
About evented-spec

Evented-spec is a set of helpers to help you test your
asynchronous code.

EventMachine/Cool.io-based code, including
asynchronous AMQP library is notoriously difficult to
test. To the point that many people recommend using
either mocks or synchronous libraries instead of
EM-based libraries in unit tests. This is not always an
option, however — sometimes your code just has to
run inside the event loop, and you want to test a real
thing, not just mocks.

em-spec gem made it easier to write evented specs,
but it had several drawbacks. First, it is not easy to
manage both EM.run and AMQP.start loops at the
same time. Second, AMQP is not properly stopped and
deactivated upon exceptions and timeouts, resulting
in state leak between examples and multiple
mystereous failures. amqp-spec, and, subsequently,
evented-spec add more helpers to keep your specs
from being bloated.

Usage

To get started with evented-spec you need to include
one of the helper modules in your example groups,
e.g.:

describe "eventmachine-based client" do
 include EventedSpec::SpecHelper
 it "should allow you to start a reactor" do
 em do
 EventMachine.reactor_running?.should be_true
 done
 end
 end
 context "nested contexts" do
 it "don't require another include" do
 em do
 EventMachine.add_timer(0.1) { @timer_run = true }
 done(0.3)
 end
 @timer_run.should be_true
 end
 end
end

Particular modules and methods are explained below.

Search:

Libraries » ruby-amqp/evented-spec (master) » Index » File: README (frames)

Class List Method List File List

Table of Contents (left)

About evented-spec1.

Usage2.

#done1.

EventedSpec::SpecHelper2.

EventedSpec::EMSpec,

EventedSpec::AMQPSpec,

EventedSpec::CoolioSpec

3.

default_options, default_timeout4.

Hooks3.

Words of warning on blocking the

reactor

4.

I have an existing reactor running

in separate thread, amqp specs

won’t work for me what should I

do?

5.

Compatibility6.

See also7.

Links8.

File: README — Documentation for ruby-amqp/even... http://rdoc.info/github/ruby-amqp/evented-spec/master

1 of 5 02/26/2014 03:44 PM

#done

We have no means to know when your work with reactor is finished, so whatever it is you need to call done at
some point. It optionally accepts a timeout and a block that is executed right before event reactor loop is
stopped. If you don’t call done, your specs are going to fail by timeout.

EventedSpec::SpecHelper

EventedSpec::SpecHelper is for semi-manual managing of reactor life-cycle. It includes three helpers: for
EventMachine, Coolio and AMQP.

em stands for EventMachine. It takes a block, which is run after reactor starts.

amqp stands for AMQP. It takes a block, which is run after amqp connects with broker using given or default
options.

coolio stands for cool.io. It takes a block, which is run after reactor starts.

All three accept a hash of options. Look into method documentation to learn more.

EventedSpec::EMSpec, EventedSpec::AMQPSpec, EventedSpec::CoolioSpec

EventedSpec::EMSpec wraps every example in em block, so it might save you a couple of lines per example.
EventedSpec::AMQPSpec wraps every example in amqp block.

Also note that every example group including EMSpec or AMQPSpec automatically includes SpecHelper.

Example:

describe "eventmachine specs" do
 include EventedSpec::EMSpec
 it "should run in a reactor" do
 EventMachine.reactor_running?.should be_true
 done # don't forget to finish your specs properly!
 end
end

default_options, default_timeout

You can also pass some default options to specs (like amqp settings), they’re specific to domain you’re using
evented-spec in.

default_timeout sets time (in seconds) for specs to time out

describe "using default_timeout" do
 include EventedSpec::SpecHelper
 default_timeout 0.5
 it "should prevent specs from hanging up" do
 em do
 1.should == 1 # this spec is going to fail with timeout error because #done is not called
 end
 end
end

Hooks

There are 6 hooks available to evented specs:

em_before — launches after reactor started, before example runs

File: README — Documentation for ruby-amqp/even... http://rdoc.info/github/ruby-amqp/evented-spec/master

2 of 5 02/26/2014 03:44 PM

em_after — launches right before reactor is stopped, after example runs
amqp_before — launches after amqp connects, before example runs
amqp_after — launches before amqp disconnects, after example runs
coolio_before — launches after Cool.io starts, before example runs
coolio_after — launches before Cool.io stops, after example runs

So, the order of hooks for an AMQP spec is as follows: before(:all), before(:each), em_before,
amqp_before, example, amqp_after, em_after, after(:each), after(:all)

describe "using amqp hooks" do
 include EventedSpec::AMQPSpec
 default_timeout 0.5
 amqp_before do
 AMQP.connection.should_not be_nil
 end
 let(:data) { "Test string" }
 it "should do something useful" do
 AMQP::Channel.new do |channel, _|
 exchange = channel.direct("amqp-test-exchange")
 queue = channel.queue("amqp-test-queue").bind(exchange)
 queue.subscribe do |hdr, msg|
 hdr.should be_an AMQP::Header
 msg.should == data
 done { queue.unsubscribe; queue.delete }
 end
 EM.add_timer(0.2) do
 exchange.publish data
 end
 end
 end
end

Words of warning on blocking the reactor

Evented specs are currently run inside of reactor thread. What this effectively means is that you should not
block during spec execution.

For example, the following will not work:

describe "using amqp" do
 include EventedSpec::AMQPSpec
 it "should do something useful" do
 channel = AMQP::Channel.new
 sleep 0.2 # voila, you're blocking the reactor
 channel.should be_open # no, it should not
 done
 end
end

What you should do instead is use callbacks:

describe "using amqp" do
 include EventedSpec::AMQPSpec
 it "should do something useful" do
 AMQP::Channel.new do |channel, _|
 channel.should be_open
 done

File: README — Documentation for ruby-amqp/even... http://rdoc.info/github/ruby-amqp/evented-spec/master

3 of 5 02/26/2014 03:44 PM

 end
 end
end

You can also use #delayed helper method to maintain order of execution when callbacks are not an option.

describe "using amqp" do
 include EventedSpec::AMQPSpec
 it "should do something useful" do
 channel = AMQP::Channel.new
 @stage = 0
 delayed(0.2) {
 channel.should be_open
 @stage = 1
 }
 delayed(0.3) {
 @stage.should == 1
 done
 }
 delayed(0.4) {
 # this block is never going to be executed
 raise "Help me!"
 }
 end
end

I have an existing reactor running in separate thread, amqp specs
won’t work for me what should I do?

Unfortunately, right now there aren’t many remedies to your problem, besides stopping the event loop in
before(:all) hook like this:

describe "Example" do
 before(:all) { EM.stop_event_loop; sleep(0.1) }
 after(:all) { do_something_to_restart_the_eventmachine }
 include EventedSpec::SpecHelper
 it "should do something" do
 em { done }
 end
end

Reason is simple: if we don’t restart event loop every spec example, all kinds of state leaks may occur: stale
timers, delayed exceptions, weirdest errors and even segfaults. It isn’t impossible but it certainly is very
invasive.

Compatibility

EventedSpec is tested with RSpec >= 2.5.0, Cool.io ~> 1.0.0, EventMachine >= 0.12.10, and AMQP >= 0.8.0.
Running it with RSpec 1.3 and/or AMQP 0.7.0 is not unheard of, although not tested in all its entirety.

See also

You can see evented-spec in use in spec suites for our amqp gems, amq-client and amqp.

File: README — Documentation for ruby-amqp/even... http://rdoc.info/github/ruby-amqp/evented-spec/master

4 of 5 02/26/2014 03:44 PM

Links

cool.io
amqp-spec
eventmachine
amqp
amq-client

Generated on Sat Feb 22 04:33:32 2014 by yard 0.8.7.3 (ruby-2.0.0).

File: README — Documentation for ruby-amqp/even... http://rdoc.info/github/ruby-amqp/evented-spec/master

5 of 5 02/26/2014 03:44 PM

