functools.html#functools.singledispatch

cattrs Documentation, Release 23.1.2

7.3.1 typing.Final

PEP 591 Final attribute types (Final[int]) are supported and unstructured appropriately.

New in version 23.1.0.

See also:

Structuring Final.

7.4 typing.Annotated

Fields marked as typing.Annotated[type, ...] are supported and are matched using the first type present in the
annotated type.

7.5 typing.NewType

NewTypes are supported and are unstructured according to the rules for their underlying type. Their hooks can also be
overriden using Converter.register_unstructure_hook().

New in version 22.2.0.

See also:

Structuring NewTypes.

Note: NewTypes are not supported by the legacy BaseConverter.

7.6 attrs Classes and Dataclasses

attrs classes and dataclasses are supported out of the box. cattrs.Converters support two unstructuring strategies:

• UnstructureStrategy.AS_DICT - similar to attrs.asdict(), unstructures attrs and dataclass instances into
dictionaries. This is the default.

• UnstructureStrategy.AS_TUPLE - similar to attrs.astuple(), unstructures attrs and dataclass instances
into tuples.

>>> @define
... class C:
... a = field()
... b = field()

>>> inst = C(1, 'a')

>>> converter = cattrs.Converter(unstruct_strat=cattrs.UnstructureStrategy.AS_TUPLE)

>>> converter.unstructure(inst)
(1, 'a')

32 Chapter 7. What You Can Unstructure and How

https://peps.python.org/pep-0591/
https://docs.python.org/3/library/typing.html#newtype
https://www.attrs.org/en/stable/api.html#attrs.asdict
https://www.attrs.org/en/stable/api.html#attrs.astuple

cattrs Documentation, Release 23.1.2

7.7 Mixing and Matching Strategies

Converters publicly expose two helper methods, Converter.unstructure_attrs_asdict() and Converter.
unstructure_attrs_astuple(). These methods can be used with custom unstructuring hooks to selectively apply
one strategy to instances of particular classes.

Assume two nested attrs classes, Inner and Outer; instances of Outer contain instances of Inner. Instances of
Outer should be unstructured as dictionaries, and instances of Inner as tuples. Here’s how to do this.

>>> @define
... class Inner:
... a: int

>>> @define
... class Outer:
... i: Inner

>>> inst = Outer(i=Inner(a=1))

>>> converter = cattrs.Converter()
>>> converter.register_unstructure_hook(Inner, converter.unstructure_attrs_astuple)

>>> converter.unstructure(inst)
{'i': (1,)}

Of course, these methods can be used directly as well, without changing the converter strategy.

>>> @define
... class C:
... a: int
... b: str

>>> inst = C(1, 'a')

>>> converter = cattrs.Converter()

>>> converter.unstructure_attrs_astuple(inst) # Default is AS_DICT.
(1, 'a')

7.8 Unstructuring Hook Factories

Hook factories operate one level higher than unstructuring hooks; unstructuring hooks are functions registered to a
class or predicate, and hook factories are functions (registered via a predicate) that produce unstructuring hooks.

Unstructuring hooks factories are registered using Converter.register_unstructure_hook_factory().

Here’s a small example showing how to use factory hooks to skip unstructuring init=False attributes on all attrs
classes.

>>> from attrs import define, has, field, fields
>>> from cattrs import override
>>> from cattrs.gen import make_dict_unstructure_fn

(continues on next page)

7.7. Mixing and Matching Strategies 33

cattrs Documentation, Release 23.1.2

(continued from previous page)

>>> c = cattrs.Converter()
>>> c.register_unstructure_hook_factory(
... has,
... lambda cl: make_dict_unstructure_fn(
... cl, c, **{a.name: override(omit=True) for a in fields(cl) if not a.init}
...)
...)

>>> @define
... class E:
... an_int: int
... another_int: int = field(init=False)

>>> inst = E(1)
>>> inst.another_int = 5
>>> c.unstructure(inst)
{'an_int': 1}

A complex use case for hook factories is described over at Using factory hooks.

34 Chapter 7. What You Can Unstructure and How

CHAPTER

EIGHT

STRATEGIES

cattrs ships with a number of strategies for customizing un/structuring behavior.

Strategies are prepackaged, high-level patterns for quickly and easily applying complex customizations to a converter.

8.1 Tagged Unions Strategy

Found at cattrs.strategies.configure_tagged_union().

The tagged union strategy allows for un/structuring a union of classes by including an additional field (the tag) in the
unstructured representation. Each tag value is associated with a member of the union.

>>> from cattrs.strategies import configure_tagged_union
>>> from cattrs import Converter
>>> converter = Converter()

>>> @define
... class A:
... a: int

>>> @define
... class B:
... b: str

>>> configure_tagged_union(A | B, converter)

>>> converter.unstructure(A(1), unstructure_as=A | B)
{'a': 1, '_type': 'A'}

>>> converter.structure({'a': 1, '_type': 'A'}, A | B)
A(a=1)

By default, the tag field name is _type and the tag value is the class name of the union member. Both the field name
and value can be overriden.

The tag_generator parameter is a one-argument callable that will be called with every member of the union to
generate a mapping of tag values to union members. Here are some common tag_generator uses:

35

cattrs Documentation, Release 23.1.2

Tag info available in Recommended tag_generator

Name of the class Use the default, or lambda cl: cl.__name__
A class variable (classvar) lambda cl: cl.classvar
A dictionary (mydict) mydict.get or mydict.__getitem__
An enum of possible values Build a dictionary of classes to enum values and use it

The union members aren’t required to be attrs classes or dataclasses, although those work automatically. They may be
anything that cattrs can un/structure from/to a dictionary, for example a type with registered custom hooks.

A default member can be specified to be used if the tag is missing or is unknown. This is useful for evolving APIs in
a backwards-compatible way; an endpoint taking class A can be changed to take A | B with A as the default (for old
clients which do not send the tag).

This strategy only applies in the context of the union; the normal un/structuring hooks are left untouched. This also
means union members can be reused in multiple unions easily.

Unstructuring as a union.
>>> converter.unstructure(A(1), unstructure_as=A | B)
{'a': 1, '_type': 'A'}

Unstructuring as just an `A`.
>>> converter.unstructure(A(1))
{'a': 1}

8.1.1 Real-life Case Study

The Apple App Store supports server callbacks, by which Apple sends a JSON payload to a URL of your choice. The
payload can be interpreted as about a dozen different messages, based on the value of the notificationType field.

To keep the example simple we define two classes, one for the REFUND event and one for everything else.

@define
class Refund:

originalTransactionId: str

@define
class OtherAppleNotification:

notificationType: str

AppleNotification = Refund | OtherAppleNotification

Next, we use the tagged unions strategy to prepare our converter. The tag value for the Refund event is REFUND, and we
can let the OtherAppleNotification class handle all the other cases. The tag_generator parameter is a callable,
so we can give it the get method of a dictionary.

>>> c = Converter()
>>> configure_tagged_union(
... AppleNotification,
... c,

(continues on next page)

36 Chapter 8. Strategies

https://developer.apple.com/documentation/appstoreservernotifications

cattrs Documentation, Release 23.1.2

(continued from previous page)

... tag_name="notificationType",

... tag_generator={Refund: "REFUND"},

... default=OtherAppleNotification

...)

The converter is now ready to start structuring Apple notifications.

>>> payload = {"notificationType": "REFUND", "originalTransactionId": "1"}
>>> notification = c.structure(payload, AppleNotification)

>>> match notification:
... case Refund(txn_id):
... print(f"Refund for {txn_id}!")
... case OtherAppleNotification(not_type):
... print("Can't handle this yet")

8.2 Include Subclasses Strategy

Found at cattrs.strategies.include_subclasses().

The include subclass strategy allows the un/structuring of a base class to an instance of itself or one of its descendants.
Conceptually with this strategy, each time an un/structure operation for the base class is asked, cattrs machinery
replaces that operation as if the union of the base class and its descendants had been asked instead.

>>> from attrs import define
>>> from cattrs.strategies import include_subclasses
>>> from cattrs import Converter

>>> @define
... class Parent:
... a: int

>>> @define
... class Child(Parent):
... b: str

>>> converter = Converter()
>>> include_subclasses(Parent, converter)

>>> converter.unstructure(Child(a=1, b="foo"), unstructure_as=Parent)
{'a': 1, 'b': 'foo'}

>>> converter.structure({'a': 1, 'b': 'foo'}, Parent)
Child(a=1, b='foo')

In the example above, we asked to unstructure then structure a Child instance as the Parent class and in both cases
we correctly obtained back the unstructured and structured versions of the Child instance. If we did not apply the
include_subclasses strategy, this is what we would have obtained:

8.2. Include Subclasses Strategy 37

cattrs Documentation, Release 23.1.2

>>> converter_no_subclasses = Converter()

>>> converter_no_subclasses.unstructure(Child(a=1, b="foo"), unstructure_as=Parent)
{'a': 1}

>>> converter_no_subclasses.structure({'a': 1, 'b': 'foo'}, Parent)
Parent(a=1)

Without the application of the strategy, in both unstructure and structure operations, we received a Parent instance.

Note: The handling of subclasses is an opt-in feature for two main reasons:

• Performance. While small and probably negligeable in most cases the subclass handling incurs more function
calls and has a performance impact.

• Customization. The specific handling of subclasses can be different from one situation to the other. In particular
there is not apparent universal good defaults for disambiguating the union type. Consequently the decision is left
to the user.

Warning: To work properly, all subclasses must be defined when the include_subclasses strategy is applied to
a converter. If subclasses types are defined later, for instance in the context of a plug-in mechanism using inher-
itance, then those late defined subclasses will not be part of the subclasses union type and will not be un/structured
as expected.

8.2.1 Customization

In the example shown in the previous section, the default options for include_subclasses work well because the
Child class has an attribute that do not exist in the Parent class (the b attribute). The automatic union type disam-
biguation function which is based on finding unique fields for each type of the union works as intended.

Sometimes, more disambiguation customization is required. For instance, the unstructuring operation would have
failed if Child did not have an extra attribute or if a sibling of Child had also a b attribute. For those cases, a
callable of 2 positional arguments (a union type and a converter) defining a tagged union strategy can be passed to
the include_subclasses strategy. configure_tagged_union() can be used as-is, but if you want to change its
defaults, the partial function from the functools module in the standard library can come in handy.

>>> from functools import partial
>>> from attrs import define
>>> from cattrs.strategies import include_subclasses, configure_tagged_union
>>> from cattrs import Converter

>>> @define
... class Parent:
... a: int

>>> @define
... class Child1(Parent):
... b: str

(continues on next page)

38 Chapter 8. Strategies

https://docs.python.org/3/library/functools.html#functools.partial

cattrs Documentation, Release 23.1.2

(continued from previous page)

>>> @define
... class Child2(Parent):
... b: int

>>> converter = Converter()
>>> union_strategy = partial(configure_tagged_union, tag_name="type_name")
>>> include_subclasses(Parent, converter, union_strategy=union_strategy)

>>> converter.unstructure(Child1(a=1, b="foo"), unstructure_as=Parent)
{'a': 1, 'b': 'foo', 'type_name': 'Child1'}

>>> converter.structure({'a': 1, 'b': 1, 'type_name': 'Child2'}, Parent)
Child2(a=1, b=1)

Other customizations available see are (see include_subclasses()):

• The exact list of subclasses that should participate to the union with the subclasses argument.

• Attribute overrides that permit the customization of attributes un/structuring like renaming an attribute.

Here is an example involving both customizations:

>>> from attrs import define
>>> from cattrs.strategies import include_subclasses
>>> from cattrs import Converter, override

>>> @define
... class Parent:
... a: int

>>> @define
... class Child(Parent):
... b: str

>>> converter = Converter()
>>> include_subclasses(
... Parent,
... converter,
... subclasses=(Parent, Child),
... overrides={"b": override(rename="c")}
...)

>>> converter.unstructure(Child(a=1, b="foo"), unstructure_as=Parent)
{'a': 1, 'c': 'foo'}

>>> converter.structure({'a': 1, 'c': 'foo'}, Parent)
Child(a=1, b='foo')

8.2. Include Subclasses Strategy 39

cattrs Documentation, Release 23.1.2

40 Chapter 8. Strategies

CHAPTER

NINE

VALIDATION

cattrs has a detailed validation mode since version 22.1.0, and this mode is enabled by default. When running under
detailed validation, the un/structuring hooks are slightly slower but produce more precise and exhaustive error messages.

9.1 Detailed Validation

New in version 22.1.0.

In detailed validation mode, any un/structuring errors will be grouped and raised together as a cattrs.
BaseValidationError, which is a PEP 654 ExceptionGroup. ExceptionGroups are special exceptions which contain
lists of other exceptions, which may themselves be other ExceptionGroups. In essence, ExceptionGroups are trees of
exceptions.

When un/structuring a class, cattrs will gather any exceptions on a field-by-field basis and raise them as a cattrs.
ClassValidationError, which is a subclass of BaseValidationError.

When structuring sequences and mappings, cattrs will gather any exceptions on a key- or index-basis and raise them
as a cattrs.IterableValidationError, which is a subclass of BaseValidationError.

The exceptions will also have their __notes__ attributes set, as per PEP 678, showing the field, key or index for each
inner exception.

A simple example involving a class containing a list and a dictionary:

@define
class Class:

a_list: list[int]
a_dict: dict[str, int]

>>> structure({"a_list": ["a"], "a_dict": {"str": "a"}}, Class)
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 1, in <module>
| File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 276, in␣

↪→structure
| return self._structure_func.dispatch(cl)(obj, cl)
| File "<cattrs generated structure __main__.Class>", line 14, in structure_Class
| if errors: raise __c_cve('While structuring Class', errors, __cl)
| cattrs.errors.ClassValidationError: While structuring Class
+-+---------------- 1 ----------------
| Exception Group Traceback (most recent call last):
| File "<cattrs generated structure __main__.Class>", line 5, in structure_Class
| res['a_list'] = __c_structure_a_list(o['a_list'], __c_type_a_list)

(continues on next page)

41

https://www.python.org/dev/peps/pep-0654/
https://www.python.org/dev/peps/pep-0678/

cattrs Documentation, Release 23.1.2

(continued from previous page)

| File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 457, in _
↪→structure_list

| raise IterableValidationError(
| cattrs.errors.IterableValidationError: While structuring list[int]
| Structuring class Class @ attribute a_list
+-+---------------- 1 ----------------
| Traceback (most recent call last):
| File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 450, in _

↪→structure_list
| res.append(handler(e, elem_type))
| File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 375, in _

↪→structure_call
| return cl(obj)
| ValueError: invalid literal for int() with base 10: 'a'
| Structuring list[int] @ index 0
+------------------------------------

+---------------- 2 ----------------
| Exception Group Traceback (most recent call last):
| File "<cattrs generated structure __main__.Class>", line 10, in structure_Class
| res['a_dict'] = __c_structure_a_dict(o['a_dict'], __c_type_a_dict)
| File "", line 17, in structure_mapping
| cattrs.errors.IterableValidationError: While structuring dict
| Structuring class Class @ attribute a_dict
+-+---------------- 1 ----------------
| Traceback (most recent call last):
| File "", line 5, in structure_mapping
| ValueError: invalid literal for int() with base 10: 'a'
| Structuring mapping value @ key 'str'
+------------------------------------

9.1.1 Transforming Exceptions into Error Messages

New in version 23.1.0.

ExceptionGroup stack traces are great while you’re developing, but sometimes a more compact representation of vali-
dation errors is better. cattrs provides a helper function, cattrs.transform_error(), which transforms validation
errors into lists of error messages.

The example from the previous paragraph produces the following error messages:

>>> from cattrs import transform_error

>>> try:
... structure({"a_list": ["a"], "a_dict": {"str": "a"}}, Class)
... except Exception as exc:
... print(transform_error(exc))

[
'invalid value for type, expected int @ $.a_list[0]',
"invalid value for type, expected int @ $.a_dict['str']"

]

42 Chapter 9. Validation

cattrs Documentation, Release 23.1.2

A small number of built-in exceptions are converted into error messages automatically. This can be further customized
by providing cattrs.transform_error() with a function that it can use to turn individual, non-ExceptionGroup
exceptions into error messages. A useful pattern is wrapping the default, cattrs.v.format_exception() function.

>>> from cattrs.v iomport format_exception

>>> def my_exception_formatter(exc: BaseException, type) -> str:
... if isinstance(exc, MyInterestingException):
... return "My error message"
... return format_exception(exc, type)

>>> try:
... structure(..., Class)
... except Exception as exc:
... print(transform_error(exc, format_exception=my_exception_formatter))

If even more customization is required, cattrs.transform_error() can be copied over into your codebase and
adjusted as needed.

9.2 Non-detailed Validation

Non-detailed validation can be enabled by initializing any of the converters with detailed_validation=False. In
this mode, any errors during un/structuring will bubble up directly as soon as they happen.

9.2. Non-detailed Validation 43

cattrs Documentation, Release 23.1.2

44 Chapter 9. Validation

CHAPTER

TEN

PRECONFIGURED CONVERTERS

The cattrs.preconf package contains factories for preconfigured converters, specifically adjusted for particular
serialization libraries.

For example, to get a converter configured for BSON:

>>> from cattrs.preconf.bson import make_converter

>>> converter = make_converter() # Takes the same parameters as the `cattrs.Converter`

Converters obtained this way can be customized further, just like any other converter.

These converters support the following classes and type annotations, both for structuring and unstructuring:

• str, bytes, int, float, pathlib.Path int enums, string enums

• attrs classes and dataclasses

• lists, homogenous tuples, heterogenous tuples, dictionaries, counters, sets, frozensets

• optionals

• sequences, mutable sequences, mappings, mutable mappings, sets, mutable sets

• datetime.datetime

New in version 22.1.0: All preconf converters now have loads and dumps methods, which combine un/structuring
and the de/serialization logic from their underlying libraries.

>>> from cattrs.preconf.json import make_converter

>>> converter = make_converter()

>>> @define
... class Test:
... a: int

>>> converter.dumps(Test(1))
'{"a": 1}'

Particular libraries may have additional constraints documented below.

Third-party libraries can be specified as optional (extra) dependencies on cattrs during installation. Optional install
targets should match the name of the cattrs.preconf modules.

45

cattrs Documentation, Release 23.1.2

Using pip
pip install cattrs[ujson]

Using poetry
poetry add --extras tomlkit cattrs

10.1 Standard Library json

Found at cattrs.preconf.json.

Bytes are serialized as base 85 strings. Counters are serialized as dictionaries. Sets are serialized as lists, and deseri-
alized back into sets. datetime s are serialized as ISO 8601 strings.

10.2 ujson

Found at cattrs.preconf.ujson.

Bytes are serialized as base 85 strings. Sets are serialized as lists, and deserialized back into sets. datetime s are
serialized as ISO 8601 strings.

ujson doesn’t support integers less than -9223372036854775808, and greater than 9223372036854775807, nor does
it support float('inf').

10.3 orjson

Found at cattrs.preconf.orjson.

Bytes are serialized as base 85 strings. Sets are serialized as lists, and deserialized back into sets. datetime s are
serialized as ISO 8601 strings.

orjson doesn’t support integers less than -9223372036854775808, and greater than 9223372036854775807. orjson
only supports mappings with string keys so mappings will have their keys stringified before serialization, and de-
stringified during deserialization.

10.4 msgpack

Found at cattrs.preconf.msgpack.

Sets are serialized as lists, and deserialized back into sets. datetime s are serialized as UNIX timestamp float values.

msgpack doesn’t support integers less than -9223372036854775808, and greater than 18446744073709551615.

When parsing msgpack data from bytes, the library needs to be passed strict_map_key=False to get the full range
of compatibility.

46 Chapter 10. Preconfigured Converters

cattrs Documentation, Release 23.1.2

10.5 cbor2

New in version 23.1.0.

Found at cattrs.preconf.cbor2.

cbor2 implements a fully featured CBOR encoder with several extensions for handling shared references, big integers,
rational numbers and so on.

Sets are serialized and deserialized to sets. Tuples are serialized as lists.

datetime s are serialized as a text string by default (CBOR Tag 0). Use keyword argument
datetime_as_timestamp=True to encode as UNIX timestamp integer/float (CBOR Tag 1) note: this replaces
timezone information as UTC.

Use keyword argument canonical=True for efficient encoding to the smallest binary output.

Floats can be forced to smaller output by casting to lower-precision formats by casting to numpy floats (and back to
Python floats). Example: float(np.float32(value)) or float(np.float16(value))

10.6 bson

Found at cattrs.preconf.bson. Tested against the bson module bundled with the pymongo library, not the stan-
dalone PyPI bson package.

Sets are serialized as lists, and deserialized back into sets.

bson doesn’t support integers less than -9223372036854775808 or greater than 9223372036854775807 (64-bit signed).
bson does not support null bytes in mapping keys. bson only supports mappings with string keys so mappings will have
their keys stringified before serialization, and destringified during deserialization. The bson datetime representation
doesn’t support microsecond accuracy.

When encoding and decoding, the library needs to be passed codec_options=bson.
CodecOptions(tz_aware=True) to get the full range of compatibility.

10.7 pyyaml

Found at cattrs.preconf.pyyaml.

Frozensets are serialized as lists, and deserialized back into frozensets.

10.8 tomlkit

Found at cattrs.preconf.tomlkit.

Bytes are serialized as base 85 strings. Sets are serialized as lists, and deserialized back into sets. Tuples are serialized
as lists, and deserialized back into tuples. tomlkit only supports mappings with string keys so mappings will have their
keys stringified before serialization, and destringified during deserialization.

10.5. cbor2 47

cattrs Documentation, Release 23.1.2

48 Chapter 10. Preconfigured Converters

CHAPTER

ELEVEN

CUSTOMIZING CLASS UN/STRUCTURING

This section deals with customizing the unstructuring and structuring processes in cattrs.

11.1 Using cattr.Converter

The default Converter, upon first encountering an attrs class, will use the generation functions mentioned here to
generate the specialized hooks for it, register the hooks and use them.

11.2 Manual un/structuring hooks

You can write your own structuring and unstructuring functions and register them for types using Converter.
register_structure_hook and Converter.register_unstructure_hook. This approach is the most flexible
but also requires the most amount of boilerplate.

11.3 Using cattrs.gen generators

cattrs includes a module, cattrs.gen, which allows for generating and compiling specialized functions for unstruc-
turing attrs classes.

One reason for generating these functions in advance is that they can bypass a lot of cattrs machinery and be signif-
icantly faster than normal cattrs.

Another reason is that it’s possible to override behavior on a per-attribute basis.

Currently, the overrides only support generating dictionary un/structuring functions (as opposed to tuples), and support
omit_if_default, forbid_extra_keys, rename and omit.

11.3.1 omit_if_default

This override can be applied on a per-class or per-attribute basis. The generated unstructuring function will skip
unstructuring values that are equal to their default or factory values.

>>> from cattrs.gen import make_dict_unstructure_fn, override
>>>
>>> @define
... class WithDefault:
... a: int

(continues on next page)

49

cattrs Documentation, Release 23.1.2

(continued from previous page)

... b: dict = Factory(dict)
>>>
>>> c = cattrs.Converter()
>>> c.register_unstructure_hook(WithDefault, make_dict_unstructure_fn(WithDefault, c,␣
↪→b=override(omit_if_default=True)))
>>> c.unstructure(WithDefault(1))
{'a': 1}

Note that the per-attribute value overrides the per-class value. A side-effect of this is the ability to force the presence of
a subset of fields. For example, consider a class with a DateTime field and a factory for it: skipping the unstructuring
of the DateTime field would be inconsistent and based on the current time. So we apply the omit_if_default rule
to the class, but not to the DateTime field.

Note:

The parameter to `make_dict_unstructure_function` is named ``_cattrs_omit_if_default``␣
↪→instead of just ``omit_if_default`` to avoid potential collisions with an override for␣
↪→a field named ``omit_if_default``.

>>> from pendulum import DateTime
>>> from cattrs.gen import make_dict_unstructure_fn, override
>>>
>>> @define
... class TestClass:
... a: Optional[int] = None
... b: DateTime = Factory(DateTime.utcnow)
>>>
>>> c = cattrs.Converter()
>>> hook = make_dict_unstructure_fn(TestClass, c, _cattrs_omit_if_default=True,␣
↪→b=override(omit_if_default=False))
>>> c.register_unstructure_hook(TestClass, hook)
>>> c.unstructure(TestClass())
{'b': ...}

This override has no effect when generating structuring functions.

11.3.2 forbid_extra_keys

By default cattrs is lenient in accepting unstructured input. If extra keys are present in a dictionary, they will be
ignored when generating a structured object. Sometimes it may be desirable to enforce a stricter contract, and to raise
an error when unknown keys are present - in particular when fields have default values this may help with catching
typos. forbid_extra_keys can also be enabled (or disabled) on a per-class basis when creating structure hooks with
make_dict_structure_fn.

>>> from cattrs.gen import make_dict_structure_fn
>>>
>>> @define
... class TestClass:
... number: int = 1
>>>

(continues on next page)

50 Chapter 11. Customizing class un/structuring

cattrs Documentation, Release 23.1.2

(continued from previous page)

>>> c = cattrs.Converter(forbid_extra_keys=True)
>>> c.structure({"nummber": 2}, TestClass)
Traceback (most recent call last):
...
ForbiddenExtraKeyError: Extra fields in constructor for TestClass: nummber
>>> hook = make_dict_structure_fn(TestClass, c, _cattrs_forbid_extra_keys=False)
>>> c.register_structure_hook(TestClass, hook)
>>> c.structure({"nummber": 2}, TestClass)
TestClass(number=1)

This behavior can only be applied to classes or to the default for the Converter, and has no effect when generating
unstructuring functions.

11.3.3 rename

Using the rename override makes cattrs simply use the provided name instead of the real attribute name. This is
useful if an attribute name is a reserved keyword in Python.

>>> from pendulum import DateTime
>>> from cattrs.gen import make_dict_unstructure_fn, make_dict_structure_fn, override
>>>
>>> @define
... class ExampleClass:
... klass: Optional[int]
>>>
>>> c = cattrs.Converter()
>>> unst_hook = make_dict_unstructure_fn(ExampleClass, c, klass=override(rename="class"))
>>> st_hook = make_dict_structure_fn(ExampleClass, c, klass=override(rename="class"))
>>> c.register_unstructure_hook(ExampleClass, unst_hook)
>>> c.register_structure_hook(ExampleClass, st_hook)
>>> c.unstructure(ExampleClass(1))
{'class': 1}
>>> c.structure({'class': 1}, ExampleClass)
ExampleClass(klass=1)

11.3.4 omit

This override can only be applied to individual attributes. Using the omit override will simply skip the attribute
completely when generating a structuring or unstructuring function.

>>> from cattrs.gen import make_dict_unstructure_fn, override
>>>
>>> @define
... class ExampleClass:
... an_int: int
>>>
>>> c = cattrs.Converter()
>>> unst_hook = make_dict_unstructure_fn(ExampleClass, c, an_int=override(omit=True))
>>> c.register_unstructure_hook(ExampleClass, unst_hook)
>>> c.unstructure(ExampleClass(1))
{}

11.3. Using cattrs.gen generators 51

cattrs Documentation, Release 23.1.2

11.3.5 struct_hook and unstruct_hook

By default, the generators will determine the right un/structure hook for each attribute of a class at time of generation
according to the type of each individual attribute.

This process can be overriden by passing in the desired un/structure manually.

>>> from cattrs.gen import make_dict_structure_fn, override

>>> @define
... class ExampleClass:
... an_int: int

>>> c = cattrs.Converter()
>>> st_hook = make_dict_structure_fn(
... ExampleClass, c, an_int=override(struct_hook=lambda v, _: v + 1)
...)
>>> c.register_structure_hook(ExampleClass, st_hook)

>>> c.structure({"an_int": 1}, ExampleClass)
ExampleClass(an_int=2)

52 Chapter 11. Customizing class un/structuring

CHAPTER

TWELVE

TIPS FOR HANDLING UNIONS

This sections contains information for advanced union handling.

As mentioned in the structuring section, cattrs is able to handle simple unions of attrs classes automatically. More
complex cases require converter customization (since there are many ways of handling unions).

12.1 Unstructuring unions with extra metadata

Note: cattrs comes with the tagged unions strategy for handling this exact use-case since version 23.1. The example
below has been left here for educational purposes, but you should prefer the strategy.

Let’s assume a simple scenario of two classes, ClassA and ClassB, both of which have no distinct fields and so cannot
be used automatically with cattrs.

@define
class ClassA:

a_string: str

@define
class ClassB:

a_string: str

A naive approach to unstructuring either of these would yield identical dictionaries, and not enough information to
restructure the classes.

>>> converter.unstructure(ClassA("test"))
{'a_string': 'test'} # Is this ClassA or ClassB? Who knows!

What we can do is ensure some extra information is present in the unstructured data, and then use that information to
help structure later.

First, we register an unstructure hook for the Union[ClassA, ClassB] type.

>>> converter.register_unstructure_hook(
... Union[ClassA, ClassB],
... lambda o: {"_type": type(o).__name__, **converter.unstructure(o)}
...)
>>> converter.unstructure(ClassA("test"), unstructure_as=Union[ClassA, ClassB])
{'_type': 'ClassA', 'a_string': 'test'}

53

cattrs Documentation, Release 23.1.2

Note that when unstructuring, we had to provide the unstructure_as parameter or cattrs would have just applied the
usual unstructuring rules to ClassA, instead of our special union hook.

Now that the unstructured data contains some information, we can create a structuring hook to put it to use:

>>> converter.register_structure_hook(
... Union[ClassA, ClassB],
... lambda o, _: converter.structure(o, ClassA if o["_type"] == "ClassA" else ClassB)
...)
>>> converter.structure({"_type": "ClassA", "a_string": "test"}, Union[ClassA, ClassB])
ClassA(a_string='test')

54 Chapter 12. Tips for handling unions

CHAPTER

THIRTEEN

BENCHMARKING

cattrs includes a benchmarking suite to help detect performance regressions and guide performance optimizations.

The suite is based on pytest and pytest-benchmark. Benchmarks are similar to tests, with the exception of being stored
in the bench/ directory and being used to verify performance instead of correctness.

13.1 A Sample Workflow

First, ensure the system you’re benchmarking on is as stable as possible. For example, the pyperf library has a system
tune command that can tweak CPU frequency governors. You also might want to quit as many applications as possible
and run the benchmark suite on isolated CPU cores (taskset can be used for this purpose on Linux).

Then, generate a baseline using make bench. This will run the benchmark suite and save it into a file.

Following that, implement the changes you have in mind. Run the test suite to ensure correctness. Then, compare
the performance of the new code to the saved baseline using make bench-cmp. If the code is still correct but faster,
congratulations!

55

cattrs Documentation, Release 23.1.2

56 Chapter 13. Benchmarking

CHAPTER

FOURTEEN

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

14.1 Types of Contributions

14.1.1 Report Bugs

Report bugs at https://github.com/python-attrs/cattrs/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

14.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

14.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

14.1.4 Write Documentation

cattrs could always use more documentation, whether as part of the official cattrs docs, in docstrings, or even on the
web in blog posts, articles, and such.

57

https://github.com/python-attrs/cattrs/issues

cattrs Documentation, Release 23.1.2

14.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/python-attrs/cattrs/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

14.2 Get Started!

Ready to contribute? Here’s how to set up cattrs for local development.

1. Fork the cattrs repo on GitHub.

2. Clone your fork locally::

$ git clone git@github.com:your_name_here/cattrs.git

3. Install your local copy into a virtualenv. Assuming you have poetry installed, this is how you set up your fork for
local development::

$ cd cattrs/
$ poetry install --all-extras

4. Create a branch for local development::

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox::

$ poetry shell
$ make lint
$ make test
$ tox

6. Commit your changes and push your branch to GitHub::

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

58 Chapter 14. Contributing

https://github.com/python-attrs/cattrs/issues

cattrs Documentation, Release 23.1.2

14.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for all supported Python versions. Check https://github.com/python-attrs/cattrs/
actions and make sure that the tests pass for all supported Python versions.

14.4 Tips

To run a subset of tests:

$ pytest tests.test_unstructure

14.3. Pull Request Guidelines 59

https://github.com/python-attrs/cattrs/actions
https://github.com/python-attrs/cattrs/actions

cattrs Documentation, Release 23.1.2

60 Chapter 14. Contributing

CHAPTER

FIFTEEN

HISTORY

15.1 23.1.2 (2023-06-02)

• Improve typing_extensions version bound. (#372)

15.2 23.1.1 (2023-05-30)

• Add typing_extensions as a direct dependency on 3.10. (#369 #370)

15.3 23.1.0 (2023-05-30)

• Introduce the tagged_union strategy. (#318 #317)

• Introduce the cattrs.transform_error helper function for formatting validation exceptions. (258 342)

• Add support for typing.TypedDict and typing_extensions.TypedDict. (#296 #364)

• Add support for typing.Final. (#340 #349)

• Introduce override.struct_hook and override.unstruct_hook. Learn more here. (#326)

• Fix generating structuring functions for types with angle brackets (<>) and pipe symbols (|) in the name. (#319
#327)

• pathlib.Path is now supported by default. (#81)

• Add cbor2 serialization library to the cattr.preconf package.

• Add optional dependencies for cattrs.preconf third-party libraries. (#337)

• All preconf converters now allow overriding the default unstruct_collection_overrides in
make_converter. (#350 #353)

• Subclasses structuring and unstructuring is now supported via a custom include_subclasses strategy. (#312)

• Add support for typing_extensions.Annotated when the python version is less than 3.9. (#366)

• Add unstructuring and structuring support for the standard library deque. (#355)

61

https://github.com/python-attrs/cattrs/issues/372
https://github.com/python-attrs/cattrs/issues/369
https://github.com/python-attrs/cattrs/pull/370
https://github.com/python-attrs/cattrs/pull/318
https://github.com/python-attrs/cattrs/issues/317
https://github.com/python-attrs/cattrs/issues/258
https://github.com/python-attrs/cattrs/pull/342
https://peps.python.org/pep-0589/
https://github.com/python-attrs/cattrs/issues/296
https://github.com/python-attrs/cattrs/pull/364
https://github.com/python-attrs/cattrs/issues/340
https://github.com/python-attrs/cattrs/pull/349
https://catt.rs/en/latest/customizing.html#struct-hook-and-unstruct-hook
https://github.com/python-attrs/cattrs/pull/326
https://github.com/python-attrs/cattrs/issues/319
https://github.com/python-attrs/cattrs/pull/327%3E
https://github.com/python-attrs/cattrs/issues/81
https://github.com/python-attrs/cattrs/pull/337
https://github.com/python-attrs/cattrs/issues/350
https://github.com/python-attrs/cattrs/pull/353
https://github.com/python-attrs/cattrs/pull/312
https://github.com/python-attrs/cattrs/pull/366
https://github.com/python-attrs/cattrs/pull/355

cattrs Documentation, Release 23.1.2

15.4 22.2.0 (2022-10-03)

• Potentially breaking: cattrs.Converter has been renamed to cattrs.BaseConverter, and cattrs.
GenConverter to cattrs.Converter. The GenConverter name is still available for backwards compatibility,
but is deprecated. If you were depending on functionality specific to the old Converter, change your import to
from cattrs import BaseConverter.

• NewTypes are now supported by the cattrs.Converter. (#255 #94 #297)

• cattrs.Converter and cattrs.BaseConverter can now copy themselves using the copy method. (#284)

• Python 3.11 support.

• cattrs now supports un/structuring kw_only fields on attrs classes into/from dictionaries. (#247)

• PyPy support (and tests, using a minimal Hypothesis profile) restored. (#253)

• Fix propagating the detailed_validation flag to mapping and counter structuring generators.

• Fix typing.Set applying too broadly when used with the GenConverter.
unstruct_collection_overrides parameter on Python versions below 3.9. Switch to typing.
AbstractSet on those versions to restore the old behavior. (#264)

• Uncap the required Python version, to avoid problems detailed here (#275)

• Fix Converter.register_structure_hook_factory and cattrs.gen.make_dict_unstructure_fn
type annotations. (#281)

• Expose all error classes in the cattr.errors namespace. Note that it is deprecated, just use cattrs.errors.
(#252)

• Fix generating structuring functions for types with quotes in the name. (#291 #277)

• Fix usage of notes for the final version of PEP 678, supported since exceptiongroup>=1.0.0rc4. (#303)

15.5 22.1.0 (2022-04-03)

• cattrs now uses the CalVer versioning convention.

• cattrs now has a detailed validation mode, which is enabled by default. Learn more here. The old behavior can
be restored by creating the converter with detailed_validation=False.

• attrs and dataclass structuring is now ~25% faster.

• Fix an issue structuring bare typing.List s on Pythons lower than 3.9. (#209)

• Fix structuring of non-parametrized containers like list/dict/... on Pythons lower than 3.9. (#218)

• Fix structuring bare typing.Tuple on Pythons lower than 3.9. (#218)

• Fix a wrong AttributeError of an missing __parameters__ attribute. This could happen when inheriting
certain generic classes – for example typing.* classes are affected. (#217)

• Fix structuring of enum.Enum instances in typing.Literal types. (#231)

• Fix unstructuring all tuples - unannotated, variable-length, homogenous and heterogenous - to list. (#226)

• For forbid_extra_keys raise custom ForbiddenExtraKeyError instead of generic Exception. (#225)

• All preconf converters now support loads and dumps directly. See an example here.

• Fix mappings with byte keys for the orjson, bson and tomlkit converters. (#241)

62 Chapter 15. History

https://docs.python.org/3/library/typing.html#newtype
https://github.com/python-attrs/cattrs/pull/255
https://github.com/python-attrs/cattrs/issues/94
https://github.com/python-attrs/cattrs/issues/297
https://github.com/python-attrs/cattrs/pull/284
https://github.com/python-attrs/cattrs/pull/247
https://github.com/python-attrs/cattrs/issues/253
https://github.com/python-attrs/cattrs/issues/264
https://iscinumpy.dev/post/bound-version-constraints/#pinning-the-python-version-is-special
https://github.com/python-attrs/cattrs/issues/275
https://github.com/python-attrs/cattrs/issues/281
https://github.com/python-attrs/cattrs/issues/252
https://github.com/python-attrs/cattrs/issues/291
https://github.com/python-attrs/cattrs/issues/277
https://peps.python.org/pep-0678/
https://github.com/python-attrs/cattrs/pull/303
https://cattrs.readthedocs.io/en/latest/validation.html
https://github.com/python-attrs/cattrs/issues/209
https://github.com/python-attrs/cattrs/issues/218
https://github.com/python-attrs/cattrs/issues/218
https://github.com/python-attrs/cattrs/issues/217
https://github.com/python-attrs/cattrs/pull/231
https://github.com/python-attrs/cattrs/issues/226
https://github.com/python-attrs/cattrs/pull/225
https://cattrs.readthedocs.io/en/latest/preconf.html
https://github.com/python-attrs/cattrs/issues/241

cattrs Documentation, Release 23.1.2

15.6 1.10.0 (2022-01-04)

• Add PEP 563 (string annotations) support for dataclasses. (#195)

• Fix handling of dictionaries with string Enum keys for bson, orjson, and tomlkit.

• Rename the cattr.gen.make_dict_unstructure_fn.omit_if_default parameter to
_cattrs_omit_if_default, for consistency. The omit_if_default parameters to GenConverter
and override are unchanged.

• Following the changes in attrs 21.3.0, add a cattrs package mirroring the existing cattr package. Both package
names may be used as desired, and the cattr package isn’t going away.

15.7 1.9.0 (2021-12-06)

• Python 3.10 support, including support for the new union syntax (A | B vs Union[A, B]).

• The GenConverter can now properly structure generic classes with generic collection fields. (#149)

• omit=True now also affects generated structuring functions. (#166)

• cattr.gen.{make_dict_structure_fn, make_dict_unstructure_fn} now resolve type annotations au-
tomatically when PEP 563 is used. (#169)

• Protocols are now unstructured as their runtime types. (#177)

• Fix an issue generating structuring functions with renaming and _cattrs_forbid_extra_keys=True. (#190)

15.8 1.8.0 (2021-08-13)

• Fix GenConverter mapping structuring for unannotated dicts on Python 3.8. (#151)

• The source code for generated un/structuring functions is stored in the linecache cache, which enables more in-
formative stack traces when un/structuring errors happen using the GenConverter. This behavior can optionally
be disabled to save memory.

• Support using the attr converter callback during structure. By default, this is a method of last resort, but it can
be elevated to the default by setting prefer_attrib_converters=True on Converter or GenConverter.
(#138)

• Fix structuring recursive classes. (#159)

• Converters now support un/structuring hook factories. This is the most powerful and complex venue for cus-
tomizing un/structuring. This had previously been an internal feature.

• The Common Usage Examples documentation page now has a section on advanced hook factory usage.

• cattr.override now supports the omit parameter, which makes cattrs skip the atribute entirely when unstruc-
turing.

• The cattr.preconf.bson module is now tested against the bson module bundled with the pymongo package,
because that package is much more popular than the standalone PyPI bson package.

15.6. 1.10.0 (2022-01-04) 63

https://github.com/python-attrs/cattrs/issues/195
https://github.com/python-attrs/cattrs/issues/149
https://github.com/python-attrs/cattrs/issues/166
https://github.com/python-attrs/cattrs/issues/169
https://github.com/python-attrs/cattrs/pull/177
https://github.com/python-attrs/cattrs/issues/190
https://github.com/python-attrs/cattrs/issues/151
https://github.com/python-attrs/cattrs/issues/138
https://github.com/python-attrs/cattrs/issues/159
https://cattrs.readthedocs.io/en/latest/usage.html#using-factory-hooks

cattrs Documentation, Release 23.1.2

15.9 1.7.1 (2021-05-28)

• Literal s are not supported on Python 3.9.0 (supported on 3.9.1 and later), so we skip importing them there.
(#150)

15.10 1.7.0 (2021-05-26)

• cattr.global_converter (which provides cattr.unstructure, cattr.structure etc.) is now an in-
stance of cattr.GenConverter.

• Literal s are now supported and validated when structuring.

• Fix dependency metadata information for attrs. (#147)

• Fix GenConverter mapping structuring for unannotated dicts. (#148)

15.11 1.6.0 (2021-04-28)

• cattrs now uses Poetry.

• GenConverter mapping structuring is now ~25% faster, and unstructuring heterogenous tuples is significantly
faster.

• Add cattr.preconf. This package contains modules for making converters for particular serialization libraries.
We currently support the standard library json, and third-party ujson, orjson, msgpack, bson, pyyaml and
tomlkit libraries.

15.12 1.5.0 (2021-04-15)

• Fix an issue with GenConverter unstructuring attrs classes and dataclasses with generic fields. (#65)

• GenConverter has support for easy overriding of collection unstructuring types (for example, unstructure all
sets to lists) through its unstruct_collection_overrides argument. (#137)

• Unstructuring mappings with GenConverter is significantly faster.

• GenConverter supports strict handling of unexpected dictionary keys through its forbid_extra_keys argu-
ment. (#142)

15.13 1.4.0 (2021-03-21)

• Fix an issue with GenConverter un/structuring hooks when a function hook is registered after the converter has
already been used.

• Add support for collections.abc.{Sequence, MutableSequence, Set, MutableSet}. These should
be used on 3.9+ instead of their typing alternatives, which are deprecated. (#128)

• The GenConverter will unstructure iterables (list[T], tuple[T, ...], set[T]) using their type argument
instead of the runtime class if its elements, if possible. These unstructuring operations are up to 40% faster.
(#129)

• Flesh out Converter and GenConverter initializer type annotations. (#131)

64 Chapter 15. History

https://github.com/python-attrs/cattrs/issues/150
https://github.com/python-attrs/cattrs/issues/147
https://github.com/python-attrs/cattrs/issues/148
https://github.com/python-attrs/cattrs/issues/65
https://github.com/python-attrs/cattrs/pull/137
https://github.com/python-attrs/cattrs/pull/142
https://github.com/python-attrs/cattrs/issues/128
https://github.com/python-attrs/cattrs/issues/129
https://github.com/python-attrs/cattrs/issues/131

cattrs Documentation, Release 23.1.2

• Add support for typing.Annotated on Python 3.9+. cattrs will use the first annotation present. cattrs specific
annotations may be added in the future. (#127)

• Add support for dataclasses. (#43)

15.14 1.3.0 (2021-02-25)

• cattrs now has a benchmark suite to help make and keep cattrs the fastest it can be. The instructions on using it
can be found under the Benchmarking section in the docs. (#123)

• Fix an issue unstructuring tuples of non-primitives. (#125)

• cattrs now calls attr.resolve_types on attrs classes when registering un/structuring hooks.

• GenConverter structuring and unstructuring of attrs classes is significantly faster.

15.15 1.2.0 (2021-01-31)

• converter.unstructure now supports an optional parameter, unstructure_as, which can be used to un-
structure something as a different type. Useful for unions.

• Improve support for union un/structuring hooks. Flesh out docs for advanced union handling. (#115)

• Fix GenConverter behavior with inheritance hierarchies of attrs classes. ([#117](https://github.com/python-
attrs/cattrs/pull/117 #116)

• Refactor GenConverter.un/structure_attrs_fromdict into GenConverter.gen_un/
structure_attrs_fromdict to allow calling back to Converter.un/structure_attrs_fromdict
without sideeffects. (#118)

15.16 1.1.2 (2020-11-29)

• The default disambiguator will not consider non-required fields any more. (#108)

• Fix a couple type annotations. (#107 #105)

• Fix a GenConverter unstructuring issue and tests.

15.17 1.1.1 (2020-10-30)

• Add metadata for supported Python versions. (#103)

15.14. 1.3.0 (2021-02-25) 65

https://github.com/python-attrs/cattrs/issues/127
https://github.com/python-attrs/cattrs/issues/43
https://cattrs.readthedocs.io/en/latest/benchmarking.html
https://github.com/python-attrs/cattrs/pull/123
https://github.com/python-attrs/cattrs/issues/125
https://github.com/python-attrs/cattrs/pull/115
https://github.com/python-attrs/cattrs/issues/116%3E
https://github.com/python-attrs/cattrs/issues/118
https://github.com/python-attrs/cattrs/pull/108
https://github.com/python-attrs/cattrs/pull/107
https://github.com/python-attrs/cattrs/issues/105
https://github.com/python-attrs/cattrs/pull/103

cattrs Documentation, Release 23.1.2

15.18 1.1.0 (2020-10-29)

• Python 2, 3.5 and 3.6 support removal. If you need it, use a version below 1.1.0.

• Python 3.9 support, including support for built-in generic types (list[int] vs typing.List[int]).

• cattrs now includes functions to generate specialized structuring and unstructuring hooks. Specialized hooks are
faster and support overrides (omit_if_default and rename). See the cattr.gen module.

• cattrs now includes a converter variant, cattr.GenConverter, that automatically generates specialized hooks
for attrs classes. This converter will become the default in the future.

• Generating specialized structuring hooks now invokes attr.resolve_types on a class if the class makes use of the
new PEP 563 annotations.

• cattrs now depends on attrs >= 20.1.0, because of attr.resolve_types.

• Specialized hooks now support generic classes. The default converter will generate and use a specialized hook
upon encountering a generic class.

15.19 1.0.0 (2019-12-27)

• attrs classes with private attributes can now be structured by default.

• Structuring from dictionaries is now more lenient: extra keys are ignored.

• cattrs has improved type annotations for use with Mypy.

• Unstructuring sets and frozensets now works properly.

15.20 0.9.1 (2019-10-26)

• Python 3.8 support.

15.21 0.9.0 (2018-07-22)

• Python 3.7 support.

15.22 0.8.1 (2018-06-19)

• The disambiguation function generator now supports unions of attrs classes and NoneType.

66 Chapter 15. History

https://www.attrs.org/en/stable/api.html#attr.resolve_types

cattrs Documentation, Release 23.1.2

15.23 0.8.0 (2018-04-14)

• Distribution fix.

15.24 0.7.0 (2018-04-12)

• Removed the undocumented Converter.unstruct_strat property setter.

• Removed the ability to set the Converter.structure_attrs instance field.

• Some micro-optimizations were applied; a structure(unstructure(obj)) roundtrip is now up to 2 times
faster.

15.25 0.6.0 (2017-12-25)

• Packaging fixes. (#17)

15.26 0.5.0 (2017-12-11)

• structure/unstructure now supports using functions as well as classes for deciding the appropriate function.

• added Converter.register_structure_hook_func, to register a function instead of a class for determining
handler func.

• added Converter.register_unstructure_hook_func, to register a function instead of a class for determin-
ing handler func.

• vendored typing is no longer needed, nor provided.

• Attributes with default values can now be structured if they are missing in the input. (#15)

• Optional attributes can no longer be structured if they are missing in the input.

• cattr.typed removed since the functionality is now present in attrs itself. Replace instances of cattr.
typed(type) with attr.ib(type=type).

15.27 0.4.0 (2017-07-17)

• Converter.loads is now Converter.structure, and Converter.dumps is now Converter.
unstructure.

• Python 2.7 is supported.

• Moved cattr.typing to cattr.vendor.typing to support different vendored versions of typing.py for
Python 2 and Python 3.

• Type metadata can be added to attrs classes using cattr.typed.

15.23. 0.8.0 (2018-04-14) 67

https://github.com/python-attrs/cattrs/pull/17
https://github.com/python-attrs/cattrs/pull/15

cattrs Documentation, Release 23.1.2

15.28 0.3.0 (2017-03-18)

• Python 3.4 is no longer supported.

• Introduced cattr.typing for use with Python versions 3.5.2 and 3.6.0.

• Minor changes to work with newer versions of typing.

• Bare Optionals are not supported any more (use Optional[Any]).

• Attempting to load unrecognized classes will result in a ValueError, and a helpful message to register a loads
hook.

• Loading attrs classes is now documented.

• The global converter is now documented.

• cattr.loads_attrs_fromtuple and cattr.loads_attrs_fromdict are now exposed.

15.29 0.2.0 (2016-10-02)

• Tests and documentation.

15.30 0.1.0 (2016-08-13)

• First release on PyPI.

68 Chapter 15. History

CHAPTER

SIXTEEN

CATTRS

cattrs is an open source Python library for structuring and unstructuring data. cattrs works best with attrs classes,
dataclasses and the usual Python collections, but other kinds of classes are supported by manually registering converters.

Python has a rich set of powerful, easy to use, built-in data types like dictionaries, lists and tuples. These data types
are also the lingua franca of most data serialization libraries, for formats like json, msgpack, cbor, yaml or toml.

Data types like this, and mappings like dict s in particular, represent unstructured data. Your data is, in all likelihood,
structured: not all combinations of field names or values are valid inputs to your programs. In Python, structured data is
better represented with classes and enumerations. attrs is an excellent library for declaratively describing the structure
of your data, and validating it.

When you’re handed unstructured data (by your network, file system, database. . .), cattrs helps to convert this data into
structured data. When you have to convert your structured data into data types other libraries can handle, cattrs turns
your classes and enumerations into dictionaries, integers and strings.

Here’s a simple taste. The list containing a float, an int and a string gets converted into a tuple of three ints.

>>> import cattrs

>>> cattrs.structure([1.0, 2, "3"], tuple[int, int, int])
(1, 2, 3)

cattrs works well with attrs classes out of the box.

>>> from attrs import frozen
>>> import cattrs

>>> @frozen # It works with non-frozen classes too.
... class C:
... a: int
... b: str

>>> instance = C(1, 'a')
>>> cattrs.unstructure(instance)
{'a': 1, 'b': 'a'}
>>> cattrs.structure({'a': 1, 'b': 'a'}, C)
C(a=1, b='a')

Here’s a much more complex example, involving attrs classes with type metadata.

69

cattrs Documentation, Release 23.1.2

>>> from enum import unique, Enum
>>> from typing import Optional, Sequence, Union
>>> from cattrs import structure, unstructure
>>> from attrs import define, field

>>> @unique
... class CatBreed(Enum):
... SIAMESE = "siamese"
... MAINE_COON = "maine_coon"
... SACRED_BIRMAN = "birman"

>>> @define
... class Cat:
... breed: CatBreed
... names: Sequence[str]

>>> @define
... class DogMicrochip:
... chip_id = field() # Type annotations are optional, but recommended
... time_chipped: float = field()

>>> @define
... class Dog:
... cuteness: int
... chip: Optional[DogMicrochip] = None

>>> p = unstructure([Dog(cuteness=1, chip=DogMicrochip(chip_id=1, time_chipped=10.0)),
... Cat(breed=CatBreed.MAINE_COON, names=('Fluffly', 'Fluffer'))])

>>> print(p)
[{'cuteness': 1, 'chip': {'chip_id': 1, 'time_chipped': 10.0}}, {'breed': 'maine_coon',
↪→'names': ('Fluffly', 'Fluffer')}]
>>> print(structure(p, list[Union[Dog, Cat]]))
[Dog(cuteness=1, chip=DogMicrochip(chip_id=1, time_chipped=10.0)), Cat(breed=<CatBreed.
↪→MAINE_COON: 'maine_coon'>, names=['Fluffly', 'Fluffer'])]

Consider unstructured data a low-level representation that needs to be converted to structured data to be handled, and use
structure. When you’re done, unstructure the data to its unstructured form and pass it along to another library or
module. Use attrs type metadata to add type metadata to attributes, so cattrs will know how to structure and destructure
them.

• Free software: MIT license

• Documentation: https://catt.rs

• Python versions supported: 3.7 and up. (Older Python versions, like 2.7, 3.5 and 3.6 are supported by older
versions; see the changelog.)

70 Chapter 16. cattrs

http://attrs.readthedocs.io/en/stable/examples.html#types

cattrs Documentation, Release 23.1.2

16.1 Features

• Converts structured data into unstructured data, recursively:

– attrs classes and dataclasses are converted into dictionaries in a way similar to attrs.asdict, or into
tuples in a way similar to attrs.astuple.

– Enumeration instances are converted to their values.

– Other types are let through without conversion. This includes types such as integers, dictionaries, lists and
instances of non-attrs classes.

– Custom converters for any type can be registered using register_unstructure_hook.

• Converts unstructured data into structured data, recursively, according to your specification given as a type. The
following types are supported:

– typing.Optional[T].

– typing.List[T], typing.MutableSequence[T], typing.Sequence[T] (converts to a list).

– typing.Tuple (both variants, Tuple[T, ...] and Tuple[X, Y, Z]).

– typing.MutableSet[T], typing.Set[T] (converts to a set).

– typing.FrozenSet[T] (converts to a frozenset).

– typing.Dict[K, V], typing.MutableMapping[K, V], typing.Mapping[K, V] (converts to a dict).

– attrs classes with simple attributes and the usual __init__.

∗ Simple attributes are attributes that can be assigned unstructured data, like numbers, strings, and col-
lections of unstructured data.

– All attrs classes and dataclasses with the usual __init__, if their complex attributes have type metadata.

– typing.Union s of supported attrs classes, given that all of the classes have a unique field.

– typing.Union s of anything, given that you provide a disambiguation function for it.

– Custom converters for any type can be registered using register_structure_hook.

cattrs comes with preconfigured converters for a number of serialization libraries, including json, msgpack, cbor2,
bson, yaml and toml. For details, see the cattr.preconf package.

16.2 Additional documentation and talks

• On structured and unstructured data, or the case for cattrs

• Why I use attrs instead of pydantic

• cattrs I: un/structuring speed

• Python has a macro language - it’s Python (PyCon IT 2022)

16.1. Features 71

https://catt.rs/en/stable/preconf.html
https://threeofwands.com/on-structured-and-unstructured-data-or-the-case-for-cattrs/
https://threeofwands.com/why-i-use-attrs-instead-of-pydantic/
https://threeofwands.com/why-cattrs-is-so-fast/
https://www.youtube.com/watch?v=UYRSixikUTo

cattrs Documentation, Release 23.1.2

16.3 Credits

Major credits to Hynek Schlawack for creating attrs and its predecessor, characteristic.

cattrs is tested with Hypothesis, by David R. MacIver.

cattrs is benchmarked using perf and pytest-benchmark.

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

72 Chapter 16. cattrs

https://attrs.org
https://github.com/hynek/characteristic
http://hypothesis.readthedocs.io/en/latest/
https://github.com/haypo/perf
https://pytest-benchmark.readthedocs.io/en/latest/index.html
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

CHAPTER

SEVENTEEN

INDICES AND TABLES

• genindex

• modindex

73

	Global converter
	Converter objects
	cattrs.Converter
	cattrs.BaseConverter
	Common Usage Examples
	Using Pendulum for Dates and Time
	Using factory hooks
	Using fallback key names

	What You Can Structure and How
	Primitive Values
	typing.Any
	int, float, str, bytes
	Enums
	pathlib.Path

	Collections and Other Generics
	Optionals
	Lists
	Deques
	Sets and Frozensets
	Dictionaries
	Typed Dicts
	Homogeneous and Heterogeneous Tuples
	Unions
	Automatic Disambiguation
	Manual Disambiguation

	typing.Final
	typing.Annotated
	typing.NewType

	attrs Classes and Dataclasses
	Simple attrs Classes and Dataclasses

	Using Attribute Types and Converters
	Complex attrs Classes and Dataclasses

	Registering Custom Structuring Hooks
	Structuring Hook Factories

	What You Can Unstructure and How
	Primitive Types and Collections
	Typed Dicts

	pathlib.Path
	Customizing Collection Unstructuring
	typing.Final

	typing.Annotated
	typing.NewType
	attrs Classes and Dataclasses
	Mixing and Matching Strategies
	Unstructuring Hook Factories

	Strategies
	Tagged Unions Strategy
	Real-life Case Study

	Include Subclasses Strategy
	Customization

	Validation
	Detailed Validation
	Transforming Exceptions into Error Messages

	Non-detailed Validation

	Preconfigured Converters
	Standard Library json
	ujson
	orjson
	msgpack
	cbor2
	bson
	pyyaml
	tomlkit

	Customizing class un/structuring
	Using cattr.Converter
	Manual un/structuring hooks
	Using cattrs.gen generators
	omit_if_default
	forbid_extra_keys
	rename
	omit
	struct_hook and unstruct_hook

	Tips for handling unions
	Unstructuring unions with extra metadata

	Benchmarking
	A Sample Workflow

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips

	History
	23.1.2 (2023-06-02)
	23.1.1 (2023-05-30)
	23.1.0 (2023-05-30)
	22.2.0 (2022-10-03)
	22.1.0 (2022-04-03)
	1.10.0 (2022-01-04)
	1.9.0 (2021-12-06)
	1.8.0 (2021-08-13)
	1.7.1 (2021-05-28)
	1.7.0 (2021-05-26)
	1.6.0 (2021-04-28)
	1.5.0 (2021-04-15)
	1.4.0 (2021-03-21)
	1.3.0 (2021-02-25)
	1.2.0 (2021-01-31)
	1.1.2 (2020-11-29)
	1.1.1 (2020-10-30)
	1.1.0 (2020-10-29)
	1.0.0 (2019-12-27)
	0.9.1 (2019-10-26)
	0.9.0 (2018-07-22)
	0.8.1 (2018-06-19)
	0.8.0 (2018-04-14)
	0.7.0 (2018-04-12)
	0.6.0 (2017-12-25)
	0.5.0 (2017-12-11)
	0.4.0 (2017-07-17)
	0.3.0 (2017-03-18)
	0.2.0 (2016-10-02)
	0.1.0 (2016-08-13)

	cattrs
	Features
	Additional documentation and talks
	Credits

	Indices and tables

