class CAS::Exp
Representation for the `e^x` function. It is implemented as a `CAS::Op`
Public Class Methods
# File lib/functions/fnc-trsc.rb, line 87 def self.init_simplify_dict @simplify_dict = { CAS::Zero => CAS::One, CAS::One => CAS::E, CAS::Infinity => CAS::Infinity } end
Public Instance Methods
Call resolves the operation tree in a `Numeric` (if `Fixnum`) or `Float` (depends upon promotions). As input, it requires an hash with `CAS::Variable` or `CAS::Variable#name` as keys, and a `Numeric` as a value
* **argument**: `Hash` with feed dictionary * **returns**: `Numeric`
# File lib/functions/fnc-trsc.rb, line 64 def call(f) CAS::Help.assert(f, Hash) Math::exp(@x.call(f)) end
Return the derivative of the `sin(x)` function using the chain rule. The input is a `CAS::Op` because it can handle derivatives with respect to functions.
“`
d
– exp(f(x)) = f'(x) exp(f(x)) dx “`
* **argument**: `CAS::Op` object of the derivative * **returns**: `CAS::Op` a derivated object, or `CAS::Zero` for constants
# File lib/functions/fnc-trsc.rb, line 49 def diff(v) if @x.depend? v return @x.diff(v) * CAS.exp(@x) else return CAS::Zero end end
Simplification callback. It simplify the subgraph of each node until all possible simplification are performed (thus the execution time is not deterministic).
* **returns**: `CAS::Op` simplified version
CAS::Op#simplify
# File lib/functions/fnc-trsc.rb, line 81 def simplify super return @x.x if @x.is_a? CAS::Ln return self.simplify_dictionary end
Convert expression to code (internal, for `CAS::Op#to_proc` method)
* **returns**: `String` that represent Ruby code to be parsed in `CAS::Op#to_proc`
# File lib/functions/fnc-trsc.rb, line 98 def to_code "Math::exp(#{@x.to_code})" end
Returns the latex representation of the current Op
.
* **returns**: `String`
# File lib/functions/fnc-trsc.rb, line 105 def to_latex "e^{#{@x.to_latex}}" end
Convert expression to string
* **returns**: `String` to print on screen
# File lib/functions/fnc-trsc.rb, line 72 def to_s "exp(#{@x})" end