CHAPTER 1

-You need to solve a problem it might be that you need two systems to talk
each other that weren't designed for it. Or you may need to run some
mated yet complex task periodically Or, you may want to build simple
oductivity tools to help you work. This is where the command line shines,
these are the kinds of problems you’ll learn to solve in this book

Although it may seem obvious that a focused, single-purpose app is more
desirable than one with a “kitchen’sink™ full of features, it's especially
- dmportant for command-line apps. The way in which command-line apps get -

~'ways, limiting. As such, a system of many single-purpose apps:is better than
system of fewer (or one) complex apps. Simple, single-purpose apps are

to: understand are easier to learn; are ceasier to maintain and lead to . '
mor ﬂex1ble systems

Think of your command-line tasks as a set of layers: with the basic foundation

and-line apps. Those can. be used for even more complex apps, each
ilt on srmpler tools below. The popular version control- system: git follows
is design: many of git's commands are “plumbing” and are not intended for
ular use. These commands are then used to build porcelain cornmands,
which are still simple and single-purpose but are built using the plumbing
This design comes in handy because, every once in a while, you need to use
the- plumbmg directly. You can do this because git was: designed around
iools that each have a clear and concisé purpose.

Tlns chapter will set the stage for everything we'll be learning in the book
We'll look at two common problems and introduce two command-line apps
“solve them. As a mears of demonstrahng more clearly what we mean by
Having a “clear and concise purpose, each problem—solvmg app will get an

put, are configured, and produce output is incredibly simple and; in some

‘the standard UNIX tools, you can create more complex but still focused L

1.1

we'll have:a list of “user stories” representing the, work W

o Chapterl Have aClear and Conc:se Purpose *2

' teration in this chapter The first version of each app will: be naive. and then

quickly. revised to be more single-purpose, S0 We can see ﬁrsthand the level
of function We Want our apps to have. . S

Problem 1 Backmg Up Data

Suppose our small development team is starting v'vork on our c‘ompany’s

flagship web application This application is heavily data-driven and highly

- complex, with many features and edge cases. To build it, we're going to-use

rint ~”vIn each sprint,
{ oing To ofﬁcially

complete a user story, we'll need to demonstrate tha story functiomng -

an Agile methodolog', where -we work in two-week ‘s

- properly in a ‘shared development environment.

To be able to demonstrate workmg features we'll have a'set of databases with
pecially chosen data’ that can sunulate all'of our edge cases and user flows.
Setting up this data is time- consummg because our app is complex, 0 even
though this data is fake, we want to treat it like real productron data and
back it up. Since we're constantly changmg the data as we work, we want to

save the state of each database every single day of the current iteration. We
also want to keep a backup of the state of each database at the end of every
iteration.-So, if we're on the fifth day of our-third iteration, we want to be able

' toaccess a backup for iterations 1-and 2, as well as backups for the first four

days of the third iteration.

Like with most teams, at our company, we can’t rely ¢ ona system admimstrator
to back it up for us; we're a fledgling start-up, and resources are hrmted A
command line app to the rescue! We need an app that w1ll do the fo]lowing

“eDoa complete dump of any MySQL database _
B ‘e Name' the backup file based on the date of the backup
e Allow the creation of our end-of-iteratlon backup, usmg a diﬁ"erent

‘ nammg scheme , o
o Compress. the backup files =~ - ,
. Delete backups from completed 1terat10ns o

Let’s take a quick stab at 1t ‘We'll set up -a Hash that contams mformat\on
about all the databases we want to back up, loop over it, and then use Ruby's
backtick operator to call mysqidump, followed by azip'. We’ll also. examine: thev
. first argument glven to our app, if its present We’ll take that to mean we

1. You need to have both of these commands installed gzm is, standa;rd on. most UNIX »
) ~and Mac comput mysqldump requu'es installing MySQL_._/, eamabout MySQL
’ at http //dev mysl. com/doc/refmanls 5/enf nstallmg html S)

. Problem 1: Backing Up Data * 3 .

want to doan end—of iteraﬁon backup Here_" - tOuf mﬁal’,ixnplemeptaﬁon .
looks like: ' : S S

databases = {
big_client: { _
" database: 'big.client',
- _username: ‘big", =
password: 'big’,
PR '
-‘small cllent {
database: ‘small_client',
username: ‘'small',
--password: 'p@ssWord!',.
}oo '
y

end_of iter = ARGV.shift

du%n&exh“]mmcmﬁm
if end of 1ter,n11?))
backup_file = configf: database] +ot ! + Tlme now strftlme(%Y%m%d)
else . v
backup_ flle = conflg[database] + '_' + end _of_iter
end . :
mysqldump "mysqldump u#{conflg[username]} P#{conflg[password]} "

*#{mysqldump} > #{backup;fiie}.sql‘
“gzip #{backup_file}.sql’ '
end o

If you're wondering what's going on the very first line, see Shebang: How the
System Knows an App Is a-Ruby Script, on page 4. Notice how we use ARGV,

~which is-an Array that-Ruby- sets with all the command-line arguments to
detect whether this is an “end-of-iteration” backup. In that case, we assume
that whatever the argument was should gc into the filename, instead of the
current date. We'd call it hke so:

$ db_backup_lnztlal.rb,

=> creates big_client_20116163,sql. gz :

=> creates small cllent _20110103.sql. gz T

$ db_backup_initial.rb iteration 3 - B
=> creates big_client_iteration 3.sql.gz.": i .
=> creates small_client iteration 3.sql.gz

There are a lot of problems with:this app-and lots of room for improvement.
The rest of the book will deal with these problems, but we're going to solve
the biggest one right now. This app doesn’t have a clear and concise purpose.
It may appear to—after all, it is backing up and compressing our databases
—but let’s imagine a likely scenario: adding a third database to back up.

‘To support this, we'd need to edit the code, modify the databases Hash, and
redeploy the app to the database server. We need to make this app’ ‘simpler.
What if it backed up only one database? If it worked that way, we would call
the app one time for each database, and when adding a third database for
backup, we’d simply call it a third time. No 'source code changes or redistri-
bution needed. - T ’

12

! /usr/bin/env ruby

- from your web browser. Ammmtedmkynwhmmngmnﬁgishhh

_Problem 2:Managing Tasks ® 5

To make this change, we'll get the database name, username, and.password . |
from the command line instead of an internal:Hash, like this: . -

database = ARGV.shift

username =-ARGV.shift

password =:ARGV.shift

end_of. _iter = ARGV.shift

if end_of_iter.nil? :
backup_file = database + "_" + Time.now. strftlme("%Y%m%d")

else . .
backup_file = database + "_" + end_of_iter

end ' '

‘mysqldump -u#{username} -p#{password} #{database} > #{backup file}. sql

*gzip #{backup_file}.sql}"

Now, to perform our backup, we call it like so:

$ db backup rb big client big big

=> creates’ blg,cllent_26110103‘sql;gz-

$ db_backup.rb smatl_ctient small “p@ssWord!™ -

=> creates small_client_20110103.sql.gz

$ db_backup.rb big_client big big iteration_3

=> creates big_c¢lient_iteration_3.sql.gz

$ db_backup.rb medium_client medium “med_pass" iteration_4
=> creates medlum cllent iteration_. 4 sql.gz

It may seem like we've complicated things, but our app is.a lot simpler now
and therefore easier to maintain, ‘enhance, and understand. To set up our
backups, we'd likely use cron (which is a UNIX tool for regularly scheduling
things to be run) and have it run our app three times, once for each database.

We'll improve on db_backup.rb _throughout the book, turning it into an awesome
command-line app. Of course, automating specialized tasks is only one use of
the command line. The command line can also be an excellent interface for simple
productivity tools. As developers, we tend to be on the command line a lot; whether
editing code, running a build, or testing new tools. Given that, it’s nice to be able
to manage our work without leaving the command line.

Problem 2: Managing Tasks

Most softiware development organizations use some sort of task management
a wealth of features for managing the most complex workflows and tasks, all

awwwmummmmmmmg
ﬂmemdown.Supposewe‘:ewwkmgmammkmv on }) ~

Chapter 1. HaveaClear and Concise Purpose * 6

, ﬂagship Web application We re going to: addi 2T
to modify the account sign-up: page to’ requjr
terms of service.

user accept the new

~Inour company—wide task management tool we.mxgh see a task like “Add
Terms of Service Checkbox to Signup Page.” That's the perfect. level of granu-
larity to track the work by our bosses and other mterested stakeholders, but
it’s too coarse to drive our work So we’ll make a task Iist of what needs to
be done : ; ,

« Add new field to database for accepted terms on date
e Get DBA approval for new ﬁeld :
o Add- checkbox fo HTML form.
¢ Add logic to make sure the box is checked before: sigmng up.is complete.
¢ Perform peer code review When all work is done

Trackmg such fine- gramed and’ short-hved tasks in our. web-based task
manager is going to be too cumbersome: We could write this'on a scrap of
paper or a text file, but it would be better to have a simple tool to allow us to
create, list, and complete tasks in order. That way, any time we come back
to our computer, we can easily see how much progress we've made and what's

next to do

To keep thmgs single-purpose, we'll create three- command line apps, each -
_doing the one thing we need to manage tasks. todo-new.rb will let us add a new
task, todo-list.rb will list our current tasks, and todo-done.rb will completea task.

They will all work off a shared text ﬁle named todo.txt in the current dlrectory,
and work like s0:

'u

$ todo -new.rb “Add new field to database for accepted terms on date
Task added
$ todo-new.rb "Get DBA"approval for new fleld W
Task added :
$- todo-llst rb
1 - Add new field to database “for accepted terms on date
Created: 2011-06-03 13:45
2 - Get DBA approval for new field.
" Created: . 2011-06-03 13:46
$ todo-done.rb. 1 :
Task. 1 completed

$ todo-list.rb) _ 7
1 - Add new field to database for ‘accepted terms on date’

Created; - :2011:06-03 13:45
Completed 2011-06-03 14:00
2 - - Get -DBA approva1 for new field.
Created_ _ 2011 96-03 13:46

* Problem 2: Managing Tasks ® 7

We'll start with todo-new.rb, which will read in the task from the command. hne
and append it to todo.txt, along with a umestamp k

’# /usr/bln/env'ruby
new_task = ARGV,shift

File.open('todo.txt','a') do |file|
file.puts "#{new_task};#{Time.now}"
puts "Task added."

end ‘

This is pretty straightforward; we're. usihg a cdmma-separated-values format
for the file that stores our tasks. todo-list.rb will now read that file, printing out
what it finds and generatlng the ID number.

f;}'
#l/usr/bln/env ruby

File. open('todo.txt','r') do | file]
counter = 1
file.readlines.each do lllnel
name,created, completed = line.chomp, spllt(/ /)
printf("s3d - %sin",counter,name)
printf(" Created : %s\n",created)
unless completed.nil?
printf(" Completed : %s\n",completed)
end
counter += 1
end
end

Finally, for todo-done.rb, we'll read the file in and write it back ouf ‘s‘topping
when we get the task the user wants to complete and including a tlmestamp
for the completed date as well:

#1/usr/bin/env ruby'
task_number = ARGV,shift.to_i

File.open('todo.txt", 'r'). do |file|:
File.open(!todo.txt.new',‘w') do |new f11e|
counter = 1
file.readlines.each do Illnel
name, created, completed =.line, chomp spllt(/ /)
if task-_number == counter
new_file. puts("#{name},#{created} #{Tlme now}")
puts "Task #{counter} completed“

Chaptér 1:Have a Clear and Concise P.orpose *8

.else:
‘new_ file. puts("#{name} #{created} #{completed}")
end

counter. += 1
end
end
end

‘mv todo.txt.new todo.txt’

As with db_backup_initial.rb, this set of command line apps has some problems
The most unportant however, is that we've gone too far making apps clear
and concise. ‘We have three apps that share a lot of logic. Suppose we want
to add a new field to our tasks. We'll have to make a similar change to all
three apps to do it, and we'll have to take extra care to keep them in sync.

Let's turn this app into a command suite. A command suite is an app that
provides a set of commands, each representing a different function of a
_related concept In our case, we want an app named todo that has the clear
and concise purpose of managing tasks but that does so through'a command-
style interface, like so:

$ todo new "Add new field to database for accepted terms on date'”

Task added

$ todo new “Get DBA approval for new field."

Task added

$ todo list -

1 - Add new field to database for. 'accepted terms on date’
Created: 2011-06-83 13:45

2 - Get DBA approval for new field.
Created: 2011-06-03 13:46

“$ todo done 1 :

Task 1 completed

$ todo list

1 - Add new- fleld to database for 'accepted terms on date
- Created: 2011-06-03: 13:45
Completed: 2011-06-03 14:00

2 - Get DBA approval for new field.
Created: .2011-06-03 13:46

The invocation syntax is almost identical, except that we can now keep all
the code in one file. What we’ll do is grab the first element of ARGV and treat
‘that as the command. Using a case statement, we'll execute the proper code
for the command. But, unlike the previous implementation, which used three
files, because we're in one file, we can share some code, namely, the way in
which we read and write our tasks to the file.. :

.- Problem 2: Managing Tasks * 9

#1/usr/bin/env ruby
TODO_FILE = 'todo.txt'

def read_todo(line)
line.chomp.split(/,/) .
end
def write_todo(file,name, created—Tlme now, completed—")
file. puts("#{name},#{created} #{completed}")
end i
command = ARGV, Shlft
case command
when 'new’ : :
new_task = ARGV.shift
File.open(TODO_FILE,'a') do |file|
write_todo(file,new_task) :
puts "Task added."
end
when 'list’®
File.open(TODO_FILE,'r') do. |f11e[
counter = 1
file.readlines.each do |line|
name, created, completed = read_todo(line)
printf("s3d - %sin",counter,name)
Cprintf(" Created = : %s\n", created)
-‘unless completed.nil?
printf(" - Completed : %s\n", completed)
end
counter += 1
end
end
when 'done’
task_number = ARGV.shift.to_i
File.open(TODO_FILE,'r') do |file|
File.open("#{TODO_ FILE}. new“ ‘w') do [new flle]
counter = 1
file.readlines.each do |line|
name,created, completed = read todo(llne)
if task_number == counter
write_todo(new_file,name, created,Time, now)
puts "Task #{counter} completed"
else
write_todo(new file,name,created, completed)
- end :
counter += 1
“end
end -
-end
“mv. #{T0ODO_ FILE} new #{TODO FILE}"
- end

1.3

Chapter 1. Have'a Clear and Concise Purpose * 10

Notice how the methods read_todo and write.| todo encapsulate the format of tasks
in our file? If we ever needed to change them, we can do it in just one place.
We've also put the name of the file into a constant (TODO_FILE), so that can
easily be changed as well. :

What Makes an Awesome Command-Line App

Since the rest of this book is about wh_atvrr‘lakes an aw_esome command-line
app, it’s worth seeing a broad overview of what we're talking about. In general,
an awesome command-line app has the followmg characteristics

Easy to-use The command- line can be an unforgivmg place to be S0 the.)
easier an app is to use, the better:.

Helpﬁd Being easy to use isn’t enough; the user will need clear direction on -
how to use an app and how to fix things they might've done wrong.

Plays well with others The more an app can interoperate with other apps
and systems, the more useful it will be, and the fewer special customiza-
tions that will be needed.

Has sensible defaults but is configurable Users appreciate apps that have a
clear goal and opinion on how to do something,. Apps that try to be all
things to all people are confusing and difficult to master: Awesome apps,

- however, allow advanced-users to tinker under the hood and use the app
in Ways not imagined by the author. Striking this balance is important.

Installs painlessly Apps that can be installed with one command, on any
- environment, are more likely to be used.

Fails gracefully Users will misuse apps, trying to make them do things they
weren’t designed to do, in environments where they were never de31gned
to run. Awesome apps take this in stride and give useful error rnessages
without being destructive. ThlS is because they’re developed with a com-
prehensive test suite. :

Gets new Seatures and bug:fixes easily: Awesome command—line apps aren't
awesome just to use; they are awesome to hack on. An awesome app’s
internal structure is geared around qmckly fixing bugs and easﬂy adding
new features.

Delights users Not all command—lme apps have to output monochrome text.
* Color, formatting, and#nt Hivi mput’all have their place and can
i S -an awesome command-line

Moving On ¢ 11

Moving On

The example apps we saw in this chapter don't have many aspects of an
awesome command-line app. They’re downright awful, in fact, but we have
to start somewhere, and these are simple enough and general enough that
we can demonstrate everything we need to know about making an awesome
command-line app by enhancing them. :

In this chapter, we learned the absolute most important thing for a command-
line app: have a clear, concise purpose that solves a problem we have. Next,
we’ll learn how to make our app easier to use by implementing a more
canonical command-line interface. As we work through the book, we’ll make
refinement after refinement, starting our focus on the general users of our
app, then focusing on power users, and then worrying about other developers
helping us with our app, before finally finishing with tools and techniques to

help us maintain the app.

2.1

CHAPTER 2

Be Easyto Use

After installing your app, the first experience a user has with it will be the
actual command-line interface. If the interface is difficult, counterintuitive,
or, well, ugly, it's not going to inspire a lot of confidence, and your users will
have a hard time using it to achieve its clear and concise purpose. Conversely,
if it's easy to use, your interface will give your application an edge with its
audience. ' :

Fortunately, it's easy to get the command-line interface right, once you know
the proper tools and techniques The UNIX command line has a long and
storied history, and there are now many conventions and idioms for how to
invoke a command-line app. If your app follows these conventions, your users
will have an easier time using it. We'll see that even a highly complex: app can
have a succinct and memorable interface. '

In this chapter, we'll learn to use standard library and open source commu-
nity tools that make it incredibly simple t6 create a conventional, idiomatic
command-line interface whether it's a simple backup script or a complex
command-line task management system. We'll learn how to make a simple °
command-line interface using Ruby’s OptionParser class and then tackle a more
sophisticated command-suite application, which we’ll build using the open
source GLI library. But first, we need to get familiar with- the proper names -
of the elements of a typ1cal command-hne interface its options, arguments
and commands.

Understandmg the Command Line: Optlons, Arguments, and Commands

To tell a command-line application how to do its work, you typically need to
enter more than just the name of its ‘executable. For example, we must tell
grep which files we want it to search. The database backup app, db_backup.rb, -
that we introduced in the previous chapter needs a username and password

' Chapter 2. Be Easy to Use * 14

and a database name in order to do its work. The primary way to give an app
the information it needs is via options and arguments, as depicted in Figure
1, Basic parts of a command-line app invocation, on page 14. Note that this
format isn’t imposed by the operating system but is based on the GNU stan-
dard for command-line apps. ! Before we learn how to make a command-line
mterface that can parse and accept options and arguments, we need to delve
a bit deeper into their idioms and conventions. We'll start with options and
move on to arguments. After that, we'll discuss commands, which are a dis-
tinguishing feature of command suites.

|grep|-'—ignore—case_ ~r|"some string” /tmp‘

Executable - Options = = - .Arguments‘.

Figure 1—Basic parts-of a command-line app invocation

Optlons

. Optzons are the way in which a user modxﬁes the behavior of your app Con-
sider the two mvocauons of Is shown here. In the first, we omit options and
see the default behavior. In the second we use the -| opt10n to modify the
listing format.
$1s
one.jpg . two.jpg three. jpg
$1ls -1 - ' : , :
~TW-F--r-- 1-davec staff: = 14005 Jul 13 19:06 one.jpg

-rw-r--r--- -1 davec staff 14005 Jul 11 13:06 two.jpg.
-rw-r--r-- 1 davec staff 14005 Jun 10 09 45 three Jpg

Options come in two forms: long and short. -

Short form optwns Short form options are preceded by a dash and are only
one character long for example -l Short-form optlons can be combined
after a single dash, as in the followmg example For example, the followmg
two lines.of code produce exactly the same result: '

Cls-l-at

Is-lat

1. http://www.gnu.org/prep/standardslhtml_node/Commahd_bOZdLine-infe'_rfaces.htrnl

. Understanding the Command Line: Options, -Aréuments, and Commands * 15

Long-form options - Long-form options are-préceded by two dashes and,
‘strictly speaking, consist of two or more characters. However, long-form -
options are usually complete words (or:even several words, separated by
dashes). The reason for this is to be explicit about what the option means;
with a short-form option, the single letter is'often a' mnemonic. With long-
form options, the convention is to spell the word for what the option does.
In the command curl --basic http://www.google.com, for example, --basic is a single,
long-form option. Unlike short options, long options’ cannot be combined;
each must be entered separately, separated by spaces on the command

Command-line options can be one of two types switches, which are used to
turn options on and off and do not take arguments, and flags, which take
arguments, as shown in Figure 2, A command-line invocation with switches
and flags, on page 15. Flags typically require arguments but, strictly speaking,
don't need to do so. They just need to accept them. We'll talk more about this
in Chapter 5, Delight Casual Users, on page 71-

Flag (in short form) '

grepFignore’—caselA—C '4J‘v"'some _st:’r”ing" /tmp

Switch (in long form) -

Figure 2—A c,omrhand-line invocation with switches and flags

Typrcally, if a switch is in the long-form (for example -foo), which turns “on”
some behavior, there is also another smtch preceded wrth no- (for example
-'no-foo) that turns “off” the behavior o

inally, long—form ﬂags take the1r argument via an equal 31gn, Whereas in. the
short form of a flag, an equal sign is typically not used. For example, the curl
command, which makes HTTP requests, prov1des both short-form and long-v
form flags to specify an HTTP request method: X and --request, respectively
The followmg example mvocations show how to properly pass arguments to
thosé ﬂags ’ :

curl -X POST http://www. google com _ '

curl --request=POST http:/lwww.google;comi:T- S

Chapter 2::Be.Easyto Use * 16

Although some apps do not require an equal:sign-between a long-form flag
and its argument, your-apps should always:accept an ‘equal sign, because
this is the idiomatic way of giving a flag its argument. ' We'll see later in this
chapterthat the tools provided by Ruby andits open source ecosystem make
it easy to.ensure your app follows this.convention.’ P

Arguments , , : : wa G

As shown in’ Figure 1, Basic parts Qf a command lzne appinvocation, on page
14, arguments are the elements of a command-line that aren’t options. Rather,
arguments represent the objects that the command-line app will operate on.
Typically, these objects are file or directory names, but this depends-on the
app. We might design our database backup app to. treat the arguments as
the names of the. databases to back up.

Not all command-line apps take arguments, while others take an arbltrary
number of them. Typically, if your app operates on a file, it's customary to
accept any number of filenames as arguments and to operate on them one
at a time.

Commands :
~ Figure 1, Basic parts of a command-line app invocation, on page 14 shows a
diagram of a basic command-line invocation with the main elements of the
command line labeled.

For simple command-line applications, options and arguments are all you
need to create an interface that users will find easy to use. Some apps, how-
ever, are a bit more complicated. Consider git, the popular distributed version
- control system. git packs a lot of functionality. It can add files to a repository,
send them to a remote repository, examine a repository, or fetch changes
from another user’s repos1tory Originally, git was packaged as a collection of
individual command-line apps. For example, to commit changes, you would
execute the git-commit application. To fetch files from a remote repository, you
would execute-git-fetch: While each command provided its own options and
arguments there was some overlap. ‘

For example, almost every git command provided a --ho- pager option, which told
git not to send output through a pager like more. Under the covers, there was
a lot of shared code as well. Eventually, git was repackaged as a single exe-
cutable that operated as a command suite. Instead of running git-commit, you
run git commit. The single-purpose command-line app- git-commit now becomes
a command to the new command-suite app, git.

Understanding the Command Line: .O_ptions', Arguments, and Commands * 17.

A command in a command-line invocation isn’t like:an option or an argument;
it has a more specific meaning. A command is-how you specify the action to
take from among a potentially large or complex set of available actions. If you
look around the Ruby ecosystem, you'll see-that the use.of command suites
is quite common. gem, rails, and bundler are all types of command suites.

Figure 3, Basic parts of a command-suite invocation, on page 17 shows a
command-suite invocation; with the command’s position on the command
line mghhghted :

Global Optlons v‘ Command Options

|

git|--no-pager|push|-v|origin master

Executable - Command Arguments :

Figure 3—Basic parts of a command-suite invocation

You won't always design your app as a command suite; only if your app is .
complex enough that different behaviors are warranted will you use this style
of interface. Further, if you do decide to design your app as a command suite,
your app should require a command (we'll talk about how your app should
behave when the command is omitted in Chapter 3, Be Helpful, on page 33).

The command names in your command suite should be short but expressive,
with short forms available for commonly used or lengthier commands.: For
example, Subversion, the version control system used by many developers
accepts the short-form co in place of its checkout command

A command suite can still accept options, however, their position on the
command line aﬂects how they are interpreted

Global options . Options that you. enter before the command are known as
global options. Global options aﬂ”ect th "'_global behavior of an app and: can
‘be used with any command in the. Su ue" Recall our discussmn of the --no-
_pager option for git? This option affects all of glt s commands. We know this
because it comes before the command on the command line, as shown
in Figure 3, Basic parts of a command suite invocation, on page 17.

2.2

Chapter2:Be Easy to Use * 18

Command optwns Options that follow a command: are known as command-

- specific'options.or simply command options: These options have meaning

- only in ‘the' context of their-command. Note' that: they: can also have the

- same names as global options. For example; if our: to-do list app took a

global option -f to indicate where to find: the to-do list’s file; the list com-
mand might also take an -f to indicate a full” listing,’

- ‘The command- line invocation‘would be todo - f~/my todos. txt list -f.-Since the
first -f comes before the command and is a. global option, we Won’t confuse
_1t for the second f Wthh s a command option

Most command-line apps follow the conventions we've Just discussed Ifyour
app follows them as well, users will have an easier time learning and using
your app’s mterface For example, if your app accepts long-form flags but
doesn't allow the use of an equal sign to separate the flag from its argument,

users will be frustrated.

The good news is that it's very easy to create a Ruby app that follows all of
the conventions we've discussed in this section. We'll start by enhancing our

-Chapter 1 database backup app from Chapter 1, Have a Clear and Concise

Purpose, on page 1 to demonstrate how to make an easy-to-use, conventional
command-line apphcation using OptionParser. After that, we'll use GLI to enhance

* our to-do list app, creating an idiomatic command suite that’s easy for our

users to use and easy for us to' implement.

Burldmg an Easy—to-Use Command-Line lnterface

If you've done a Jot of shell scripting (or even written a command-line to0l in
C), you're probably familiar with getopt,? which is a C library for parsing the
command line and an obvious choice.as a tool for creating your interface.
Although Ruby includes a wrapper for getopt, you shouldn’t use it, because
there’s a better built-in option: OptionParser. As you'll see, OptionParser is not only
easy to use but is much more sophisticated than getopt and will result in a
superior command-line interface for your app. OptionParser code is also easy to
read and modify, making enhancements to your: app simpleé to implement.

Before we see how to use OptlonParser let’s first cons1der the input our applica—
tion needs to do 1ts job and the command hne that will provide it. We'll use
the backup apphcation db_backup.rb, which we introduced in Chapter 1, Have
a Clear and Concise. Purpose on page 1 What kind of options might our
apphcation need‘? '

2. http://eri.wikipedia-.org/wiki/Getopt L

Buildingan Easy-to-use Command-Line Interface * 19

Right now, it needs the name of a database:and‘some way of knowing when -
we're doing an “end-of-iteration” backup instead of a normal, daily backup.
The app will also need a way to authentiCate users of the database server
we're backing up; this means a way for the user to provide a username and
password.

Since our app will mostly be used for making daily backups we'll make that -
its default behavior. This means we can provide a switch to perform an “end-
of-iteration” backup. We’ll use - to name the switch, which provides a nice
mnemonic (i for “iteration”). For the database user and password, -u and P
are obvious choices as ﬂags for the username and password respectively,-as
arguments.

To specify the database name, our app could use a flag, for example -d, but
the database name actually makes more sense as an argument. The reason
is that it really is the object that our backup app operates on. Let’s look at a
few examples of how users will use our app: .

$ db backup rb smau client
=> does a daily backup of the "sma'l.l client"” database

$ db _backup.rb -u davec -p P@55WorD medium_client :
=> does a daily -backup of the "medium_client" database, us:.ng the
given username and password to login

$ db_backup.rb -i big_ chent
=> Do an "end of 1terat10n" backup for the database "bJ.g cllent"

Now that we know what we're anning for, let’s see how to build this interface
with OpttonParser . B

Bu:ldmg aCommand Line lnterface with OptionParser.

To create a simple command-line interface with OptionParser, create an instance
of the class and pass it a block. Inside that. block we create the elements of
our interface using OptlonParser methods ‘We'll use on to define each option in
our command line.

The on itself takes a block, which: is called when the user invokes the option
it defines. For flags, the block:is g1ven the argument the user provided. The
simplest thing to do in this block is'to simply store the option used into a
Hash, storing “true” for switches and the block argument for flags. Once the
options are defined, use the parse! metho_dtof our instantiated OptionParser class
to do the actual command-line parsing. Here’s the code to implement the
iteration switch and username and password flags of our database application:

Chapter 2. Be Easy to Use * 20

#!/usr/bin/env ruby

Bring OptionParser into the namespace
require ‘optparse' : :

options = {} ‘ o L
option_parser = OptionParser.new do |opts| = .

Create a switch

opts.on("-i","--iteration™) do
options{:iteration] = ‘true

end R S

Create a flag

opts.on("-u USER"). do juser|
options{:user] =.user .

end '

opts.on("-p PASSWORD") do |password|‘
options[:password] = password
end

end

option_parser.parse!
puts options.inspect

As you can see by inspecting the code, each call to oh maps to one of the
command-line options we want our app to accept. What's not clear is how
OptionParser knows which are switches and which are flags. There is great
flexibility in the arguments to on, so the type of the argument, as well as-its
contents, controls how OptionParser will behave. For example, if a string is
passed and it starts with a dash followed by one or more nonspace characters,
it's treated as a switch. If there is a space and another string, it's treated as
a flag. If multiple option names are given (as we do in the line opts.on("i*,"iter
-ation")), then these two options mean the same thing.- :

Table 1, Overview of OptionParser parameters to on, on page 21 provides an
overview of how a parameter to on will be interpreted; you can add as many
parameters as you like, in any order. The complete documentation on how
-these parameters are interpreted is available on the rdoc for the make switch
method.® : :

3. http://ruby-‘doc.org/std'lib-z.b.0/libdoc/optparse/rd'oc/OptionParser.htrﬁl#method-i-make_switch'

: Buﬂding an EasyrtofU'se' _Com_mand-L_ine_ Interface * 21

Effect

- Meaning

Short-form switch

. The switch -v is. accepted on the com-

mand line. Any number of strings like

- this mmay appear in the parameter list
.-and will all cause the given block to

be called..

~-verbose

Long-form switch

The switch —verbose is accepted. Any
number of strings like this may ‘
appear in the parameter list and can
be mixed and matched with the
shorter form previously.

Negatable lcng- ~ ~[no-lverbose

form switch

Both --verbose and --no-verbose are .
'accepted If the no form is used, the
block will be passed false; otherwise,
true is passed.’ '

Flag with required -n NAME or —name
argument NAME

The option is a ﬂag ahd'lt requires.
an argument All other option strings
provided as' parameters will require

‘ flags as well (for example, if we added.

the string --usemame after the -u USER
argument in our code, then --tisemame
would also require an argument we:

“don’t need to repeat the USER in the

second string). The value provided on
the command hne is passed to the"
block.

- Flag with optional -n [NAME] or ~-name
argument [NAME]

The option is a flag Whose argument
Is optional. If the flag's argument is.

- omitted, the block will still be called

but nil will be passed

Documentation Any other string

This is a documentation string and

- will be part of the help output.

Table 1—Overview of OptlonParser parameters toon "

In the blocks given to on, our code simply sets a value in our options hash
Since it’s just Ruby code, we can do more than that if we'd like. For example
we could sanity check the optmns and fail early if the argument to a particular

flag were invalid

Chapter2.'Be Easy to Use ¢ 22

Vahdatmg Arguments to Flags

Suppose we know that the usernanies of all the databasé usefs irvoiir systems
are of thie form first.last. To-help our users, we can validate the value of the
argument to -u before even connectmg to the database. Since the block given
to an on method call is invoked whenever a user enters the option it defines,
we can check within the block for the presence of a perlod in the username
value, as‘the’ following code illustrates: : SRt =

unless user =~ /".+\..+$/

" raise ArgumentError,"USER must be in 'first. last format"

end S
options{:usér] = user

end’

' Here, we raise an exo'eptio'n if the argument :doesn’t match our regular
expression; this will cause the entire option-parsing process: to stop, and our
app will éxit with the error message we passed to raise.

You can probably ,irnagine that in a complex command-line app, you‘ 'might
end up with a lot of ar_gument validation. Even though it's only a few lines of
extra code, it can start to add up. Fortunately, OptionParser is far more flexible
than what we've seen so far. The on method is quite sophisticated and can
prowde a lot of validations for us. For example, we could replace the code we
just wrote with the following to achieve the same result

opts.on("-u USER",
> /0.4 .48/) do |user|
options[: user] user
end] . .

The presence of a regular expression as an argument to on indicates to
OptionParser that it should validate the user-provided argument against this
regular expression. Also note that if you include any capturing groups in your
regexp (by using pareritheses to delineate sections of the regexp), those values
will be extracted and passed to the block as an Aray. The raw value from the
command line will be at index 0, and the extracted values will fill out the rest
of the array.

You don’t have to use regular expressions for validation, however. By
including an Array in'the argument list to on, you can’indicate the complete
list of acceptable values. By using a Hash, OptionParser will use the keys as the
acceptable values and send the mapped value to the block, like so: '

2.3

Building an Easy-:to-Use Command-Suite Interface ® 23

servers = { 'dev' => '127.0.0.1', s
S - 'ga’' ‘=> 'qa0o1, example com*; *
prod v W, example com p

opts. on(‘Q-server SERVER" servers) do |address|
for --server=dev, address- would be '127.0.0. 1
for --server=prod, address would-be" "www: example. com'
end B ,

Finally, if you prov1de a classname in the argument list, OptlonParser wﬂl attempt
to convert the string from the. command line into an. instance of the given
class. For example, if you include the constant Integer in the argument list to
on, OptionParser will attempt to parse the ﬂag s-argument into an integer instance
for you. There is support for many conversions See Type Conversions in
OptionParser, on page 24 for the others available and how to make your own
using the accept method. :

By using OptxonFapser,. we 've Written very little c_ode but. oreated: an _idiomatic
UNIX-style interface that will be familiar to anyone using 6ur app. We've seen
how to use this to improve our backup app, but how can we create a similarly
idiomatic interface for our to-do list app? Our to-do list app is actually aseries
of commands: “create a new task,” “list the tasks,” “complete a task This
sounds like a job for the command suite pattern o

OptionParser works great for a simple app like our backup app; however, it isn’t
a great fit for parsing the command line of a command suite; it-can be done,
but it requires jumping through a lot more hoops. Fortunately, several open
source libraries are available to make this job easy for us. We'll look at one
of them, GLI, in the next sectlon

Bunldmg an Easy-to-Use Command-Suite Interface

Command suites are more. complex by nature than a basxc automation or
smgle-purpose eommand line app. Since command. suites bundle.a lot of

- functionality, it’s even more important that they be easy to use. Helping users

navigate the commands and their options is crucial.

Let’s revisit, our to-do hst app we discussed in Chapter 1, Have a Clear and
Concise Purpose, on page 1. We've discussed that the command-suite pattern
is the best approach, and we have already identified three commands the app
will need: “new,” “list,” and “done” to create a new task, hst the existing tasks
and complete a task, respectlvely ‘

We also want our app to prov1de a way to locate the to do hst file we're oper-
ating on. A global option named -f would work well (f bemg a mnemomc for

Chapter2. Be Easy to Use * 24

command allowed us to s'etjra' pﬁoﬁty

new”

[

if our

).

“file”

It would be handy

2%
“o W =
n.u..u ' & %o
B8y g9
wE BE
(=)
wd om
.pm.m mm.
+« 7]
8§ «F
o g - mGSa
S & 5
b ...Lﬂ
w3 89
. ,di.-o
2§ _.mwm_
[SN . Q,
A B = B TM
Ep8 w0
w Qo & w.d,.t
SRS ER S
P g y
AW»a.m unW ,
F8B 2% g
« B B2
o Q7
C 9w ﬂew
ha‘n S
as & = 8 g
ra,e v © e
8858 B v S

d

good

i

a

Building'ah_. Easy-to-Use C_ommand-Suite Interface ® 25 -

$ todo new "Rake leaves™ o RN
=> Creates a.new todo in the default 1ocat10n

$ todc -f /home/davec/work.txt new "'I:iéfe"c"‘:tcr' database”
=> Creates a fiew 'todo in- /home/davec/work txt 1nstead
#- of the default.

$ todo -f /home/davec/work txt. new "Do des:.gn review" -f "
= Create the task "Do design review" as' the first
task in our task list in /home/davec/work txt

$ todo list -s name
=> List all of our todos, sorted by name

$ todo done 3
=> Complete task #3

Unfortunately, OptionParser was not built with command suites in mind, and we
can't directly use it to create this sort of interface. To understand why, look at
our third invocation of the new command: both the “filename” global flag and the
command-specific “first” switch have the same name: . If we ask OptionParser to
parse that command line, we won't be able to tell which -f is which. ”

A command-line interface like this is too complex to do. ‘-;‘by‘ha‘nd.’-’ Whaf we
need is a tool custom-built for parsing the command line of a command suite.

Building a Command Suite with GLI

Fortunately, many open source tools are available to help us parse the com-
mand-suite interface we've designed for our to-do list app. Three common
ones are commander,* thor,’ and GLIL® They are all quite capable, but we're
going to use GLI here. GLI is actively maintained, has extensive documenta-
tion, and was special-built for making command-suite apps very. easily (not
to mention written by the author of this book). Its syntax is simﬂar to com-
mander and thor, with all three being inspxred by rake therefore, much of
what we’ll learn here is applicable to the other libraries (we'll see how touse
them in a bit more depth in Appendix l Common Command Lme Gems -and
Libraries, on page 175)

Rather than modify our existmg app-” With GLI library calls, we'll take advantage
of a feature of GLI called: scaffoldlng ‘We'll ‘use it.to bootstrap our app s Ul
and show us Immediately how to declare our user interface ' :

4. httpi//visionmedia.github. com/commanderl o
5. - hitps:/github.com/wycats/thor R
6. hitps:/fgithub.com/davetron5000/gii

Chapter 2. Be Easy to Use * 26

Building a Skeleton App with GLI's scaffold

Orice we install GLI, we can use it to bootstr, pe
itself a command suite, and we'll use the scaffold
_scaffold takes an arbitrary number of argumen 'S, €
for our new command suite. You don’t have to think
up front, Addmg them later is su'nple, but for now '
session shows, it's easy to set up the command _

our to-do ap‘p,rthese include ;new,,hst, and done.

$ gem install gli
Successfully 1nstalled gll -2.8, 0

1 gem installed '

$ gli scaffold todo,new_lxst_done
Creating dir ./todo/1lib...

Creating dir ./todo/bin...

Creating dir. ./todo/test...

Created ./todo/bin/todo

Created ./todo/README.rdoc’

Created ./todo/todo.rdoc -

Created ./todo/todo.gemspec

Created ./todo/test/default.test.rb
Created ./todo/test/test_helper.rb
Created ./todo/Rakefile -

Created ./todo/Gemfile.

Created ./todo/features - ,
Created ./todo/lib/todo/version.rb
Created ../todo/lib/todo.rb

$ cd todo ’

$ bundle install

Don't worry about all those files that scaffold creates just yet; we'll explam them
in' future chapters. Now,' let’s test the new mterface before we' look more
closely at the code: -

$ bundle exec b1n/todo new - .

$ bundle exec bin/todo done

$ bundle exec. bin/todo list

$ bundle exec-bin/todo :foo) < . .

error: Unknown command ‘foo'. Use ‘todo help' for a list of. commands

As you can see from the ‘session-dialog, our scaffolded app. recognizes our
commands, even though they’re not yet implemented. We even get an error
when we try to use the command foo, which we didn’t declare. Don’t WOITY
about bundle exec; we'll explain the usage in future chapters.

Let's now look at the code GLI produces to see how it works. As you can see,
GLI generated only the code it needs to parse the commands we passed as

Building an Easy-to-Use Command-Suite Interface. ® 27

arguments to the scaffold command. The switches and flags set by GLI are
provided here as examples. We'll cover how to customize them later.

We'll go through the generated code step by step. F1rst we need to set up our
app to bring GLI's libraries in, via a require and an include.

Fip /usr/bm/env raby

require ‘gli’
include GLI::App

Since we've included GU, the remaining code is mostly method calls from the
GLl module.” The next thing the code does is to declare some global optlons

flag [:f,:filename]

Th1s declares that the app accepts a global sw1tch -s and a global ﬂag -f.
Remember, these are just examples; we'll change them later to meet our app’s
requirements. Next, the code defines the new command:

command inew: do lc| -
c.switch :s
c.flag :f
c.action do |global_options,options,argsf -
Your command logic here

IF you have any errors, just raise- them
raise "that command made no sense"
end ’
end

The block given to command establishes a context to declare command-specific
options via the argument passed to the block (c}. GLI has provided an example
of command-specific options by declaring that the new command accepts a
switch -s and a flag -f. Finally, we call the action method on ¢ and give it a block.
This block will be executed when the user executes the new command and is
where we’d put the code to implemient new. The block will be given thé parsed
global options, the parsed command-specific 6ptions, and the command-line
arguments via global_options, options, and args, respectively.

GLI has generated similar code for the other commands we specifiedv to gli
scaffold: ' ‘ .

7. http://davetron5000.github.io/gli/rdoc/classes/GLLhtmE: "

>

Chapter 2. Be Easy to Use * 28

command :list do |c|]
‘c.action do |global_options,options,args|
end ‘ ~

end

command :done do jct
c.action do |global_ optlons optlons args|
end

~end

The last step is to ask GLI to parse the command line and run our app. The
run method returns with an appropriate exit code for our app (we'll learn all
about exit codes in Chapter 4, Play Well with Others, on page 53).

'exit run{ARGY)

GLI has provided us with a skeleton app that parses the command line for
us; all we have to do is fill in the code (and replace GLI's example options
with our own), '

Turning the Scaffold into an‘App

‘As we discussed previously, we need a global way to specify the location of
the to-do list file, and we need our new command to take a flagto specify the
position of a new task, as well as a switch to specify “this task should go
first.” The list command needs a flag to control the way tasks are sorted.

Here’s the GLI code to make this interface. We've also added some simple
debugging, so when we run our app, we can see that the command line is
properly parsed

command :new do.fc|

--c.flag :priority
c.switch :f
c.action do Iglobal optlons optlons args|
puts “Global:". .
puts."-f - #{global_ optlons[iy
puts "Command:" _ »
puts “-f - #{optlons[f] 7 truet "false'}"
puts "--priority. - #{options[:priority]}"
puts "args - #{args.join(',')}"
end o
end

" command :list do |c|

c.flag :s
c. action do |globa1 optlons optlons args]

Building an Easy-to-Use Cbmma_nd-Suite interface *.29

. ‘puts. "Global:" .
puts "-f - #{global optlons[f13"
puts “"Command:"
puts "-s - #{options[is]}"

end

end
command" :done do c}

c.action do |}global_options,options, args]|
puts. "Global:"

_puts "-f - #{global optlons[f]}"
end
end

The highlighted code represents the changes we made to what GLI generated.
We've removed the example global and command-specific options and replaced
them with our own. Note that we can use both short-form and long-form
options; GLI knows that a single-character symbol like fisa short—form option
but a multicharacter symbol like :priority 1s a long-form option.

‘We also added some calls to puts that demonstrate how we access the parsed
command line (in lieu of the actual logic of our to do hst apP) Let’s see it in
action ‘ ; o o
$ bundle exec bin/todo -f ~/todo.txt new -f “A new task"f"Another task™

Global:
-f - /Users/davec/todo.txt

Command:
-f - true
-p..

args.- A new task Another task

We can see that f in global _options contains the file spemﬁed on the command
line; that options[:f] 1s true, because we used the command speciﬂc option f;
and that options[:priority] is rmssmg, since we didn’t specify that on the command
line at all. ,

Once we've done this, we can add our business logic to each of . the caction
blocks, using global |_options, options, and args as appropriate. For exarmple, here s
how we might implement the logic for the to-do app list command:

c.action do |global_ optlons options,args{
todos = read todos(global _options[: fllename])
if options[:s] == 'name'
“todos = todos sort { [a bl a <=>b }
end .
todos.each.do. !todol
puts todo
end
end

Chapter 2. Be Easy to Use * 30

We've used very few lines of code yet can parse a sophisticated'iiser interface.
It's a Ul that users will find familiar, based on their ‘past experience with
other command suites. It also means that when; we add more features to our
app, it'll be very simple. v '

Is there anything else that would be helpful to the user.on the command line?
Other than some help documentation (which we’ll develop.in the next chapter),
it would be nice if users could use the tab-completion features of their shell
to help complete the commands of our command suite! Although our to-do
app has only three commands now, it might need more later, and tab comple-
_tion is a big command-line usability win, o R

Adding Tab Completion with GLI help and bash" |

An advantage of defining our command-suite’s user interface in the declarative
style supported by GLI is that the result pxjoVid:esrus'with' a model of our Ul
that we can use to do more than simply parse the command line.

We can use this ‘inodgéi,' along with '_thé sophisticated completion function of
bash, to let the user tab-complete our suite’s commands, First we tell bash that
we want special completion for our app, by adding this to our ~/.bashrc and
restarting ourshell séssion: . SRR = ‘
complete -F get_todo_commands todo

The complete command tells bash to run a function (in our case, get_todo_commands)
whenever a user types the command (in our case, todo) followed by a space
and some text (optionally) and then hits the a Tab key f{i.e., is asked‘to com-
plete something). complete expects the function to return the possible matches
in the shell variable COMPREPLY, as.shown in the implementation of get_todo_com-

mands {(which also goes in our Jbashrc):

function get_todo_commands ()

{
if [-z2'$2 1 ; then '
COMPREPLY=("todo help -c')
else I ol
COMPREPLY=("todo help -c $2°)
fi :
}

Every GLI-powered app inchides a built-in command called help ‘,t'hat is.-mostly
used for getting online help (we'll see more about this in the next chapter).

This command also takes a switch and an optional argument you can use to
facilitate tab completion.

24

Moving On ¢ 31

The switch -c tells help to output the app’s .commands in a format suitable for

bash completion. If the argument is also provided, the app will list only those -
commands that match the argument. Since our bash function is given an

optional second argument representing what the user has entered thus far

on the command line, we can use that to pass to help.

The end result is that your users can use tab completion with your app, and
the chance of entering a nonexistent command is now very minimal—all
without having to lift a finger! Note that for this to work, you must have todo
installed in your PATH (we’ll see how users can do this in Chapter 7, Dzstnbute
Painlessly, on page 101). :

$ todo help -c
done

help

list

new

$ todo <TAB>

done help list new
$ todo d<TAB>

$ todo done-

Moving On

We've learned in this chapter how simple it is to make an easy-to-use interface
for a command-line application using built-in or open source libraries. With
tools like OptionParser and GLI, you can spend more time on your app and rest
easy knowing your user interface will be top notch and h1gh1y usable, even
as you add new and more complex features.

Now that we know how to easily des1gn and parse a good command-line
interface, we need to find a way to let the user know how it works. In the next
chapter, we'll talk about in-app help, specifically how OptionParser and' GLI
make it easy to create and format help text, as well as some slightly phﬂosoph-
ical points about what makes good command-line help.

3.1

CHAPTER 3

In the previous chapter, we learned how to make an easy-to-use command-
line interface. We learned the elements that make a well-formed command-line
interface and how to design simple apps and command suites that accept
arguments, flags, switches, and commands in an-unsurprising’ way. What
we didn’t talk about was how-a user finds out what options and commands
such apps provide, what their options mean, and what arguments they accept

or require. Without this information, our app might do the job expected of it,

but it won't be very helpful.

Fortunatély for us, the standafd Ruby library OptianarSg-zr and the open source
GLI gem give us the power to make our app helpful without a ot of effort. In
fact, you'll see that it’s actually harder to make an unhelpful app using thése
tools. We'll begin by exploring how you can add help,and:documentatior; to

the pair of apps—db_backup.rb and todo—whose Ul we developed in the previous

chapter. We'll also look at ways to create more detailed user documentation
with an open source library that can bundle UNIX-style manual pages with

our app. We'llend the chapter w1th a look at some-fules of thumb for making = -

our documentation useful to both new users of our software and seasoned
veterans. :

Documenting a Command-Line Interface
An experienced commiand-line user will try one or two things on the command

line to discover how to use an app: they will run it without arguments or give
it a help switch, such as -h or ~help (help Is also a possibility because many
X:-Windows apps respond to this for help). Ini each case, the user will expect
to see a one-screen summary of the app’s usage, including what arguments
the app accepts or requires and what options are available. :

1. http://en.'wikipedi'a.org/wiki/Principle_of_least_astonishment

Chapter 3. Be Helpful * 34

Because db_backup.rb uses OptionParser, we're most of the way there ah‘eady; Apps
that use OptionParser respond to -h and -help in just the way our users expect.
When OptionParser encounters either of these switches on the command line
(assuming you haven't overridden them), it will display basic help text that
shows how to invoke the app and what options it accepts. Here’s what
OptionParser displays when a user enters an -h or ~-help option for db_backup.rb:

$ db_backup.rb -h
Usage: db_backup [options]
-i, --iteration
-u USER -
~p :PASSWORD
$ db_backup.rb --help
Usage: db_backup [options]
. -i, --iteration .
- =u USER
~ -p PASSWORD

‘While OptionParser nicély formats the help'screen,for us, what's still missing is

documentation to explain the meaning of each option. Even though the flags
are somewhat self-documenting (e.g., a- user will likely figure out that
“PASSWORD” is the database password), they still bear further explanation.
For example, because usernames are required to be in a certain format, the
app should let users know that. The app also requires an argument—the

name of the database to back up—and this should be documented in the help
text as well. ' ‘ ’ ’

Documenting Command-Line Options | , |
Once we fill in the documentation, we'd like our help text to look like so:

$ db_backup.rb --help

Usage: db_backup. [options] . R I
-1, --iteration Indicate that this backup is an "iteration" backup
-u USER Database username, in first.last format o
-p PASSWORD Database password

Now the user can see exactly what the options mean and what constraints
are placed on them (e.g., the username’s format). Achieving this with Option-

Parser couldn’t be simpler. If you recall from Table 1, Overview of OptionParser

paramneters to on, on page 21, any string given as a parameter to oesn't
match the format of an option will be treated as documentat .

So, all we need to do is add some strings to the .-endzg
each of calls to on: o

Documenting aCommand-Line Interface * 35

et S e
opts on('—1 ‘ewiteration', o : :
'Indicate that this backup is:an:'iteration". backup') do
optionsf:iteration] = true : :
end '
opts.on(‘-u USER',
‘Database username, in first.last format'
/A3 [N 148/) do Juser]
options{: user] = user -
end :

opts.on('-p PASSWORD',

» 'Database password') do |password|
‘options{: password] password

end . :

That's all there is to it—not bad for about thirty seconds of coding! Next, we
need to document that our app takes the name of the database to back up
as an argument ’

D0cumenting Command-Line Arguments

OptionParser provides no way to explicitly document the arguments that a
command-line -app accepts:or requires.:You'll note that. OptionParser does,
however, display an invocation template as its first line of help text (Usage:
db_backup.rb [options]). This is-called the banner and is the perfect place to docu-
ment our app’s: arguments. We'd like to append a description of our app’s
argument to OptionParser's banner so that our help screen looks like so:.. -

$ bin/db_backup.rb -h . .
Usage: db_backup.rb .[options] database name

-i,;--iteration . Indicate that ._this backup is an "iteration" backup
-u USER . ~Database username, in first.last format
-p PASSWORD - Database password

Did you notice that the string database_name now appears~'in:the highlighted
line? This is just enough information . to tell: the user that we require an
argument and that it should be the name of the database. OptionParser has a
property, banner, that we can set to-accomplish this. Since our app currently
doesn’t set the banner, we get the default that we saw previously. Unfortu-
nately, we cannot directly access this stnng and tack on database_name, so we'll
have to re-create it ourselves. : ' '

The other tricky bit is that we dor’t want to hard-code the name of our app
in the banner. If we did, we’d have to update our documentation if we chose '
to rename our app. :

-
e

Chapter 3. Be Helpful * 36

ns: Ruby sets the

Fortunately, Ruby provides an answer, Wh' ;
p s executable,

_global vanable $PROGRAM_NAME to the full: path

the name of the file of our executable, without the path to it which is exactly
what we need to create our banner. :

:optlon parser = OptionParser.new do |opts]
executable_name = File.basename($PROGRAM_| NAME) .
opts.banner = "Usage: #{executable name} [optlons] database name"

Now the user can easily see that our app requires one argument the name
of the database to back up. Note that we are using an underscore notation
here; if we had written “database name” instead (using a space between the
two words), a user might misinterpret the words as calling for two arguments
one called “database” and another called “name.”

It's hard to: think of adding one string to-our app’s: help text as “documenta-
tion,” but for-apps as straightforward .as ours; this is sufficient. The user
knows that db_backup.rb backs up-a database, and the string database name is
all the user needs in-order to know. that our argument is the name of the

‘database to back up.

Some apps have more complex arguments and we'll see later how we can
bundle more detailed documentation with our app to explain them.

The last thing we need to do is to provide a brief summary of the purpose of
our app so that occasional users can get a quick reminder of what it does.

Adding a Brief Description for.a Command-Line Application -

A user who has just installed our app will certainly remember its purpose,
- but someone running it weeks or months from now might not. Although it’s

not hard to guess that an app named db_backup backs up a-database, occasional
users might not recall that it's only for backing up MyS@L databases and
won't work on, say, an Oracle ‘database. To be helpful: to‘these users,
-db_backup.rb --help should include a brief summary of the app’s purpose. ‘I’his
should be the first thing the user sees when asking for help, like so:,

Documenting a Command-Lin_e interface ¢ 37

$ bin/db_backup.rb -h
Backup one or -more ‘MySQL databases

Usage: db_backup.rb [optioné] database_name -

-i, --iteration Indicate that this backup is an “"iteration" backup
-u: USER Database username, in first.last format: :
-p PASSWORD Database password

Like the usage statement, OptionParser doesn’t provide.a place to. explicitly
document our app’s purpose, but we can add it to the banner, just like we
did when we documented its arguments. Since the banner is going to be
multiline, we can format it directly in our source using multiple lines (instead
of putting control characters like \n in a single-line string) so that the banner
text is easy to read and modlfy

option_parser OptlonParser new do]opts]
executable_name = File.basename($PROGRAM_NAME)
opts.banner = "Backup one or more MySQL databases

Usage: #{executable_name} [options] database_name

You might be tempted to add more documentation to the banner, but this is
not what the banner is for. The banner should be brief and to the point,
designed as reference. We'll see later in this chapter how we can provide more
detailed help and examples.

Now that we've fully documented what our app does, how to invoke it, and
what options are available, db_backup.rb seems pretty darn helpful. There’s only
one thing left to consider: what if the user executes db. backup.rb but omits the
required argument, the database name?

We mentionied earlier that experienced command-line users might do this on
purpose, as a way to get a help statement. The user could also do this by
accident, forgetting to provide a database name. No matter what the user’s
intent might be, our app behaves' the same: unhelpfully It will erly generate
an exception or, worse, fail silently.

In cases like this, where you don't know whether the user made a mistake or
is just looking for help, you should cover both bases and provide an error
message followed by the ‘help text Let’s see how to.do this by looking at
db backup rb.

3.2

option_parser.parset

Chapter 3. Be Helpful * 38

Ruby places all command-line arguments in dan array called ARGV, which
OptionParser modifies when parse! is called. OptionParser’s' modification to ARGV is
to remove all the options and arguments it knows about. What's left in ARGV
are the unparsed arguments, which you can 'safely treat'as the arguments
the user provided on the command line. Unrecognized switches and flags will
cause OptionParser to print an error and exit your app, S0 you’ll never ﬁnd them
in ARGV.

All we need to.do to detect this “request for help or:erroneous invocation”
situation is check that ARGV is empty after havmg OptlonParser parse the com-

mand line, as shown in the following: code

if ARGV.empty?
puts "error you must supply a database name"
puts
puts option _parser. help
else
database_name = ARGV{0]
proceed as normal to backup database name
end

~ Now db_backup.rb is as helpful as it can be:

$ db_backup.rb . . : _
error: you must supply .a database name

_‘Backup one or more MySQL databases

Usage: db_backup.rb [options],database_hame

-1, --iteration Indicate that this backup is an "iteration" backup
-u -USER - Database username, in first.last format
-p -PASSWORD Database password :

We've seen how easy it is to make a helpful user interface for simple command-
line apps using OptionParser, but what about command suites? It's doubly
important to provide a helpful user interface, because a command suite is
naturally more complex. In the next section, we'll’ see how to do that by
enhancing our to-do list app todo.

‘Documenting a:Comma'nd Suite

Since command suites like todo are more complex than simpler command-line

apps like db_backup.rb, it's important that we have documentation and that it's
easy to access. Users need to know not only what each option does and what
the arguments mean but also what commands are available and what they

Documenting a Command Suite * 39

do. The best way to provide this information is via a two-level help system.
At the top “level,” we see the “banner”-type information, the global options,
the list of commands, and what each command does. This information should
be provided when the app is invoked with no arguments or when invoked
with the command help, like so:

$ bin/todo help
NAME _
todo -

SYNOPSIS .
todo [global options]. command [cqmmand,_options] [arguments...]

GLOBAL OPTIONS
-f, --filename=todo_file - Path to the todo file (default:
‘/Users/davec/.todo. txt)
--help . - Show this message

COMMANDS
done - Complete a task
help - Shows a list of commands or help for one command
1ist - List tasks
new - Create a.new task in- the task 1list

The second “level” is where help on a particular command is displayed. This type
of help can include more detail about what the command does and should also
document the command-specific options and arguments. Users should be able
to access this using the command- sultes help command nging the command
name as an argument, 11ke S0:

$ bin/todo help new
NAME :
new - Create'a new task in the task list

- SYNOPSIS -
todo [global options] new [command options] task.name

DESCRIPTION
- A task has a name and a priority. By default, new tasks have .
the lowest possible priority, though this can be:overridden.

COMMAND OPTIONS T AL
-f - put the new task first in the 1list
-p. prlorlty - set the priority of the:new: task 1 being
the. highest ‘(default:: none)

ThlS may sound complex; however, open source libraries like GLI actually
make this quite simple. Apps that use-GLI, like todo, include a help command

YYYYYYY ¥

&aesc ‘Path to the todo file'

Chapter 3. Be Helpful * 40

by default; which provides the two-level help system:we: just-described. We
can see.this in action by running our todo app nght TNOW:
$ bin/todo help

NAME -
todo -

SYNOPSIS
todo [global options] .command [command optlons] [arguments...]

 GLOBAL OPTIONS

S i -—fllename-arg -
--help ..~ - - Show:this message
COMMANDS
" done - R
help - Shows a list of commands or help for one command
list - -
new -

$ bin/todo help new
new

Like OptionParser, GLI provides the scaffolding and support for the help system
and even formats everything for us; we just need to provide the help text for
the global options, the commands, their options, and their arguments. This

is done in GLI via three methods:

desc " Provides a short one-line summary ofa command or option '

long_ desc Prov1des a more detailed explanaﬁon of a command or option (later
we'll talk about the dxfference between this and the shorter summary
you'd put in desc}

arg_name Gives the argument to a command or flag a short, descriptive name

Once we fill in our app using these methods, our help system will look just
like the one shown at the start of this section. Here's what the new command’s
‘implementation looks like when fully documented using these methods: -

flag [:f,:filename]

desc 'Create a new task in-the task list'
1long_desc *

A task has a name and a prlorlty By default new
tasks have the lowest possible priority, though
this can be overridden.

arg_name !task_name' . .
command :new do |c|

>
>

Documenting a Command Suite ® 41

c.desc 'set the.priority of the new task,.1~being~the_highest'
c,arg_name_'priority'
“c.flag 1p o

c.desc-'put the new task first in-the list’
c.switch :f

c.action do |global_ optlons optlons args]
end

end

As you can see, we call desc, long_desc, and arg_name before the element they
document. This is exactly how Rake works (and also how we document our
code; documentation comments appear before the. code they document) This
keeps our.app’s code very readable and maintainable

Now that we've ﬁlled this in; our app comes alive with an easy-to-use help
system:"

$ bin/todo help
NAME .
todo -

SYNOPSIS
- todo. [global optlons] command -{ command optlons] [arguments...]

GLOBAL OPTIONS
-f, --filename=todo_ flle - Path to the todo- flle (default:
/Users/davec/. todo. txt) T
--help - Show this message

COMMANDS .
done - Complete a task
help - Shows a list of’ ‘commands or help for one command
list - List tasks
new - Create.a new task in the task lzst :
$ bin/todo help new
NAME _
‘hew - Create a new task in the task list

SYNOPSIS
todo [global optlonsl new [command optlons] task name

DESCRIPTION
" A task has a name and a prlorlty By default new tasks have .
the lowest p0551b1e prlorlty, though thls can be overrldden

COMMAND - OPTIONS ;
-t IS put the new task first in the list
-P prlorlty - set the priority of the new task, 1 belng
the hlghest (default: none)

33

Chapter 3. Be Helpful » 42

One last thing that's worth- pointing out is the dociinieatation for the global
flag, -f. You'll note that our documentation string-inclidés (defaiilt: /Users/dav-
ec/todo.txt). We didn’t include that in the string given to desc; it’s an additional
bit of documentation the GLI derives for us when we use the default : value method

to indicate the default value for a flag.

)f«:

desc Path to the todo' flle"'b" o
arg_name "todo_file"
‘default_value "#{ENV['HOME'1}/.todo. txt" ‘

flag- [:f,:filename]

' default value isn’t actually for documentatlon, it allows us to 'spec1fy the value

for a flag when the user omlts it from the command line ‘this means that the
value of global: options[:f] will not be nil; it will be ~[.todo:txt if the user omits -f on
the command line.. GLI helpfully includes this in our help text, meamng our
documentation and our code will always be consistent.

We've now learned how easy it is to provide help documentation for simple
command-line apps and command suites. By adding a- few extra strings to
our code, our apps can easily help users understand what the apps do and
how to use them. But not all apps are so:simple. Command-line -apps-often
provide sophisticated behavior that can’t be easily explained in the one or
two lines of text available in the built-in help systems. How can we provide
detailed documentation beyond sunple help text?

Including a Man Page .

As we've seen, it’s easy to document the options, arguments, and commands

- of a command-line app. This information, and the ability to access it from
- the app itself, is invaluable to repeat users of your app; they.can quickly find

out how to use your app the way they need to get their work done. What if
we need more? Perhaps we'd like some longer examples. for new users, or
perhaps our app is sufficiently complex that we need more space to explain
things.

Even a straightforward app like db_backup.rb can benefit from a vfew.eXam;}ies

and some detailed documentation (such as an explanation of the “iteration
backup™ concept or why the username must be in first.Jast format). There isnt

- enough space in the built-in help provided by OptionParser for this infonnation

Furthermore, these are not details that a regular user will need. Frequent
users will just want the usage statement and options reference:via-“help and

- won't need tutorials, examples, or detaﬂed documenta’uon when they just

need to get a list of options.

Including a Man Page. ® 43-

A traditional UNIX app provides this detaﬂed information in a manual, or

marn, page which users access via the man command If you type manls on the
command line, you'll see a nice; detailed explanation of the Is' command.
However, although you could bundle a man page with your Ruby command-
line app, man wouldn’t be able to access it easily because of the way RubyGems
installs apps (we'll talk more about RubyGems in Chapter 7, Distribute
Painlessly, on page 101). Even if man could access your app’s files, creating a
man page is no small feat; it requires using the, nroff® format, whxch is cum-
bersome to use for writing documentation.

Fortunately, the Ruby ecosystem of open source libraries has-us covered. gem-

® a plug-in to RubyGems created by GitHub’s Chris Wanstrath, allows
users to access man pages bundled inside a gem via the gem man command.
ronn* is a Ruby app that. ailows us to create man pages in plain text, without
having to learn nroff. We can use these two tools together to create a manual
page that we can easxly distribute with our app and that will be easily acces-
sible to our users.

" Once we've installed these tools, created our man page, and distributed our
app to:users, they’ll be able to read whatever detailed documentatxon we've
provided like so: : ' : o

$ gem man db_backup -
DB_BACKUP.RB(1)~ DB_BACKUP.RB{1)

NAME
db backup rb - backup one or more MySQL databases v

SYNOPSIS
db backup rb database name
-db_backup’ rb--u username -p password database name -
.db_backup.rb -i|--iteration database_name

etc.... o '

Installing Man Page Tools:

Installing gem-man and ronn is straightforward using RubyGems’ gem command:
$ gem install gem-mén ronn ‘

Successfully installed gem-man-0.2.0

Building native extensions. - This-icould take a while...

Building native extensions. This could take a white...
Successfully installed hpricot-0.8.4

2. hitpillenwikipedia.orgikiNroff -t G
3. http://defunkt.io/gem-man/ B
4. http://rtomayko.github.com/ronn/

Chapter 3. Be Helpful « 44

Successfully installed rdiscount-1.6.8
Successfully .installed mustache-0.99.4
Successfully installed ronn 0.7. 3

5 gems 1nsta11ed

The extra gems installed are gems needed by ronn (We’ll talk about runtime
dependencxes later in Chapter 7, Distribute Patnlessly ‘on page 101).

Now that we have our libranes and tools installed, we need to set up a location
for our man page’s source to'live in our project.' By ‘convention, this location
is a directory called man, and our source file is hamed 'APP_NAME.1.ronn (where
APP_NAME is the name of our app]

$ mkdir -man
-$ ‘touch man/db. backup 1 ronn

,Although the diréctory man is just a convention, the .1 in our fiiename is
required. This number represents the “section” of the manual where our man
page will live. The UNIX manual has several sections, and séction 1 is for
‘command-line executables.® The other part of the name (db backup) is the name
- users will use to read our:app’s manual page. Technically we could call it
something else; like foobar, but then our users would need to run gem manfoobar
instead of gem man db_backup. So, we use the name of our app as the base of
the filename.

Now that we have all the 'pieces ‘in place, let’s create our marn page.

‘Creating a Man Page with ronn

We said earlier that ronn allows us to wnte a man page in plain text, without
having to use nroff. This is only partially true. What ronn- really does 1s allow
us to use the plain-text format Markdown to write our man page

Markdown text looks like plain text but actually follows ‘some thtweight
conventions for formatting lists, calling out sections, and creating hyperlinks.
It's much simpler than HTML and a lot easier to create tha.n nroff. The:ronn-
format documentation’ _provides a comprehensive reference for th M: kdown
syntax relevant to a man page. Text formatted in Markdown is ac ally
simple, so let's take a look at some.

Here’s what a man page for db_backup.rb looks like:. -

5. The Wikipedia entry for the UNIX man system (http://en.wi
tions) has-a good overview of the other sections if you aréin

http://daringfireball.net/projects/markdown/

http://rtomayko.github.com/ronn/ronn-format.7.htm!

2

including @ Man Page ¢ 45

K e e P s i "y S SR R T N AT
b_ﬁackup.rb(l)‘F- ackup one or more MygbL databases

SYNOPSIS

“db_backup.rb® <database_name>
 .
“db_backup.rb® ‘-u username’ " -p password® <database_| name>

“db_backup.rb® . *-1i%|'--iteration" <database_name>

DESCRIPTION

db_backup.rb is a simple command-line tool:for backing up a
MySQL database. It .does so safely and quietly, using a sensible
name for the backup flles, so it's perfect for use w1th cron as
a daily backup.

By. default, “db backup rb* makes a dally backup and names the
resulting backup file with the date. “db _backup.rb® also
understands our development process, so if you specify the
“.-iteration' flag, the backup. will be named:differently- than
for a daily backup. This -will-allow you .to: easily keep one
backup per iteration, easily 1dent1fy1ng 1t and dlfferentlate
it from daily backups.

By default, “db_backup.rb® will use your database credentials

n ‘~/.my.cnf’, However, you can override either the username
or password (or both) via the ‘-u' and ‘-p' flags, respectively.
Finally, “db_backup.rb® will add a sanity check on your username, to
make sure it fits with our corporate standard format of ‘first.last'.

FILES
‘~/,my.cnf; is used for aqthentigationvif,\-u‘-ar “.p* is omitted.’
OPTIONS
* *.i', ‘.-iteration’
Indicate that this backup is an "end of iteration" backup.
* .y USER":
Database username, in first.last format
‘~/my.cnf' is not correct
*-p PASSWORD®
Database password
EXAMPLES
Backup the database '"big_client"

$ db_backup.rb big_client

Chapter 3. Be Helpful * 46

Baekup'the 'database" ’"smau client”, for whlch dlfferent credentlals are-required:
$ db backup rb -u dave -p d4v3 small cllent
Make an iteration backup .of the "big_ctient" database:

$ db_backup.rb -i big_client

The formatting reads very well _]ust as p1a1n text but the Markdown format
tells ronn things like this:

o ## marks the begmning of a new sectxon .
C e A strmg like *+db_backup.ro** should be displayed in bold a
J Paragraphs preceded by asterisks are a bullet list. '

Content-wise we've replicated some of the information’ from our code to
OptionParser, and we've expanded on a few topics so that a newcomer has a Iot

- more information about how things work. We've also taken advantage of the
standard sections that might appear in a man page so that experienced users
can quickly jump to the section they are intérested in. We'll talk about what
sections you might want to include on a man page in the final part of this
chapter.

To actually genera_te our man page from the Markdown s_6uree, we use ronn
as follows:
$ ronn man/db_backup.l.ronn

roff: man/db_backup.1l
html: man/db_backup.1.html

ronn also generates an HTML version suitable for including on your app’s
website. To preview our man page as command-line users will see it, we can
use the UNIX man command on the nroff file generated by ronn:

$ man man/db_backup.1 _
DB_BACKUP.RB(1) . S Do DB_BACKUP.RB(1)"

NAME o L '
db_backup.rb - backup one or more MySQL databases .

SYNOPSIS
db_backup.rb database_name
~ db_backup.rb -u username -p.password database_name
db_backup.rb -i|--iteration database_name

We've omitted most of the man page content for brevity; but you can see that
it’s nicely formatted like any other UNIX man page. To.havi i

distributed Wlth our app, we'll need to learn. more about RubyGems whmh

34

Writing Good Help Text and Documentation ¢ 47

we'll do later in Chapter 7, Distribute Painlessly, on page 101. For now, we'll
justtell you that if you include this file in your gem and another user installs
your app via RubyGems, users will be able to read your man page right from
the command line.®

$:gem man db_backup ; Lo, .
DB_BACKUP.RB(1) ‘ " DB_BACKUP.RB(1)

NAME : - :
db_backup.rb - backup one or more MySQ'L‘ databases

SYNOPSIS
 db_backup.rb database_name »
~‘db_backup.rb -u username -p password database_name
db_backup.rb -i|--iteration database. _hame

This, combined with the great built-in help that OptionParser or GLI gives you,
will ensure that your app is helpful to all users, allowing them to easily and
quickly understand how to use your app. You'll be free to focus on what your
app does instead of formatting and mamtaming documentation.

We now know the nuts and bolts of creating help__ and documentation, but
it’s worth having a brief discussion on style. There remain a few aspects of
help that are “fuzzy” but nevertheless important, and knowledge of a few more
documentation conventions will help you write great documentation without
being too verbose. ' '

Writing Good Help Text and Documentation

That your app has any help text at all is great and puts it, sadly, ahead of
many apps in terms of ease of use and user friendliness. We don’t want to be
merely great; we want to be awesome, soit's important that our help text and
documentation be clear, concise, accurate, and useful. We're not going to get
into the theory of written communication, but there are a few rules of thumb,
as well as some formatting conventions, that will help elevate our help text
and documentation ' i

In general, your in-app help documentation should serve as a concise refer-
ence. The only portion of the in-app help that needs to be instructive to.a
newcomer is the “banner,”. that is ‘the one-sentence description of your
program. Everything else. should be geared toward allowing regular users of
your program to remember what optlons there are and what they do.

8. Savvy users canalias man to be gerii man =s;"w1ﬁoh5tells gem-man to use the system man-
ual for any command it doesn’t know, thils providirnig one unified interface to the system
manual and the manual of installed Ruby command-line apps.

Chapter3:Be'Helpful-* 48

Anything else should go into your man page and should include information
useful to-a newcomers (particularly the “DESCRIPTION”. and “EXAMPLE”
sections); examples, and more in-depth information for advanced users who
want to dig deeper.

Let’'s walk through each element of our app’s documentation and discuss how
'best to write it.

Documentmg an App’s Descrip.tion and Invocation Syntax

The first thing a user will expect to see is the banner, which, in the case of
db_backup.rb, contains a one-line description of the app, along with its invocation
syntax. This description should be one very short sentence that sums up
what the app does. If it’s longer than sixty characters, it's. probably too long,

and you should try to summarize it better. (The number sixty is based on a
standard terminal width of eighty characters the difference of twenty charac-
ters gives you plenty of breathmg room for the name of the app and some
whitespace, but in general it forces you to be conmse, Which is a good thmg)

The mvocatlon syntax or “usage” should follow a fairly stnct format. For non-
command-suite apps, it will be as follows

«executable»v [options] ‘«.arg_namel» : <<arg_-name2»

where ‘executable” is the name of your executable and “arg_namel” and
“arg_name2” are the names of your arguments. Note that [options] should be
included only if your app takes options; omit it if it doesn’t.

For a command suite, the format is very similar; however, you need to account
for the placement of the command and the dlfferentiation of global and com-
‘and-specific options. GLI's behavior here is What you want:

«executable» ‘[gtobal options] «command” {command options] «arg'namel» "«'a'rg name2>

Here, «command» is the command being executed. Much like a sunple com-

-mand-line app, you should omit [global options] if your command suite doesn’t
take global options and omit [command options] if the particular command doesn’t
take command-specific options. : v

In other cases, the arguments names should be brief, with multiple Words
separated by underscores. If your app requires a lot of arguments thi vmay
be an indicator that you have not designed your UI humanel i
consider turning those arguments into flags.

If your app takes multiple arguments of the same type
on which to operate) use an ellipsis like so: arg na, ‘

Writing Good Help Textand Documentation * 49

~ The ellipsis is.a common indicator that:one or more arguments of the same
type may be passed, so, in the case of our database backup app, since we
accept multiple database names, we should use database_name... to indicate
this. : r

You also might be wondering why the options are documented using square
brackets. This is because options are optional, and the UNIX convention is
to show optional elements in square brackets. If you recall from Table 1,
Overview of OptionParser parameters to on, on page 21, a string like "-n [NAME}"
indicates to OptionParser that the argument NAME to the flag -n is optional. The
reason. OptionParser uses square brackets.is because of this convention.

It might be possible that your app requires certain options to always be set
on'the command line; this is discouraged and will be discussed in more detail
in Chapter 5, Delight Casual Users, on page 71 ' :

You can use the squarejbracket_syntax for a command’s arguments as Well.
You should use [file_name] to indicate one file can be specified but that it isn't
required, or you can use [file_name...] to mdioate zero or more files would be
accepted. ' '

Documenting Options

Like the summary description of an app, one brief summary sentence should
be sufficient to document each of its flags and switches. Each sentence should
be as clear and to the point as possible. Again, sixty characters is a good
limit to set, though it might be harder* to-hit for more cornplex options

An argument to a flag should have a short one-word description (or, if using
multiple words, each separated with an underscore) If a flag-has' a default
value provide that value in the help string as well (we saw this in the docu-
mentation of the global flag -f that todo uses to locaté the task list file). As with
arguments for your app, if the argument to your flag is optional, surround
its name with square brackets. B o

OptnonParser and GLI more or less handle the formatting part for.you, so you
mainly need to focus on keepmg your descnptlons brief and to the point

Documenting Commands in a-Command Suite

Commands for a command suite require two bits of documentation: a one-
line summary for the first level of help (e.g., ‘the’ help shown by a command
such as your_app help) and a longer description for the second level ofhelp (e.g.,
from your_app help command_name).. ’

Chapter 3. Be Helpful * 50

As you might be able to guess by now, the one-line summary should be a
very short description of what that command does; you can elaborate in the
longer description.- The GLI desc and long_desc methods provide a place for this
documentation.

Command-specific arguments should follow the same conventions as those
we discussed for the app’s usage statement. The arg_name method in GLI pro-
vides a place to do this per-command.

Documentmg Everythmg Else

An app’s man page (or'other extra documentation) provides more detail about
" how the app works and how its various options and arguments . affect its
behavior. This document should be sorted into sectxons ‘which will help to
keep it organized and navigable (experienced UNIX users will look for certain
section names so they can qulckly scan the documentation) Table 2, Common
sections _for your gem-man pages-outlines the commoén sections you might
need and what goes in them (though you aren't limited to these sections; use
-your best Judgment) Note that they are also listed in the order that they should
appear in the man page and that you should include, at the very least, a -
“SYNOPSIS,” “DESCRIPTION,” and “EXAMPLE.”

Section- - - Meaning . e :
SYNOPSIS - - A brief synopsis of how to mvoke your app on the
: command line. This should be similar to what the
-~ default banner is-in OptionParser or what is output by
‘ o GLI after the “Usage:" bit.
DESCRIPTION ‘ A Jonger description of what your. app does why the
' user migh_t use it, and any additional details. This
S section should be targeted at new users and written
. ‘ to help them understand how to use your app.
OPTIONS A bullet list documenting each option, This is a
3 chance to explain in more detail how the options work
and what effect they have on your app’s behavior.

EXAMPLES . One or more examples of using the app, includir_lg
7 v brief text explaining each example.. .
FILES A list of files on the filesystem that the app uses (for

example, todo would document the default to- do list
_ file's location here)

3.5

Moving On ¢ 51

Section Meaning

ENVIRONMENT A bullet list of any environment variables that affect
the app’s behavior.

BUGS Known bugs or odd behaviors.

LICENSE The name of thé license and a reference to the full

license text (you do not need to reproduce the entire
license here).

AUTHOR The authors of your app and their email addresses.
COPYRIGHT The copyright information for your app.
SEE ALSO Links to other commands or places on the Web that

are relevant for your app.

Table 2—Common sections for your gem-man pages

You should reuse documentation from your command-line interface here;
typically your one-line summaries will be the first sentence of the paragraph
that documents something. This saves you time, and it also helps connect
the built-in help text to the more detailed documentation. Unfortunately,
neither OptionParser nor GLI provide a way-to autogenerate a man page so that
your documentation can automatically be kept consistent. Perhaps you'll be
inspired and create such a system.

Moving On

You should now know everything you need to know to make a command-line
application that’s helpful to newcomers as well as experts. All this is good

news for your users; they’ll have an easy time using your apps, but it’s also

good news for you as the developer; you can spend more time on your apps’

actual functionality and less on formatting help text and documentation.

Users aren't the only entities who interact with your application, however.
The system itself will be actually executing your application, and future
developers may need to integrate your command-line apps into larger systems
of automation (similar to how our database backup script integrates mysgldump).
In the next chapter, we’ll talk about how to make your apps mteroperate with .
the system and with other apphcatlons

