class Aws::SageMaker::Types::AlgorithmValidationSpecification
Specifies configurations for one or more training jobs that Amazon SageMaker
runs to test the algorithm.
@note When making an API call, you may pass AlgorithmValidationSpecification
data as a hash: { validation_role: "RoleArn", # required validation_profiles: [ # required { profile_name: "EntityName", # required training_job_definition: { # required training_input_mode: "Pipe", # required, accepts Pipe, File hyper_parameters: { "HyperParameterKey" => "HyperParameterValue", }, input_data_config: [ # required { channel_name: "ChannelName", # required data_source: { # required s3_data_source: { s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile s3_uri: "S3Uri", # required s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key attribute_names: ["AttributeName"], }, file_system_data_source: { file_system_id: "FileSystemId", # required file_system_access_mode: "rw", # required, accepts rw, ro file_system_type: "EFS", # required, accepts EFS, FSxLustre directory_path: "DirectoryPath", # required }, }, content_type: "ContentType", compression_type: "None", # accepts None, Gzip record_wrapper_type: "None", # accepts None, RecordIO input_mode: "Pipe", # accepts Pipe, File shuffle_config: { seed: 1, # required }, }, ], output_data_config: { # required kms_key_id: "KmsKeyId", s3_output_path: "S3Uri", # required }, resource_config: { # required instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.p4d.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge instance_count: 1, # required volume_size_in_gb: 1, # required volume_kms_key_id: "KmsKeyId", }, stopping_condition: { # required max_runtime_in_seconds: 1, max_wait_time_in_seconds: 1, }, }, transform_job_definition: { max_concurrent_transforms: 1, max_payload_in_mb: 1, batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord environment: { "TransformEnvironmentKey" => "TransformEnvironmentValue", }, transform_input: { # required data_source: { # required s3_data_source: { # required s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile s3_uri: "S3Uri", # required }, }, content_type: "ContentType", compression_type: "None", # accepts None, Gzip split_type: "None", # accepts None, Line, RecordIO, TFRecord }, transform_output: { # required s3_output_path: "S3Uri", # required accept: "Accept", assemble_with: "None", # accepts None, Line kms_key_id: "KmsKeyId", }, transform_resources: { # required instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge instance_count: 1, # required volume_kms_key_id: "KmsKeyId", }, }, }, ], }
@!attribute [rw] validation_role
The IAM roles that Amazon SageMaker uses to run the training jobs. @return [String]
@!attribute [rw] validation_profiles
An array of `AlgorithmValidationProfile` objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm. @return [Array<Types::AlgorithmValidationProfile>]
@see docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
Constants
- SENSITIVE