
Event-Driven FRP?

Zhanyong Wan, Walid Taha, and Paul Hudak

Department of Computer Science,
Yale University, New Haven, CT, USA

{wan-zhanyong,taha,hudak-paul}@cs.yale.edu

Abstract. Functional Reactive Programming (FRP) is a high-level declar-
ative language for programming reactive systems. Previous work on FRP
has demonstrated its utility in a wide range of application domains, in-
cluding animation, graphical user interfaces, and robotics. FRP has an
elegant continuous-time denotational semantics. However, it guarantees
no bounds on execution time or space, thus making it unsuitable for many
embedded real-time applications. To alleviate this problem, we recently
developed Real-Time FRP (RT-FRP), whose operational semantics per-
mits us to formally guarantee bounds on both execution time and space.
In this paper we present a formally verifiable compilation strategy from
a new language based on RT-FRP into imperative code. The new lan-
guage, called Event-Driven FRP (E-FRP), is more tuned to the paradigm
of having multiple external events. While it is smaller than RT-FRP, it
features a key construct that allows us to compile the language into effi-
cient code. We have used this language and its compiler to generate code
for a small robot controller that runs on a PIC16C66 micro-controller.
Because the formal specification of compilation was crafted more for clar-
ity and for technical convenience, we describe an implementation that
produces more efficient code.

1 Introduction

Functional Reactive Programming (FRP) [12, 19] is a high-level declarative lan-
guage for programming reactive systems. A reactive system is one that contin-
ually responds to external stimuli. FRP has been used successfully in domains
such as interactive computer animation [6], graphical user interface design [5],
computer vision [15], robotics [14], and control systems. FRP is sufficiently high-
level that, for many domains, FRP programs closely resemble equations naturally
written by domain experts to specify the problems. For example, in the domain
of control systems, our experience has been that we can go from a traditional
mathematical specification of a controller to running FRP code in a matter of
minutes.

FRP is implemented as an embedded language in Haskell [7], and so provides
no guarantees on execution time or space: programs can diverge, consume large
? Funded by NSF CCR9900957, NSF ITR-0113569, and DARPA F33615-99-C-3013

and DABT63-00-1-0002

amounts of space, and introduce unpredictable delays in responding to external
stimuli. In many applications FRP programs have been “fast enough,” but for
real-time applications, careful FRP programming and informal reasoning is the
best that one can do.

In trying to expand the scope of FRP to these more demanding settings, we
recently identified a subset of FRP (called RT-FRP) where it can be statically
guaranteed that programs require only limited resources [20]. In RT-FRP there
is one global clock, and the state of the whole program is updated when this
clock ticks. Hence every part of the program is executed at the same frequency.

One key application domain that we are interested in is micro-controllers.
In addition to being resource bounded, these hardware devices have a natural
programming paradigm that is not typical in functional programming languages.
In particular, they are event-driven. In such systems, an event affects only a
statically decidable part of the system state, and hence there is no need to
propagate the event throughout the whole system. Unfortunately, RT-FRP was
not designed with this concern in mind.

This paper addresses the issue of compiling a variant of RT-FRP, called
Event-driven FRP (E-FRP). In this variant, the RT-FRP global clock is gener-
alized to a set of events. This framework makes it clear that there is no need for
RT-FRP’s built-in notion of time, since we can now implement it as a special
case of an event stream that is treated as a clock. Indeed, now we can have
many different time bases, not necessarily linearly related, and in general can
deal with complex event-driven (and periodic) reactive systems in a natural and
effective manner. We have found that E-FRP is well-suited for programming
interrupt-driven micro-controllers, which are normally programmed either in as-
sembly language or some dialect of C.

In what follows, we present the basic ideas of E-FRP with an example from
our work on the RoboCup challenge [16].

1.1 A Simple Robot Controller in E-FRP

The Yale RoboCup team consists of five radio-controlled robots, an overhead
vision system for tracking the two teams and a soccer ball, and a central FRP
controller for guiding the team. Everything is in one closed control loop. Even
in this relatively small system, certain components must be developed in low
level languages. Of particular interest to us is the controller running on-board
the robots. Based on the speed sensor feedback and increase/decrease speed
instructions coming from the central FRP controller, the on-board controller
must determine the exact signals to be sent to the motors. In each robot, a
PIC16C66 micro-controller [13] is used to execute the code that controls the
robot. Initially, this low-level controller was programmed in a specialized subset
of C, for which a commercial compiler targeting PIC16C66 exists. Written at
this level, however, these controllers can be quite fragile, and some important
features of the design of the controller can easily become obscured. Reasoning
about the combination of the main FRP controller and these separate controllers

is also non-trivial. This problem would not exist if the controllers are written in
FRP, or a subset thereof.

The Physical Model Each robot has two wheels mounted on a common axis
and each wheel is driven by an independent motor. For simplicity we focus on
one wheel, and do not discuss the interaction between the two.

The amount of power sent to the motor is controlled using a standard elec-
trical engineering technique called Pulse-Width Modulation (PWM): instead of
varying the voltage, the power is rapidly switched off and on. The percentage of
time when the power is on (called the duty cycle) determines the overall power
transmission.

Each wheel is monitored through a simple stripe detection mechanism: The
more frequently the stripes are observed by an infrared sensor, the faster the
wheel is deemed to be moving. For simplicity, we assume the wheel can only go
in one direction.

The Computational Model The main goal of the controller is to regulate
the power being sent to the motor, so as to maintain a desired speed ds for the
wheel. The control system is driven by five independent interrupt sources:

– IncSpd and DecSpd increment and decrement the desired speed;
– Stripe occurs 32 times for every full revolution of the wheel;
– Timer0 and Timer1 are two timers that occur at regular, but different,

intervals. The frequency of Timer0 is much higher than that of Timer1.

A register output determines the ON/OFF state of the motor.

The E-FRP Execution Model Before presenting the code for the controller,
some basic features of the E-FRP execution model need to be explained.

As with FRP, the two most important concepts in E-FRP are events and
behaviors. Events are time-ordered sequences of discrete event occurrences. Be-
haviors are values that react to events, and can be viewed as time-indexed signals.
Unlike FRP behaviors that can change over continuous time, E-FRP behaviors
can change value only when an event occurs.

E-FRP events are mutually exclusive, meaning that no two events ever occur
simultaneously. This decision avoids potentially complex interactions between
event handlers, and thus greatly simplifies the semantics and the compiler.

Finally, on the occurrence of an event, execution of an E-FRP program pro-
ceeds in two distinct phases: The first phase involves carrying out computations
that depend on the previous state of the computation, and the second phase
involves updating the state of the computation. To allow maximum expressive-
ness, E-FRP allows the programmer to insert annotations to indicate in which
of these two phases a particular change in behavior should take place.

Source Code

ds = init x = 0 in
{ IncSpd⇒ x+ 1,
DecSpd⇒ x− 1},

s = init x = 0 in
{ Timer1⇒ 0 later,
Stripe⇒ x+ 1},

dc = init x = 0 in
{ Timer1⇒

if x < 100 and s < ds
then x+ 1

else if x > 0 and s > ds
then x− 1

else x},
count = init x = 0 in
{ Timer0⇒

if x ≥ 100 then 0
else x+ 1},

output = if count < dc then 1 else 0

Target Code

(IncSpd,
〈ds := ds+ + 1;
output := if count < dc then 1 else 0〉,
〈ds+ := ds;
output := if count < dc then 1 else 0〉),

(DecSpd,
〈ds := ds+ − 1;
output := if count < dc then 1 else 0〉,
〈ds+ := ds;
output := if count < dc then 1 else 0〉),

(Timer1,
〈s+ := 0;
dc := if dc+ < 100 and s < ds

then dc+ + 1
else if dc+ > 0 and s > ds

then dc+ − 1
else dc+;

output := if count < dc then 1 else 0〉,
〈s := s+; dc+ := dc;
output := if count < dc then 1 else 0〉),

(Stripe,
〈s := s+ + 1;
output := if count < dc then 1 else 0〉,
〈s+ := s;
output := if count < dc then 1 else 0〉),

(Timer0,
〈count := if count+ >= 100 then 0

else count+ + 1;
output := if count < dc then 1 else 0〉,
〈count+ := count;
output := if count < dc then 1 else 0〉)

Fig. 1. The Simple RoboCup Controller (SRC)

An E-FRP Controller Figure 1 presents an E-FRP controller, together with
the target code produced by our compiler. In what follows we explain the defi-
nition of each of ds, s, dc, count, and output in detail.

The desired speed ds is defined as an “init . . . in . . . ” construct, which can
be viewed as a state machine that changes state whenever an event occurs. The
value of ds is initially 0, then it is incremented (or decremented) when IncSpd
(or DecSpd) occurs. The local variable x is used to capture the value of ds just
before the event occurs.

The current speed measurement s is initially 0, and is incremented whenever a
stripe is detected (the Stripe interrupt). This value, however, is only “inspected”

when Timer1 occurs, at which point it is reset to zero. The later annotation
means that this resetting is not carried out until all other first-phase activities
triggered by Timer1 have been carried out (that is, it is done in the second
phase of execution).

The duty cycle dc directly determines the amount of power that will be sent
to the motor. On Timer1, the current speed s is compared with the desired speed
ds (Recall that s is reset by Timer1 in the second phase, after all the first-phase
computations that depend on the penultimate value of s have been completed).
If the wheel is too slow (or too fast) then the duty cycle is incremented (or
decremented). Additional conditions ensure that this value remains between 0
and 99.

The current position in the duty cycle is maintained by the value count. This
value is incremented every time Timer0 occurs, and is reset every 100 Timer0
interrupts. Hence it counts from 0 to 99 repeatedly. The actual 0/1 signal going
to the motor is determined by the value output. Since output is 1 only when
count < dc, the larger dc is, the more power is sent to the motor, and hence the
more speed. Note that output is updated whenever count or dc changes value.

Our compiler produces SimpleC, a restricted form of C. The target code is
a group of event handlers. Each event handler is responsible for one particular
event source, and consists of two sequences of assignments, one for each of the
two phases. When the event occurs, the two assignment sequences are executed
in turn to update the values of the behaviors.

Highlights The source program is easy to read and concise. It is also a minor
extension on a subset of FRP, and hence inherits its denotational semantics. As
we will show in this paper, it also has a simple operational semantics from which
it is immediate that the program is resource bounded. The compiler generates
resource bounded, but bloated, target code. However, we are able to substantially
enhance the target code by a four-stage optimization process.

1.2 Contribution and Organization of this Paper

The key contribution of this paper is identifying a subset of FRP that can be
compiled into clearly efficient and resource bounded code, and that is suitable
for programming event-driven applications. The compilation strategy and the
optimization techniques we present are also interesting.

Section 2 presents the syntax and semantics of E-FRP. Section 3 introduces
the target language. Section 4 defines a compilation strategy from E-FRP into
imperative code. Section 5 explains the optimization techniques.

2 Syntax and Semantics of E-FRP

Notation 1 We write 〈fj〉j∈{1..n} for the sequence 〈f1, f2, . . . , fn〉. We omit the
superscript j ∈ {1..n} when obvious from the context. We write {fj}j∈{1..n} or
{fj} for the set {f1, f2, · · · , fn}. We write x1 :: 〈x2, . . . , xn〉 for the sequence

d, r,H, ϕ, b, P

Non-reactive behaviors d ::= x | c | f 〈di〉
Reactive behaviors r ::= init x = c in H
Event handlers H ::= {Ii ⇒ di ϕi}

Phases ϕ ∈ Φ ::= ε | later
Behaviors b ::= d | r
Programs P ::= {xi = bi}

FV (b)

FV (x) ≡ {x}, FV (c) ≡ ∅, FV (f 〈di〉) ≡
⋃
i

FV (di)

FV (init x = c in {Ii ⇒ di ϕi}) ≡
⋃
i

FV (di)− {x}

Fig. 2. Raw Syntax of E-FRP and definition of free variables

〈x1, x2, . . . , xn〉. We write A++A′ for the concatenation of the sequences A and
A′. We write A] B for A ∪ B assuming that A ∩ B = ∅. Finally, we write
prim(f, 〈ci〉) ≡ c for that applying primitive function f on arguments 〈ci〉 results
in c.

2.1 Syntax of E-FRP

Figure 2 defines the syntax of E-FRP and the notion of free variables. The
categories x, c and f are for variables, constants and primitive functions respec-
tively. When a function symbol f is an infix operator, we write d1 f d2 instead of
f d1 d2. The category I is for event names drawn from a finite set I. On different
target platforms, events may have different incarnations, like OS messages, or
interrupts (as in the case of micro-controllers). For simplicity, an E-FRP event
does not carry a value with its occurrence. The category ε stands for the empty
string. An event I cannot occur more than once in an event handler H, and a
variable x cannot be defined more than once in a program P .

A non-reactive behavior d is not directly updated by any event. Such a be-
havior could be a variable x, a constant c, or a function application on other
non-reactive behaviors.

A reactive behavior r ≡ init x = c in {Ii ⇒ di ϕi} initially has value c, and
changes to the current value of di when event Ii occurs. Note that x is bound to
the old value of r and can occur free in di. As mentioned earlier, the execution
of an E-FRP program happens in two phases. Depending on whether ϕi is ε or
later, the change of value takes place in either the first or the second phase.

A program P is just a set of mutually recursive behavior definitions.

2.2 Operational Semantics

A store S maps variables to values:

S ::= {xi 7→ ci}

Figure 3 defines the operational semantics of an E-FRP program by means
of four judgments. The judgments can be read as follows:

P ` b I
⇀ c

P ` b I
⇀ c

P] {x = b} ` x I
⇀ c P ` c I

⇀ c{
P ` di

I
⇀ ci

}
prim(f, 〈ci〉) ≡ c

P ` f 〈di〉
I
⇀ c

P ` d[x := c]
I
⇀ c′

P ` init x = c in {I ⇒ d}]H I
⇀ c′

H 6≡ {I ⇒ d}]H ′

P ` init x = c in H
I
⇀ c

P ` b I
⇁ b′

P ` d I
⇁ d

H ≡ {I ⇒ d ϕ}]H ′ P ` d[x := c]
I
⇀ c′

P ` init x = c in H
I
⇁ init x = c′ in H

H 6≡ {I ⇒ d ϕ}]H ′

P ` init x = c in H
I
⇁ init x = c in H

P ` b I→ c; b′
P ` b I

⇀ c P ` b I
⇁ b′

P ` b I→ c; b′

P
I→ S;P ′

{
{xi = bi}i∈K ` bj

I→ cj ; b
′
j

}j∈K
{xi = bi}i∈K

I→ {xi 7→ ci}i∈K ; {xi = b′i}i∈K

Fig. 3. Operational Semantics of E-FRP

– P ` b I
⇀ c: “on event I, behavior b yields c.”

– P ` b I
⇁ b′: “on event I, behavior b is updated to b′.”

– P ` b I→ c; b′: “on event I, behavior b yields c, and is updated to b′.” This is
shorthand for P ` b I

⇀ c and P ` b I
⇁ b′.

– P
I→ S;P ′: “on event I, program P yields store S and is updated to P ′.”

Note the difference between phase 1 stepping (ϕ ≡ ε) and phase 2 stepping
(ϕ ≡ later): The first returns the updated state, while the second returns the old
state.

S ` d ↪→ c
S] {x 7→ c} ` x ↪→ c S ` c ↪→ c

{S ` di ↪→ ci}
prim(f, 〈ci〉) ≡ c
S ` f 〈di〉 ↪→ c

S ` A ↪→ S′
S ` {} ↪→ S

{x 7→ c}] S ` d ↪→ c′

{x 7→ c′}] S ` A ↪→ S′

{x 7→ c}] S ` x := d :: A ↪→ S′

S ` Q I
↪→ S′;S′′

I 6∈ {Ii}

S ` {(Ii, Ai, A′i)}
I
↪→ S;S

S ` A ↪→ S′ S′ ` A′ ↪→ S′′

S ` {(I,A,A′)}]Q I
↪→ S′;S′′

Fig. 4. Operational Semantics of SimpleC

3 SimpleC: An Imperative Language

The PIC16C66 does not need to be programmed in assembly language, as there
is a commercial compiler that takes as input a restricted C. We compile E-FRP
to a simple imperative language we call SimpleC, from which C or almost any
other imperative language code can be trivially generated.

3.1 The Syntax of SimpleC

The syntax of SimpleC is defined as follows:

Assignment Sequences A ::= 〈xi := di〉 Programs Q ::= {(Ii, Ai, A′i)}

A programQ is just a collection of event handler function definitions, where Ii
is the name of the function. The function body is split into two consecutive parts
Ai and A′i, which are called the first phase and the second phase respectively.
The idea is that when an interrupt Ii occurs, first the associated Ai is executed
to generate a store matching the store yielded by the source program, then the
associated A′i is executed to prepare the store for the next event.

3.2 Operational Semantics of SimpleC

Figure 4 gives an operational semantics to SimpleC, where the judgments are
read as follows:

– S ` d ↪→ c: “under store S, d evaluates to c.”
– S ` A ↪→ S′: “executing assignment sets A updates store S to S′.”

– S ` Q I
↪→ S′;S′′: “when event I occurs, program Q updates store S to S′ in

the first phase, then to S′′ in the second phase.”

It is obvious that the operational semantics of SimpleC is deterministic.

4 Compilation

A compilation strategy is described by a set of judgments presented in Figure 5.
The judgments are read as follows:

– (x := d) < A: “d does not depend on x or any variable updated in A.“
– `1

I A : P : “A is the first phase of P ’s event handler for I.”
– `2

I A : P : “A is the second phase of P ’s event handler for I.”
– P Q: “P compiles to Q.”

In the object program, besides allocating one variable for each behavior de-
fined in the source program, we allocate a temporary variable x+ for each reactive
behavior named x. Temporary variables are needed for compiling certain recur-
sive definitions.

The compilation relation is clearly decidable. But note that given a program
P , P Q does not uniquely determine Q. Hence, this is not a just specifica-
tion of our compiler (which is deterministic), but rather, it allows many more
compilers than the one we have implemented. However, we can prove that any
Q satisfying P Q will behave in the same way.

Note also that if there is cyclic data dependency in an E-FRP program P ,
we will not be able to find a Q such that P Q. The restriction that the set of
possible events is known at compile time and the events are mutually exclusive
(i.e. no two events can be active at the same time) allows us to perform this
check.

Since the target code only uses fixed number of variables, has finite number of
assignments, has no loops, and does not dynamically allocate space, it is obvious
that the target code can be executed in bounded space and time.

4.1 Compilation Examples

The workings of the compilation relation are best illustrated by some examples.
Consider the following source program:

x1 = init x = 0 in {I1 ⇒ x+ x2},
x2 = init y = 1 in {I2 ⇒ y + x1}

Here x1 depends on x2, and x2 depends on x1, but they only depend on each
other in different events. Within each event, there is no cyclic dependency. Hence
this program can be compiled to the following SimpleC program:

(I1, 〈x1 := x+
1 + x2〉, 〈x+

1 := x1〉),
(I2, 〈x2 := x+

2 + x1〉, 〈x+
2 := x2〉)

Consider the following source program:

x1 = init x = 0 in {I ⇒ x+ x2},
x2 = init y = 1 in {I ⇒ x1 later}

(x := d) < A
FV (d) ∩ ({x}] {xi}) ≡ ∅

(x := d) < 〈xi := di〉

`1
I A : P `1

I 〈〉 : {}
`1
I A : P (x := d) < A

`1
I x := d :: A : {x = d}] P

`1
I A : P (x := d[y := x+]) < A

`1
I x := d[y := x+] :: A : {x = init y = c in {I ⇒ d}]H}] P

`1
I A : P (x+ := d[y := x]) < A

`1
I x

+ := d[y := x] :: A : {x = init y = c in {I ⇒ d later}]H}] P

`1
I A : P H 6≡ {I ⇒ d ϕ}]H ′

`1
I A : {x = init y = c in H}] P

`2
I A : P `2

I 〈〉 : {}
`2
I A : P (x := d) < A

`2
I x := d :: A : {x = d}] P

`2
I A : P

`2
I x

+ := x :: A : {x = init y = c in {I ⇒ d}]H}] P

`2
I A : P

`2
I x := x+ :: A : {x = init y = c in {I ⇒ d later}]H}] P

`2
I A : P H 6≡ {I ⇒ d ϕ}]H ′

`2
I A : {x = init y = c in H}] P

P Q

P ≡ {xi = bi} {`1
I AI : P `2

I A
′
I : P}I∈I

⋃
i

FV (bi) ⊆ {xi}

P {(I,AI , A′I)}I∈I

Fig. 5. Compilation of E-FRP

Here x1 and x2 are mutually dependent in I, but their values are updated in
different phases. In each phase, the dependency graph is acyclic. Hence this
program compiles too, and one acceptable compilation for it is:

(I, 〈x1 := x+
1 + x2; x+

2 := x1〉, 〈x+
1 := x1; x2 := x+

2 〉)

However, if the definition for x2 were

x2 = init y = 1 in {I ⇒ x1}

then the code would have been rejected.
If we let both x1 and x2 be updated in the later phase, i.e. let the program

P be
x1 = init x = 0 in {I ⇒ x+ x2 later},
x2 = init y = 1 in {I ⇒ x1 later}

then one possible translation of P in SimpleC is

(I, 〈x+
1 := x1 + x2; x+

2 := x1〉, 〈x1 := x+
1 ; x2 := x+

2 〉

In concrete C syntax, the code would look like

void on_I(void) {
x1_ = x1 + x2; x2_ = x1;

later: x1 = x1_; x2 = x2_;
}

4.2 Correctness

When an event I occurs, a behavior x in an E-FRP program can be updated to
have a new value c. To prove that our compiler is correct, we need to show that
after executing the event handler for I, the corresponding variable(s) of x in the
target program will have the same value c. The following concept is useful for
formalizing this intuition:

Definition 1 The state of a program P , written as state(P), is a store defined
by:

state(P) ≡ {xi 7→ stateP (di)}] {xj 7→ stateP (rj), x+
j 7→ stateP (rj)}

where P ≡ {xi = di}] {xj = rj} and

stateP]{x=b}(x) ≡ stateP (b)
stateP (c) ≡ c
stateP (f 〈di〉) ≡ prim(f, 〈stateP (di)〉)
stateP (init x = c in H) ≡ c

Finally, we show that the compilation is correct in the sense that updating
an E-FRP program does not change its translation in SimpleC, and that the
source program generates the same result as the target program:

Theorem 1 (Compilation Correctness)

1. P Q ∧ P I→ S;P ′ =⇒ P ′ Q;

2. P Q ∧ P I→ S;P ′ ∧ state(P) ` Q I
↪→ S1;S2 =⇒ ∃S′. S1 ≡ S] S′ ∧ S2 ≡

state(P ′).

The proof of Theorem 1 is omitted as this paper focuses on practical rather than
theoretical results.

P ` Q⇒1 Q
′ (x = d) ∈ P FV (d) ∩ LV (A) = ∅
P ` Q] {(I,A++x := d++A′, A′′)} ⇒1 Q] {(I,A++A′, A′′)}

(x = d) ∈ P FV (d) ∩ LV (A′) = ∅
P ` Q] {(I,A,A′ ++x := d++A′′)} ⇒1 Q] {(I,A,A′ ++A′′)}

P ` Q⇒2 Q
′ x+ ∈ FV (d)

P ` Q] {(I,A++x := d++A′, A′′)} ⇒2

Q] {(I,A++x := d[x+ := x] ++A′, A′′)}

P ` Q⇒3 Q
′ FV (d) ∩ LV (A2) = ∅

P ` Q] {(I,A1 ++x+ := d++A2, A3 ++x := x+ ++A4)} ⇒3

Q] {(I,A1 ++A2 ++x := d, x+ := x++A3 ++A4)}

P ` Q⇒4 Q
′ Q ≡ Q′] {(I,A++x+ := d++A′, A′′)} x+ 6∈ RV (Q)

P ` Q⇒4 Q′] {(I,A++A′, A′′)}

Q ≡ Q′] {(I,A,A′ ++x+ := d++A′′)} x+ 6∈ RV (Q)

P ` Q⇒4 Q′] {(I,A,A′ ++A′′)}

P ` Q⇒∗i Q′ P ` Q⇒∗i Q
P ` Q⇒∗i Q′ P ` Q′ ⇒i Q

′′

P ` Q⇒∗i Q′′

P ` Q⇒|i Q′
P ` Q⇒∗i Q′ @Q′′.P ` Q′ ⇒i Q

′′

P ` Q⇒|i Q′

P ` Q⇒| Q′
P Q P ` Q⇒|1 Q1 P ` Q1 ⇒|2 Q2

P ` Q2 ⇒|3 Q3 P ` Q3 ⇒|4 Q′

P ` Q⇒| Q′

Fig. 6. Optimization of the Target Code

5 Optimization

The compiler that we have described, although provably correct, generates only
näıve code that leaves a lot of room for optimization. Besides applying known
techniques for optimizing sequential imperative programs, we can improve the
target code by taking advantage of our knowledge on the compiler. In particular,
we implemented a compiler that does:

1. Ineffective code elimination: Given a definition x = b in the source program,
x is affected by a particular event I only when one of the following is true:
(a) b is a reactive behavior that reacts to I; or
(b) b is a non-reactive behavior, and one of the variables in FV (b) is affected

by I.
It is obvious that whether x is affected by I can be determined statically.
If x is not affected by I, the code for updating x in the event handler for I

can be eliminated. This optimization helps reduce the code size as well as
the response time.

2. Temporary variable elimination: The value of a temporary variable x+ can-
not be observed by the user of the system. Hence there is no need to keep
x+ around if it can be eliminated by some program transformations. This
technique reduces memory usage and the response time.

We define the right-hand-side variables (written RV) of a collection of as-
signments, and the left-hand-side variables (written LV) of a collection of as-
signments, as

RV (A) RV (〈xi := di〉) ≡
⋃
i

FV (di)

RV (Q) RV ({(Ii, Ai, A′i)}) ≡
⋃
i

(RV (Ai) ∪RV (A′i))

LV (A) LV (〈xi := di〉) ≡ {xi}

The optimizations are carried out in four stages, where each stage consists
of a sequence of one particular kind of transformations. In each stage, we keep
applying the same transformation to the target code till it cannot be applied
any further.

The purpose of stage 1 is to eliminate unnecessary updates to variables. One
such update is eliminated in each step.

The code produced by the unoptimizing compiler has the property that at
the beginning of phase 1 of any event handler, x and x+ always hold the same
value. Stage 1 optimization preserves this property. Hence in stage 2, we can
safely replace the occurrences of x+ on the right hand side of an assignment in
phase 1 with x. This reduces the usage of x+ and thus helps stage 4.

Since stage 1 and stage 2 are simple, we can easily write a compiler that
directly generates code for stage 3. However the proof of the correctness of this
partially-optimizing compiler then becomes complicated. Therefore we choose to
present stage 1 and stage 2 as separate optimization processes.

We call the transformation in stage 3 “castling” for its resemblance to the
castling special move in chess: if an event handler updates x+ in phase 1 and
assigns x+ to x in phase 2, under certain conditions we can instead update x
at the end of phase 1 and assign x to x+ at the beginning of phase 2. This
transformation reduces right-hand-side occurrences of x+, thus making it easier
to be eliminated in stage 4. Note that the correctness of this transformation is
non-trivial.

If the value of a temporary variable x+ is never used, then there is no need
to keep x+ around. This is what we do in stage 4.

Figure 6 formally defines the optimization. Given a source program P , we
write P ` Q⇒i Q

′ for that Q is transformed to Q′ in one step in stage i, where
1 ≤ i ≤ 4; we write P ` Q⇒∗i Q′ for that Q is transformed to Q′ in zero or more
steps in stage i; and we write P ` Q ⇒|i Q′ for that Q′ is the furthest you can
get from Q by applying stage i transformations. Finally, we write P ` Q ⇒| Q′
for that P compiles to Q, which is then optimized to Q′.

Q1 ≡ (IncSpd, 〈ds := ds+ + 1〉, 〈ds+ := ds〉),
(DecSpd, 〈ds := ds+ − 1〉, 〈ds+ := ds〉),
(Timer1, 〈s+ := 0; dc := if dc+ < 100 and s < ds then dc+ + 1

else if dc+ > 0 and s > ds then dc+ − 1 else dc+;
output := if count < dc then 1 else 0〉,
〈s := s+; dc+ := dc〉),

(Stripe, 〈s := s+ + 1; 〉, 〈s+ := s; 〉),
(Timer0, 〈count := if count+ >= 100 then 0 else count+ + 1;

output := if count < dc then 1 else 0〉,
〈count+ := count〉)

Q2 ≡ (IncSpd, 〈ds := ds+ 1〉, 〈ds+ := ds〉),
(DecSpd, 〈ds := ds− 1〉, 〈ds+ := ds〉),
(Timer1, 〈s+ := 0; dc := if dc < 100 and s < ds then dc+ 1

else if dc > 0 and s > ds then dc− 1 else dc;
output := if count < dc then 1 else 0〉,
〈s := s+; dc+ := dc〉),

(Stripe, 〈s := s+ 1; 〉, 〈s+ := s; 〉),
(Timer0, 〈count := if count >= 100 then 0 else count+ 1;

output := if count < dc then 1 else 0〉,
〈count+ := count〉)

Q3 ≡ (IncSpd, 〈ds := ds+ 1〉, 〈ds+ := ds〉),
(DecSpd, 〈ds := ds− 1〉, 〈ds+ := ds〉),
(Timer1, 〈dc := if dc < 100 and s < ds then dc+ 1

else if dc > 0 and s > ds then dc− 1 else dc;
output := if count < dc then 1 else 0; s := 0〉,
〈s+ := s; dc+ := dc〉),

(Stripe, 〈s := s+ 1; 〉, 〈s+ := s; 〉),
(Timer0, 〈count := if count >= 100 then 0 else count+ 1;

output := if count < dc then 1 else 0〉,
〈count+ := count〉)

Q4 ≡ (IncSpd, 〈ds := ds+ 1〉, 〈〉),
(DecSpd, 〈ds := ds− 1〉, 〈〉),
(Timer1, 〈dc := if dc < 100 and s < ds then dc+ 1

else if dc > 0 and s > ds then dc− 1 else dc;
output := if count < dc then 1 else 0; s := 0〉, 〈〉),

(Stripe, 〈s := s+ 1; 〉, 〈〉),
(Timer0, 〈count := if count >= 100 then 0 else count+ 1;

output := if count < dc then 1 else 0〉, 〈〉)

Fig. 7. Optimization of the Simple RoboCup Controller

As an example, Figure 7 presents the intermediate and final results of opti-
mizing the SRC program. Stage 1 optimization generates Q1, where all unneces-
sary updates to output have been eliminated. Then stage 2 gets rid of all right-
hand-side temporary variables in phase 1, as in the change from ds := ds+ + 1

to ds := ds + 1, and the result is Q2. In stage 3 we rearrange the updating to
s and s+ and get Q3. Finally, we are able to remove all temporary variables in
stage 4, resulting in Q4, the optimized final code.

6 Discussion and Related Work

We refer the reader to [17] for a general introduction on the use of functional
programming for reactive (especially real-time) applications.

E-FRP is a slightly extended subset of FRP. To make the relation precise,
we present a partial function [[]] that translates E-FRP to FRP:

[[x]] ≡ x
[[c]] ≡ lift0 c
[[f 〈di〉i∈{1..n}]] ≡ liftn f 〈[[di]]〉i∈{1..n}
[[init x = c in {Ii ⇒ di}]] ≡ iStepAccum c [[{Ii ⇒ di}]]x
[[init x = c in {Ii ⇒ di later}]] ≡ stepAccum c [[{Ii ⇒ di}]]x
[[{xi = bi}]] ≡ {xi = [[bi]]}

where [[{Ii ⇒ di}i∈K]]x ≡ foldr (.|.) neverE [[[di]]x,Ii]
i∈K

[[d]]x,I ≡ (snapshotn I 〈xi〉i∈{1..n})⇒ λ〈xi〉i∈{1..n}.λx.d
where {xi}i∈{1..n} ≡ FV (d)− {x}

The key facility missing from FRP is the ability to mix now and later oper-
ations, which is exactly the reason why [[]] is not total. Our experience with
E-FRP shows that this is a very useful feature, and extending FRP with such
functionality would be interesting future work.

Several languages have been proposed around the synchronous data-flow no-
tion of computation, including Signal, Lustre, and Esterel, which were
specifically designed for control of real-time systems. Signal [8] is a block-
diagram oriented language, where the central concept is a signal, a time-ordered
sequence of values. This is analogous to the sequence of values generated in
the execution of an E-FRP program. Lustre [3] is a functional synchronous
data flow language, rooted again in the notion of a sequence. Esterel is a
synchronous imperative language devoted to programming control-dominated
software or hardware reactive systems [1]. Compilers exist to translate Esterel

programs into automata or electronic circuits [2]. Although these languages are
similar to E-FRP, there are subtle differences whose significance deserves further
investigation.

To guarantee bounded space and time, the languages above do not consider
recursion. The language of synchronous Kahn networks [4] was developed as an
extension to Lustre that adds recursion and higher-order programming. Such
an extension yields a large increase in expressive power, but sacrifices resource-
boundedness. In RT-FRP we have shown that, using some syntactic restrictions
and a type system, it is possible to have recursion and guarantee resource bound.
We expect to be able to extend E-FRP with the RT-FRP style recursion.

The SCR (Software Cost Reduction) requirements method [10] is a formal
method based on tables for specifying the requirements of safety-critical software

systems. SCR is supported by an integrated suite of tools called SCR* [11], which
includes among others a consistency checker for detecting well-formedness errors,
a simulator for validating the specification, and a model checker for checking
application properties. SCR has been successfully applied in some large projects
to expose errors in the requirements specification. We have noticed that the
tabular notation used in SCR for specifying system behaviors has a similar flavor
as that of E-FRP, and it would be interesting future work to translate E-FRP
into SCR and hence leverage the SCR* toolset to find errors in the program.

Throughout our work on E-FRP, more systematic approaches for semantics-
based program generation, for example MetaML, have been continually consid-
ered for the implementation of the final program generation phase of the compiler
[18]. So far, we have used an elementary technique for the generation of programs
instead. There are a number of practical reasons for this:

– The code we generate does not involve the generation of new variable names,
and thus there is no apparent need for MetaML hygiene (fresh name gener-
ation mechanism).

– MetaML does not currently support generating code in languages other than
MetaML.

– The target language, has only a very simple type system, and essentially
all the instructions we generated have the same type. In other words, as-
suring type safety of the generated code, a key feature of MetaML, is not a
significant issue.

– The standard way for using MetaML is to stage a denotational semantics.
While such a denotational semantics exists for FRP, it is not yet clear how
we can use staging to introduce the imperative implementation of behaviors
in a natural way. We plan to pursue this direction in future work.

An alternative approach to semantics-based program generation is the use of
an appropriate monad, as in the work of Harrison and Kamin [9]. However, we
have not identified such a monad at this point, and this is also interesting future
work.

7 Conclusions

We have presented a core, first-order subset of FRP and showed how it can be
compiled in a natural and sound manner into a simple imperative language. We
have implemented this compilation strategy in Haskell. The prototype produces
C code that is readily accepted by the PIC16C66 C compiler. Compared to pre-
vious work on RT-FRP, our focus here has shifted from the integration with the
lambda language to the scrutiny of the feasibility of implementing this language
and using it to program real event-driven systems. In the immediate future, we
intend to extend the language with more constructs (especially behavior switch-
ing), to investigate the correctness of some basic optimizations on the generated
programs, and to continue the development of the compiler.

References

1. Gerard Berry and Laurent Cosserat. The Esterel synchronous programming lan-
guage and its mathematical semantics. In A.W. Roscoe S.D. Brookes and editors
G. Winskel, editors, Seminar on Concurrency, volume 197 of Lect. Notes in Com-
puter Science, pages 389–448. Springer Verlag, 1985.

2. Gerard Berry and the Esterel Team. The Esterel v5.21 System Manual. Centre
de Mathématiques Appliquées, Ecole des Mines de Paris and INRIA, March 1999.
Available at http://www.inria.fr/meije/esterel.

3. Paul Caspi, Halbwachs Halbwachs, Nicolas Pilaud, and John A. Plaice. Lustre: A
declarative language for programming synchronous systems. In the Symposium on
Principles of Programming Languages (POPL ’87), January 1987.

4. Paul Caspi and M. Pouzet. Synchronous Kahn networks. In International Confer-
ence on Functional Programming. ACM SIGPLAN, May 1996.

5. Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In
Haskell Workshop, 2001.

6. Conal Elliott and Paul Hudak. Functional reactive animation. In International
Conference on Functional Programming, pages 163–173, June 1997.

7. John Peterson et al. Haskell 1.4: A non-strict, purely functional lan-
guage. Technical Report YALEU/DCS/RR-1106, Department of Com-
puter Science, Yale University, Mar 1997. World Wide Web version at
http://haskell.cs.yale.edu/haskell-report.

8. Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative lan-
guage for synchronous programming of real-time systems. In Gilles Kahn, editor,
Functional Programming Languages and Computer Architecture, volume 274 of Lect
Notes in Computer Science, edited by G. Goos and J. Hartmanis, pages 257–277.
Springer-Verlag, 1987.

9. William L. Harrison and Samuel N. Kamin. Modular compilers based on monad
transformers. In Proceedings of the IEEE International Conference on Computer
Languages, 1998.

10. Constance Heitmeyer. Applying Practical formal methods to the specification
and analysis of security properties. In Proc. Information Assurance in Computer
Networks, LNCS 2052, St. Petersburg, Russia, May 2001. Springer-Verlag.

11. Constance Heitmeyer, James Kirby, Bruce Labaw, and Ramesh Bharadwaj. SCR*:
A toolset for specifying and analyzing software requirements. In Proc. Computer-
Aided Verification, Vancouver, Canada, 1998.

12. Paul Hudak. The Haskell School of Expression – Learning Functional Programming
through Multimedia. Cambridge University Press, New York, 2000.

13. Microchip Technology Inc. PIC16C66 Datasheet. Available on-line at
http://www.microchip.com/.

14. John Peterson, Gregory Hager, and Paul Hudak. A language for declarative robotic
programming. In International Conference on Robotics and Automation, 1999.

15. Alastair Reid, John Peterson, Greg Hager, and Paul Hudak. Prototyping real-
time vision systems: An experiment in DSL design. In Proceedings of International
Conference on Software Engineering, May 1999.

16. RoboCup official site. http://www.robocup.org/.
17. Walid Taha, Paul Hudak, and Zhanyong Wan. Directions in functional program-

ming for real(-time) applications. In Thomas A. Henzinger and Christoph M.
Kirsch, editors, Proc. First International Workshop, EMSOFT, LNCS 2211, pages
185–203, Tahoe City, CA, USA, October 2001. Springer-Verlag.

18. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In Proceedings of Symposium on Partial Evaluation and Semantics Based Program
manipulation, pages 203–217. ACM SIGPLAN, 1997.

19. Zhanyong Wan and Paul Hudak. Functional reactive programming from first prin-
ciples. In Proceedings of the ACM SIGPLAN ’00 COnference on Programming
Language Design and Implementation (PLDI), pages 242–252, Vancouver, BC,
Canada, June 2000. ACM, ACM Press.

20. Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In Proceedings
of Sixth ACM SIGPLAN International Conference on Functional Programming,
Florence, Italy, September 2001. ACM.

