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Abstract

Event sourcing is a style of software architecture wherein state altering operations to
an application are captured as immutable events. Each event is appended to an event
log, with the current state of a system derived from this series of events. This thesis
addresses the utilization of retroactive capabilities in event-sourced systems: comput-
ing alternate application states, post hoc bug fixes, or the support of algorithms which
have access to their own history, for example. The possibility of retroactively access-
ing and modifying this event log is a potential capability of an event-sourced system,
but a detailed exploration how these operations can be facilitated and supported has
not yet been conducted.

We examine how retroaction can be applied to event-sourced systems and discuss
conceptual considerations. Furthermore, we demonstrate how different architectures
can be used to provide retroaction and describe the prototypical implementation of
an appropriate programming model. These findings are applied in the Chronograph
research project, in order to utilize potential temporal aspects of this platform.
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Chapter 1

Introduction

1.1  Motivation

Event sourcing (ES) describes a style of architecture wherein each state altering op-
eration in an application is captured as an immutable event [1]. These events are
appended to an event log. Once appended they can never be deleted, the event log
possesses a write-once, append-only restriction. The current state of an application is
derived from this series of events. When replayed, this series of events always leads
to the exact same state of the application.

Systems following such an event-sourced architecture have been gaining popu-
larity in recent years. There are a number of reasons for this; among them is that
event-driven architectures enable loosely coupled, composable systems and possess
an inherent asynchronous style [2]. As such they fit well for e.g. distributed systems
with a need to scale. A distributed architecture which applies event sourcing can
utilize the immutable nature of events and the append-only semantics of the event
log beneficial for scalability. Event sourcing also fits well for systems with the re-
quirement of an audit log, since events are immutable and the event log possesses
an append-only restriction. It can always be clearly traced how a system reached its
current state.

This thesis focuses on the retroactive aspect of event-sourced systems — explor-
ing the past of existing or simulated event logs and the possibilities which can be
gained hereby. Manipulations of the past contradict the append-only behavior of the
event log, but can enable very interesting applications. Among other applications,
the recorded history can be replayed in order to evaluate how other events or an al-
ternate application behavior would have influenced the current state of the system
[3]- These retroactive possibilities are potential capabilities of event-sourced systems,
but a practical exploration of how these operations can be enabled and supported has
not yet been conducted.

1.2 Overview

Restoring prior states of a system is already a well-established feature of event-sourced
architectures. This thesis examines another very interesting aspect of this architec-
tural style, which we think has not yet been considered sufficiently: Event sourcing
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is a perfect match for a computing model in which programmers can modify and in-
teract with the application’s history retroactively in the same environment in which
the program runs.

We aim to provide a thorough examination of the retroactive capabilities of event-
sourced systems. This work identifies issues and constraints that need to be taken into
consideration when utilizing these capabilities. Furthermore, we identify benefits
which systems can gain from retroactive features. The practicality of our ideas is
analyzed in a programming model and a prototypical implementation. In order to
gain further insights into the applicability of our ideas, we apply them in an existing
research project.

1.3 Outline

In Chapter 2, we describe the terminology and background of event sourcing and
describe work related to this thesis’ objectives. Chapter 4 focuses on a conceptual
view on the topic, identifies challenges, and details our ideas. For this, we describe
an event-sourced architecture following Command Query Responsibility Segregation
(CQRS), a style of system architecture well-suited to event-sourced systems. Next, we
examine how retroactive computing features can be integrated into such an architec-
ture. A number of issues and limitations, which need to be taken into account for
this, are identified and we suggest two potential event-sourced architectures for re-
troactive computing. In Chapter 5, we outline a programming model which utilizes
retroactive capabilities of an ES+CQRS architecture and takes retroactive issues into
account. This programming model is implemented as a prototype with an example
scenario. Chapter 6 summarizes our architectural considerations. In Chapter 7, we
examine the applicability of our ideas in an event-sourced architecture that does not
follow CQRS. The Chronograph research project is the foundation for this examina-
tion. Chapter 8 provides our concluding remarks and closes the thesis.



Chapter 2

Background and Terminology

This chapter details event sourcing and related terminology. We provide an overview
on benefits and constraints of event-sourced systems and examine in which cases
event sourcing can be applied beneficially as a style of architecture. Furthermore,
we describe Command Query Responsibility Segregation (CQRS), a complementary
architectural style for event-sourced systems, and illustrate which benefits can be
gained from applying it.

2.1 Active Record

Many software systems require some kind of data management. A common approach
is to retain the current state of an application within some kind of data storage (e.g.
a database) and return it on request. Active Record is a software pattern which refers
to the interaction with this current state (i.e. the active record) by applying create,
read, update, or delete operations (CRUD) on objects in a relational database (Fig-
ure 2.1a) [4]. In this approach, only the current state of an object is maintained and
manipulated; previous values are overwritten and everything not saved is lost. This
approach fits well for many applications but has shortcomings in terms of traceability
and support for operations on the history.

2.2 Event Sourcing

Most literature on event sourcing can be found online in blog posts, presentations,
and software documentation. Academic literature on the topic is scarce. This section
provides an overview on how event sourcing is defined in different resources and
establishes the vocabulary used throughout this thesis.

2.2.1 Different Definitions

There is no standardized vocabulary on the topic, the terminology and definitions
vary depending on the author.

Martin Fowler The term event sourcing was first established in a blog post by Mar-
tin Fowler [1] in 2005. He describes events as a series of changes in the state of an
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(a) Active Record Example (b) Event Sourcing Example

Figure 2.1: Two different ways of storing the same current state.

application. This series of events captures everything required to rebuild the cur-
rent state. He views events as immutable and the event log as an append-only store.
Events are never deleted, the only mean to revoke an event is a retroactive event [5].
Once appended to the event log, this retroactive event acts as an inverse event to
a prior event and revokes its effects. Fowler does not distinguish clearly between
events and the commands (i.e. actions) which triggered them. This is an issue which
is addressed in various works [6, 7].

Greg Young Greg Young is another renowned author in the event sourcing domain.
He describes event sourcing as “storing [the] current state as a series of events and
rebuilding state within the system by replaying that series of events” [8]. In his view,
the event log possesses an append-only behavior as well: “[events] have already hap-
pened and cannot be undone” [9]. What Fowler calls retroactive events, Young de-
scribes as reversal transactions [9, p.31].

Udi Dahan Udi Dahan is a further author of a number of relevant blog posts and
articles concerning event-sourced systems. To him, event sourcing refers to “the state
of the domain model being persisted as a stream of events rather than as a single
snapshot [...]” [10].

Martin Krasser The articles and presentations by Martin Krasser concerning the
persistence module in the Akka toolkit provide another view on event sourcing [11, 12].
In this context, actors in a distributed system communicate via messages, which trig-
ger state changes. Event sourcing is used as the mean to persist changes to the state
of an actor. State changes are “appended as immutable facts to a journal” [11]. A mo-
tivation for using it is that this approach “allows for very high transaction rates and
efficient replication”. Recovering the state of an actor (e.g. after a restart or crash) is
done by reapplying (i.e. replaying) the persisted events.

The common ground of all these definitions is to publish every change to the state
of an object (or system, or application) as an immutable event to an append-only
event log. This results in a series of events, which when replayed always leads to the
exact same state of the object (Figure 2.1b). Individual definitions vary or make no
statement in terms of the editing semantics of the event log, the granularity of events,
and the motivation for using it.

Where traditional architectures retain and maintain only the current state of an
object, event sourcing maintains all state-altering operations. Where CRUD offers
four operations to apply modifications, event-sourced systems are restrained to only
one operation: append-only.
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2.2.2 Benefits of Event Sourcing

An often found recommendation in literature is to apply event sourcing only in a
clearly delimited part of a system and not force its usage upon a context where it does
not appear beneficial [10]. A commonality often found in event-sourced systems, is
that they possess a complex business logic. This is opposed to e.g. an application that
provides “just” an editing frontend to a relational database. We now briefly describe
some of the benefits which an event-sourced architecture can provide.

Audit Log In regulated areas (e.g. the financial industry), government regulations
in many countries require companies to maintain records on the operation of a sys-
tem. For example, the governmental regulations in the United States require brokers
to keep their records in a non-rewriteable, non-erasable format [13]. Event sourcing,
with its append-only event log and immutable event characteristic, fits this require-
ment very well. Technologies such as write-once-read-many (WORM) data storages
can be used complementarily with event sourcing. If a WORM storage is used, the
device prevents alterations of data in the hardware and allows only the appending of
new data.

Debugging The captured events can be used to gain further insights into how the
system reached its current states and which events were responsible for it. This is a
strength in terms of traceability and debugging capabilities, since it makes it easier
e.g. to retrace where a bug originated in a system.

Scalability The append-only nature of an event log is thought to be beneficial for
scalable architectures. In such architectures it is common to have multiple replicated
instances of the same data model. These replications need to be kept in synchroniza-
tion, in order to provide a consistent view on the data. In event-sourced systems, the
appending of events is the only mean to synchronize the replicated instances. Due to
fewer necessary locks, an append-only architecture with immutable events is thought
to scale easier for reads than e.g. an architecture with a need for model synchroniza-
tion via updates [14, p.14-15][15].

Informative Value Another motivation for applying event sourcing can be the in-
formative value (also sometimes referred to as “business value™) of retrospectively
examining the event log. All past states of a system can be reconstructed or queried.
This can provide great value to systems, especially when the analysis of interaction
with the system (e.g. customer behavior) is important. In such systems it is usually
unknown what analysis one will execute in the future. An example to illustrate this
is an online shop where a shop administrator wants to list all products which have at
some point been removed from a shopping cart. In event-sourced architectures, the
state of the shopping cart at each past point can be queried.

There are a number of documents describing how event sourcing has been applied in
real-world systems. To highlight two information-rich documentations: The financial
trading platform LMAX utilizes event sourcing [16] and a documentation published by
the Microsoft Windows Azure team describes several case studies [10]. Furthermore,
event-sourced frameworks like Akka?, Event Store?, or the Eventuate* toolkit by the
Red Bull Media House provide the foundation for a number of real-world systems.

'http://docs.geteventstore.com/introduction/event-sourcing-basics/#business-value-of-the-event-log
*http://akka.io/

*https://geteventstore.com/

*https://rbmhtechnology.github.io/eventuate/
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2.2.3 Thesis Terminology

Now that various authors’ understanding of event sourcing has been described, we
establish the terminology used throughout this thesis. Since authors in the field use
varying terminology, our terminology may differ from the individual authors” under-
standing.

Event An event is a change to the state of an application. Each event is appended
to the event log. It is important to note that the state change has already occurred
to the entity. To reflect this, we name events as verbs in the past tense (e.g. Pro-
ductCreated). The granularity of events is defined through the context in which
event sourcing is applied. Events can be replayed in order to rebuild the state of a
system up to a certain point. Except for the first event, each event builds upon the
previous event. A replay process always needs to start from the beginning, though
snapshots may be used as substitutions.

Snapshot Snapshots are an established mean to optimize the process of restoring
state. They represent the state of the system at a certain point in the event log and
can be used instead of replaying the events prior to the snapshot.

Event Log The event log provides the stream of all events which belong to an appli-
cation. An exchangeable term for the event log is the event stream. Figure 2.2 depicts
an excerpt of a hypothetical event log.

AddedProduct AddedProduct RemovedProduct

- X OrderPlaced
Customer: Alice Customer: Bob ™ Customer: Alice | Customer: Bob —
Product = A Product = A Product = A .

Figure 2.2: An excerpt from a hypothetical event log in an online shop.

Command In the context of this thesis, a command resembles a requested change
to an application. A command always results in an event, even in case of a failure.
Commands are typically named in the imperative form (e.g. CreateProduct).

Retrospection We use the term retrospection, to describe the passive (i.e. read-only)
access of a system’s history and prior states.

Retroactive Computing With retroactive computing (or retroaction), we describe the
interaction with an application’s history. This includes applying passive retrospec-
tive operations, as well as actively modifying a history. Modifications can be applied
through removal or insertion operations, as well as a retroactive change of the un-
derlying application logic (the source code). This is examined in further detail in
Chapters 4 and 5.

2.3 Command Query Separation (CQS)

The Command Query Separation principle was first described by Bertrand Meyer
[17, p. 747] with the intention of improving the handling of side effects when creating
a program or designing an API. A core idea behind this principle is to split access to
objects into (1) Queries, which return information and (2) Commands, which modify
state (Figure 2.3a). Queries should not produce side effects. An often-mentioned
analogy is that a question should never change the answer.
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Queries Commands Queries Commands

Query Publish Changes
Model Model
(a) Command Query Separation (CQS) (b) Command Query Responsibility Segrega-

tion (CQRS)

Figure 2.3: Conceptual depiction of both patterns.

2.4 Command Query Responsibility Segregation
(CQRS)

Command Query Responsibility Segregation is a pattern which was first described
by Greg Young [9]. In the past, some resources have described it as an extension or
special case of the Command Query Separation principle, but today it is considered
a separate pattern with an origin in the CQS principle. CQRS states that a different
model (i.e. component or object) is used to fulfill queries than the model used to ful-
fill commands (Figure 2.3b). CQS splits responsibilities on the code level, by dividing
methods into queries and commands; CQRS takes this further and even divides ob-
jects into two kinds: reading or writing. Young has described this as follows: “CQRS
is simply the creation of two objects where there was previously only one” [8].

Building an architecture following the CQRS pattern often introduces an eventu-
ally consistent behavior into the system. Since the query and command model are
separate components, depending on their coupling they might not necessarily be in
synchronization. If they are loosely coupled, the query model does not necessarily
contain the same data as the command model at every point in time. This character-
istic that the query model might contain a temporarily inconsistent (i.e. outdated)
state, which at some point in the future “eventually” converges to a consistent state,
is referred to as eventual consistency. This eventually consistent behavior becomes
especially relevant in distributed systems, when the query model(s) are physically
separated from the command model(s). Brewer’s CAP theorem [18] postulates that
a distributed system inevitably has to decide how to handle consistency, since it can
only ever ensure two of the following three guarantees in case of a network failure:

1. Consistency: All participants view the same data.

2. Availability: Each request receives a response.

3. Partition Tolerance: The system continues to operate, even if message loss oc-
curs between arbitrary participants of the system. This affects consistency,
since participants need to cope with the loss of messages. It also affects avail-
ability, since each participant needs to be able to fulfill requests.

Thus, if a distributed system is built using CQRS as a style of architecture and
chooses partition tolerance and availability over consistency, the system can only
provide eventual consistency. Hiding the fact that the system behaves eventually
consistent (e.g. by imposing optimistic assumptions) can be dangerously misleading,
since developers and software components would then operate under false assump-
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Command Query
Application =\ o o

Command Model — N

Query Model

Update

Figure 2.4: In a CQRS architecture, a command and a subsequent query do not nec-
essarily possess a causal relationship, since commands are asynchronous
and it is unclear when they are executed and finished. In the example illus-
trated above, the query model receives the status update from a finished
command after the query has already returned. This leads to an eventually
consistent semantics for queries.

tions. A progressive handling of consistency issues can be seen as a strength of a
distributed ES+CQRS system, since it forces developers to take this very consistency
behavior — which is such an integral part of the overall architecture — into account
when developing an application. Queries might at all times return an outdated result
and it is unclear when commands are executed. This progressive attitude to issues
of large distributed systems has spawned a certain kind of attitude and a number
of projects in recent years. The Reactive Manifesto [19] is a noteworthy document
which surfaced in 2013. It summarizes key properties behind distributed system de-
sign, which correspond to event sourcing and CQRS.

A disadvantage of command and query segregation is that it yields a higher com-
plexity when building a system and makes it hard to create a causally dependent
series of commands and events. Since commands behave asynchronously and do not
return a value, the application has no means of knowing when the result of a com-
mand is visible. Thus, a query following a command might return an outdated status.
Subsequent queries, however, will at some point eventually return a consistent status.
Figure 2.4 illustrates a typical sequence of commands and queries. There are possibil-
ities to circumvent this behavior — delaying the fulfillment of queries until the query
model is updated to a certain version number for example (as used in conditional
requests in Eventuate'). But it should be noted that these are mitigation techniques
which should only be used in rare, special cases since they come at the cost of effi-
ciency and work against the characteristics of these systems. Instead it is desirable for
the application to be inherently able to cope with an eventually consistent behavior.

2.5 Combining ES and CQRS

COQRS is a pattern which forms a symbiotic relationship with event sourcing and as
such is often used in event-sourced architectures. The classification of operations in
state-mutating commands and read-only queries aligns well with the ideas found in
event-sourced systems. In CQRS, commands represent intentions, which are sent to
a command processor. There they are processed and yield state changes - the events.
Events are then appended to the event log and published to query models, where they
eventually update the state as well. Query models fulfill read-only requests and can
provide a certain view on the data (e.g. a table of accounts and their balances). Events
are used as the mean to synchronize the models. Thus, commands are then clearly

'https://rbmhtechnology.github.io/eventuate/userguide. html#conditionalrequests
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Application

CORS
Application

Interface
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Command
Model
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(Events)

Read-only
Access

Current
State

Figure 2.5: Architecture of a system which uses event sourcing in combination with
COQRS. This illustration is based on a figure from [3].

separated from other operations which do not result in an append operation to the
event log. Figure 2.5 illustrates a typical ES+CQRS architecture: the business logic re-
sides in the high level application layer; commands and queries hide implementation
details of how they are executed. Figure 2.6 depicts a conceptual view with focus on
the internal workings.

The command/query segregation results in characteristics that work well with
event sourcing. Since events are immutable and are only appended after a command
has been executed they are the mean to keep data models in synchronization. The
query models only need to receive new events in order to stay consistent with the
command model. By splitting concerns on an object level, individual optimization of
each model is supported. This is a crucial property for systems with a requirement of
scalability, since the optimization techniques for reads and writes differ. Segregating
the command and query model makes it feasible to scale them independently. One
technique to optimize for reading operations in a distributed system is to replicate the
database. These database replicates then have to be kept in synchronization, but each
of them can then respond to requests. A contrasting possibility to optimize for writes,
on the other hand, is to reduce redundancy (and thus writes) in a database. This can
be achieved by organizing a single database accordingly, using e.g. normalization
rules. Further details on the combination of event sourcing and CQRS can be found
in a work by Hauser [20].

2.6 Domain-driven Design (DDD)

Both, event sourcing and CQRS, are closely related to the idea of domain-driven de-
sign. The terminology and ideas behind DDD were described by Eric Evans [21] in
2003. At its heart, DDD provides a set of guiding principles and building blocks for
software development. The core idea here is to put the focus of a software project on
the domain and the tasks within it. A central part when designing a system is the
creation of a domain model. Among other components, this model describes tasks
and events of the core domain. This domain model is created in collaboration with
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Queries Commands

State Command Processor
Events

Query Model Command Model

Figure 2.6: Conceptual view of an event-sourced architecture which takes advantage
of the CQRS style.

domain experts. In this regard, DDD is similar to agile development models, where
the collaboration with domain experts (or customers) is encouraged as well. DDD
demands the definition of a common language, the ubiquitous language, to be used
throughout the project. This ubiquitous language is thought to build a common view
on the domain model amongst team members. Verbs and nouns in the language pro-
mote a clear understanding of the tasks which need to be fulfilled by the system. A
common language is also thought to prevent misunderstandings and enable anyone
in a project to talk comprehensibly to any other person in the project, thus bringing
domain experts and developers together.

Applying DDD only in this bounded context as well as the usage of high-level
concepts to abstract from low-level details offer commonalities with the event sourc-
ing field. In an event-sourced system, one usually does not persist all low-level oc-
curring events in a system, but rather only relevant domain events in a delimited
context. DDD is thought to be suited well for systems with complex business rules
and a clearly defined and delimited domain. In a simple system, however, DDD may
increase complexity to an unnecessary and counterproductive level.

The ideas behind event sourcing and CQRS have developed out of DDD. Com-
mands and queries in an ES+CQRS system can be modelled using DDD. This way
they have a clear meaning in the domain model and are familiar to developers and
domain experts. The same holds true for the events which are created — as domain
events they fit into the domain model and its logic. A domain expert describes com-
mands and queries and their internal logic; an application developer can then access
these commands and queries over an API to implement an application. Since com-
mands and queries abstract from domain-specific conditions, working with the sys-
tem is made easier. An application developer does not have to take into account how
a command is validated or know how it is implemented internally. Complex business
logic is abstracted through the usage of simplified commands.

2.7 Summary

In this chapter, we detailed the concept of event sourcing. We laid out the terminol-
ogy used in this thesis and described the Command Query Responsibility Segregation
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(CQRS) pattern, a common style of architecture for event-sourced systems. Further-
more, we examined the symbiotic relationship formed by CQRS and event sourcing.
Although we described some of the benefits which event-sourced systems can
provide, it is important to note that event sourcing is seldom applied to an overall
system. Indeed, an often found recommendation is to apply this style of architecture
only within a clearly defined context. The same recommendation is often found for
CORS, since the command/query model segregation comes with the implication of
higher complexity and often an eventually consistent behavior. Thus, applying CQORS
as a style of architecture is only beneficial when the system has requirements for
CORS properties, such as individual optimization of the read and write model.






Chapter 3

Related Work

This chapter provides an overview on related efforts to the objectives of this thesis.
We aim to provide a clear distinction of this thesis’ goals to existing works.

3.1 Event Sourcing

The idea of retroactively modifying existing event logs in order to observe alternate
system behaviors is not unmentioned in the event sourcing field. Fowler describes a
concept he calls retroactive events [5] — appending a special type of event to the event
log to denote a retroactive change. What Fowler calls retroactive events, Young de-
scribes as reversal transactions [9, p.31]. Synonymous terms for this concept used
by other authors are undo or anti events. Fowler also describes a number of bene-
fits which systems could gather from retroactive capabilities: posteriori bug fixes or
additional code which executes time-dependent logic, for example.

Potential modifications to the event log have also been mentioned by Erb and
Kargl [3]: By deleting, inserting, or modifying events one may alter the current state
of the application or retrieve former states; one could also alter the application logic
(the “source code”) at a past point and explore how the application would have be-
haved differently. There are other individual resources which mention potential re-
troactive capabilities of event-sourced systems as well; a conference presentation by
Greg Young stands out among these [22].

But the scarce resources which touch on these retroactive capabilities offer only
ideas or remarks on potential capabilities. The mentions often only refer to purely
event-sourced systems, which do not persist commands. The benefit of sourcing com-
mands as well is often not addressed. To the best of our knowledge, no comprehen-
sive examination and exploration of retroaction in event-sourced systems has been
conducted yet. This is the niche we address in this thesis.

3.2 History-aware Algorithms and Languages
History-aware algorithms utilize information about the past of a system. Notewor-

thy works in this direction are a history-aware self-scheduling algorithm [23], and a
history-aware adaptive routing algorithm [24].

13
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Exposing the history of variables as a programming language feature has been
addressed by Proebsting et al. [25]. This work describes a programming language
with language primitives which allow access of variable history. In the following
example, the “<x>” exposes the sequence of values which were assigned to x.

print(”average %f\n”, sum<x>/length<x>);

The intention here is to reduce bookkeeping code (such as counting e.g. invoca-
tions of a certain function), in order to reduce errors, work, and overhead. The authors
have filed their idea of program history in a computer programming language as a
patent [26]. These approaches, however, only enable passive retrospection in the pro-
gramming language and do not consider retroactive alterations of the application’s
history, nor the exploration of experimental execution paths.

3.3 Self-improving Algorithms

Self-improving algorithms in their original sense learn from the data upon which they
work, in order to better perform their operation [27]. Such algorithms exist for a broad
number of tasks: sorting, clustering, or scheduling, for example. The objective of most
of these algorithms is to optimize individual parameters of an algorithm, with the
logic itself remaining hardwired. Exploring entirely different algorithms, comparing
experimental branches, issues of consistency, or side effects are not of subject in most
of these algorithms.

An outstanding example of a self-referential and self-improving algorithm is the
Godel machine [28]. It rewrites its complete internal logic once a mathematically
sound proof is found that another logic would perform better. When doing this, it
is ensured that the examined logic is a globally optimal maxima rather than a local
maximum. The Godel machine is settled in the research area of artificial general in-
telligence, where further algorithms with learning abilities can be found. Neural nets,
for example, can be iteratively fine tuned for machine learning purposes through
the usage of new training data. There are other fields which utilize the idea of self-
improving software as well. In graphical user interfaces it is quite common to adapt
the interface based on the usage. An easy possibility to do so is to display frequently
used functions first whilst hiding unused features. In large distributed systems, load
balancers can be used to improve the overall system performance by spawning new
virtual machines, in order to better cope with upcoming load".

3.4 Reversible Debugging

The concept of tracing a system for later analysis can be found in many areas. Ex-
ecution traces of programs are commonly used for debugging or testing purposes.
Tools for debugging software allow for interactive control over the execution of an
ongoing program. These tools commonly only support stepping through the program
execution, but there are some debuggers which also aim for the ability to step back.
This concept of reverse debugging is also described as omniscient debugging [29] or
back-in-time debugging [30]. One example of a debugger which allows for reverse
debugging is the GNU Project debugger gdb [31]. Whilst a process is executed, regis-
ters and memory locations which are modified by individual machine instructions are

‘https://aws.amazon.com/elasticloadbalancing/
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recorded. In order to undo an instruction, these registers and memory locations are
reverted. An insightful description of this process can be found in the GDB documen-
tation [32]. Stepping backwards and forward is deterministic, as long as side effects
do not trigger deviations from this process. As we view it, the influence of side effects
is mostly ignored by reversible debuggers. There are individual tools which support
recording side effects though [33].

An experimental graphical user interface which utilizes history-aware debugging
was presented by Bret Victor [34] in 2012. Figure 3.1 depicts a screenshot of this
interface. Above the left screen, a timeline slider is available. Using this element, it
is possible to step through a program’s recording. On the right side of the screen, a
parameter which controls the jump strength of players is modified. The left side of
the screen depicts the current program execution and extrapolates how this tweak
would have influenced the further jumping curve of the player.

Delimitations of reversible debugging to our approach are that debugging is a
decoupled process which happens in a separate environment. Furthermore, access
to the program’s history is not possible within the program environment (the source
code) itself. Our objective is to examine an integrated system, where applications
may modify and interact with their history in a single environment.

this.yvelocity = -25;

this.yVelocity += 100 * dt;
this.y += this.yVelocity = dt;

var hitInfo = this.hitTest();

this. junping = (hitInfo.bumpedY >= this.y);
if (hitInfo.bumpedY != this.y) {
this.yvelocity = 0;

this.x = hitInfo.bupedX;
this.y = hitInfo.bumpedY;

this. running = (this.x != oldX) & Ithis.junping;
this.facingLeft = (this.x < oldX) || (this.x == oldX &

if (hitTi
this.yVelocity = =35
hitInfo.hitObject.stomp();

if (this.y > 45 || this.y < -40) {
this. initialize();

LR R R BT R )
1909 007 011 a9 a1 E
CLRUCT R BT RS R OT )

7
//  GameEnemy
var GameEnemy = new Class({

Extends: GameObject,

Figure 3.1: An experimental graphical debugger, which allows for tweaking the
recorded history of an application. The image (taken from [34]) depicts
how the modification of a movement variable affects the recording.

3.5 Retroactive Aspects

Retroactive aspects have been described by Salkeld et al. in various works [35, 36].
Their work settles in the area of aspect-oriented programming (AOP). AOP has some
advantages over an object-oriented approach. For example, it can be cumbersome
to realize crosscutting functionalities in object-oriented programming models. Exam-
ples of crosscutting functionalities are logging or authorization features which affect
multiple objects. A typical object-oriented approach to handle crosscutting function-
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ality in multiple objects, is to call the e.g. authorization methods within each object.
In AOP, on the other hand, crosscutting functionalities can be implemented by creat-
ing a new advice for an additional authorization functionality. Next, it is configured
which methods this advice applies to by specifying pointcuts. The term weaving refers
to the process of producing an executable program with the source code and the as-
pects “weaved in”.

The authors aim to analyze and manipulate recordings of a program’s execution
post hoc (i.e. offline). For this analysis, they aim to extend an existing AOP language
to support retroactive evaluation semantics. Thus, the analysis code is written in the
same environment as the program. The authors make the argument that this eases
the creation and evaluation of analyses for average developers, whose expertise lies
in the language in which the program was written, rather than in the usage of ex-
ternal tools. Additionally, developers can use the familiar data types and functions
from the program in the analysis code as well. They refer to their primary goal as “al-
low[ing] analysis code that is as close as possible to the program’s source code”. The
term retroactive weaving refers to the evaluation of retroactive aspects “in relation to
a previous execution”, meaning retroactive aspects are weaved into an existing trace.
Retroactive advice describes the analysis, replay, and modification of former states.
From our understanding, retroactive aspects describe the interplay of retroactive ad-
vice and retroactive weaving used to conduct post hoc analysis of a recorded program
execution.

The authors recognize the issues of dealing with side effects in retroactive con-
texts: “We are continuing to investigate the best approach for managing side effects.
It is unclear how to rigorously permit intentional, safe side effects in retroactive ad-
vice: outputting results to the console or the file system should be permitted, for
example [...]”. For the analysis code they propose to avoid side effects, for the appli-
cation code they suggest the usage of an operator which enable the suppression or
redirection of side effects from retroactive code.

3.6 Retroactive Data Structures

Retroactive data structures record the series of operations which have been performed
on them. It is then possible to retroactively insert, delete, or update an operation in
the past. These data structures were first described by Demaine et al. [37], with a
focus on how to implement them efficiently. The authors highlight a broad number of
applications which can benefit from using retroactive data structures. One example
which they describe consists of weather stations which lose their connection to a
central control system. Once they are reconnected, their data needs to be fed back
into the system. Ideally this is done retroactively, as if the stations had been connected
the whole time.

The authors compare retroactive data structures to persistent data structures and
highlight the differences: In persistent data structures, several versions of an object
are held and modifying the object is achieved by applying an operation on the latest
version. Retroactive data structures, on the other hand, focus on inserting, deleting,
or updating operations which have been executed on an object in the past, rather than
on the latest version.

Any data structure can be retroactively manipulated by rolling a data structure
back to a prior state, apply a change, and replaying forward again. However, the
authors argue that this often leads to inefficient manipulations with an expensive
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overhead. They examine if arbitrary data structures can always be transformed to a
data structure with support for efficient retroactive manipulations and prove that it
is not possible to find such a generic transformation. Realizing efficient retroaction
depends on the use case: they describe a number of data structures which support
efficient retroactive modifications (e.g. priority queues). The authors furthermore dis-
tinguish between partially and fully retroactive data structures. Partially retroactive
data structures enable the insertion and deletion of operations in the past. Queries
are limited to the present time. Thus the outcome of retroactive operations can only
be observed at the present time. Fully retroactive data structures additionally allow
the specification of arbitrary times in the past when placing a query. The result of the
query will then be as if it were executed at that time in the past. The delimitations to
our objectives are that we consider interactive event-sourced applications, opposed
to data structures with no behavior by themselves.

3.7 Version Control Systems

Version control systems (VCSes) or source code management (SCM) tools, like Git
or Subversion, provide capabilities for managing changes to files. Once a file is com-
mitted to the repository, a revision with this certain state is created. If an altered
version of the same file is committed to the system, a new revision is created. The
current state of a file is derived from this series of commits. Additionally, VCS tools
allow changes to be traced and revoked, as well as the creation of branches. These
branches contain the entire history of the repository up to a certain branching point.
It is then possible to apply experimental changes in the branch, without affecting the
main (or “master”) branch. Results can be integrated back to the original branch by
merging two branches. Most modern VCSes, however, provide much more than this
basic set of operations (bisecting the occurence of a bug, for example). Many modern
VCSes save just the delta (the “diff”) to the previous revision; the current state is thus
defined by this series of deltas.

VCSes are typically agnostic in terms of the files which they administer in a repos-
itory. They are decoupled tools which operate on a meta level - they do not have any
coupling with the files which they administer. Also the files in the repository do
not have access to their own history, nor operations to manipulate their own history.
A commonality with the event sourcing domain is that the repository can possess
append-only semantics as well and the series of commits defines the current state.
Thus, retrospective operations, such as restoring and analyzing previous states, are
possible. Additionaly, a typical VCS provides features which this thesis aims to ex-
amine in event-sourced systems: creating branches and merging changes back to a
main branch.

3.8 Time Travel Theory

Time travelling is a concept which describes the notion of moving forward and back-
ward through time. The field has been subject to works of fiction, philosophy, and
extensive scientific research. There are many parallels to the topic of retroaction in
event-sourced systems: The event log can be considered a timeline and retroactive

‘https://git-scm.com/docs/git-bisect
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changes can be considered time travel. Furthermore, in time travel theory, a small
change in the timeline can have enormous, unforeseeable changes as a consequence
as well. An extensive summary of logical and philosophical questions on the topic
was compiled by Smith [38]. A number of interesting hypothetical questions (e.g.
“Where are the Time Travellers?”) are discussed there as well.

Time travel theory can provide helpful insights on issues of retrocausality and
causality violations which might occur. Causality violations in time travel theory
occur when we observe an effect before its cause. One such issue concerns the emer-
gence of temporal paradoxes, which can lead to an event log that is in contradiction
to itself. Consider the grandfather paradox: one goes back in time to a point before
one’s own father was conceived and eliminates one’s grandfather. This leads to a para-
dox: once the grandfather is dead, one could never have been born and never have
travelled back in time to murder one’s own grandfather. This is a logical paradox,
each scenario contains its own exclusion. Transferred to an event-sourced system, a
comparable scenario is an object which removes its producer from the log at a point
before it was created.

But issues of retrocausality do not always require family members to die. An-
other problem of retrocausality concerns causal loops which emerge when one event
is cause for another event, which is a retroactive cause for the first event. Or as the
physicist Michael Rea puts it: “a causal loop is a causal chain in which at least one of
the events in the chain lies in its own history” [39]. Without further considerations,
it cannot be determined what originally triggered the event and causal loops can be
responsible for loops in which “things come from nowhere” [38]. Various examples
of causal loops have been constructed by philosophers, physicists, and fiction authors.
These examples often have a similar pattern and the presumption of a single timeline
(often referred to as a “closed timelike curve”). One such example is a time traveller
who travels back with the copy of a mathematical proof. The traveller reveals this
proof to the mathematician who made this very proof, at a time before he did it. Thus
the information seems to come from nowhere. When computed, causal loops can
create infinite loops. They can also break the traceability of a system, since it is not
always clearly determinable how a system reached its current state. We examine
these issues of causalities in retroactive systems in further detail in Chapter 4.

A number of theories postulate possibilities to avoid paradoxes. One such theory
concerns parallel universes. Here, each time travelling action yields a new, parallel,
universe. If the grandson eliminates his grandfather in this new, parallel, universe,
his action will not impact his conception in the original universe. The elimination
happened on a different timeline, thus there is no paradox. This idea is also commonly
described as “many-worlds interpretation”. Another possibility is the self-consistency
principle [40, p.607], which was developed by Igor Novikov to solve the problem of
time travel paradoxes. It postulates that actions which would lead to paradoxes simply
cannot be executed — similar to the laws of physics which restrain our influence on
the real world. In works of fiction this self-consistency is sometimes depicted as a
restriction of the free will (one just cannot act in this way) or by creative avoidances,
such as that one’s grandfather was not actually the biological grandfather.

Whether time travel is possible remains disputed. As we view it, the scientific
and philosophical consensus seems to be that time travel is assessed as unlikely. The
argumentation often follows the lead that time travel raises a number of issues which
cannot be explained with current scientific or philosophical understandings.
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3.9 Other Related Domains

In the area of discrete-event simulation (DES), a system is modelled as a sequence
of discrete events. Here, events are defined as “instants in time when a state-change
occurs” [41]. Such a simulation is executed by tracing the path from one event to its
consecutive event(s). State is represented as discrete events over time with the current
state being derived from this series of events. This concept has a number of parallels
to the ideas behind event sourcing. In fact, there are so many commonalities between
the two research domains that it is possible to combine them. In a work by Erb and
Kargl [3], both approaches are compared; they also describe a hybrid architecture.

There are a number of further research domains and technological fields with par-
allels to retroaction in event-sourced systems. Database management systems often
possess transaction logs and rollback methods for fault or crash recovery [42]. Jour-
naling file systems, such as ext4 or JFS, record the state mutating operation for crash
or fault recovery. Message logging and checkpointing is another concept used in
distributed systems for failure or crash recovery. Besides the already described re-
troactive data structures, there are more data structures with history support. The
concept of unlimited undo or backtracking [43] is such an example. The blockchain
technology [44] used in the Bitcoin cryptocurrency (and many other applications)
has parallels to event-sourced systems as well. The blockchain utilizes cryptography
to achieve an immutable property for blocks. In conjunction with the append-only
behavior of the blockchain, this can be beneficial for scalability and traceability (audit
log). A multitude of NoSQL databases view modifications of documents as incremen-
tal state changes, which are committed to an append-only data storage. CouchDB is
such an example [14].

3.10 Summary

In this section, we described a number of related research domains and technological
fields. We highlighted that a lot of the ideas behind event sourcing and retroaction
can be found in other areas as well, mostly under a different terminology. Most sys-
tems, however, use a post hoc analysis approach, in which the analysis tool is in a
separate environment, tool, or programming model. When the history of a system is
utilized, this is mostly done by applying only passive retrospection, without retroac-
tively altering the application’s history.

The objective of this thesis is to examine an integrated system, where an applica-
tion may modify and interact with its history in a single environment. To the best of
our knowledge, the idea of using an event-sourced architecture to enable retroactive
computing features has not yet been researched, nor examined within a prototypical
implementation.






Chapter 4

The Conceptual Model

This chapter examines the ways in which retroaction can be applied to event sourcing.
We discuss conceptual considerations and illustrate how different architectures can
be utilized to enable retroactive capabilities of event-sourced applications.

4.1 Retroactive Computing

In order to examine how retroactive capabilities can be utilized in event-sourced sys-
tems, we explicitly examine event sourcing in a CQRS context. As described in Chap-
ter 2, event sourcing and CQRS form a symbiotic relationship which is commonly
taken advantage of. By assuming such a style of architecture, we can focus on how
the event sourcing foundation can be utilized. This is not to say that we do not exam-
ine other architectures. Indeed, in Chapter 7 of this thesis we examine if and how the
concepts described in this (and the succeeding) chapter can be applied to a different
architecture. The Chronograph platform is the foundation for this second examina-
tion; it applies event sourcing in a context which has only few commonalities with
the traditional CQRS style of architecture.

4.2 Conceptual Considerations

This section provides an overview on key challenges when utilizing retroaction in
event-sourced systems. We propose possibilities of how to handle these issues, but
do not claim to lay out the one true way in which retroactive computing should be
done in event-sourced systems. We rather aim to illustrate that depending on the con-
text of a system, different conceptual choices are best-suited. We deliberately restrict
the context in which we examine retroaction and focus on three example scenarios
of event-sourced applications with different requirements and issues. The topic of
retroaction is very extensive and appointing these three scenarios as cornerstones of
our examination provides a guideline and helps us illustrate complex issues.

Weather Station Application In this scenario, sensor readings are fed into the ap-
plication via commands. These commands result in events, which do not possess
causal relationships among each other. Based on this data, the application generates
statistics and forecasts. The scenario is not complex and poses only few issues for
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Replaying Comands

Rebuilding State

Figure 4.1: When commands and events are sourced, this results in a timeline of com-
mands and subsequently their resulting events.

retroaction. Examples of retroactive operations in this scenario are the correction
of faulty values, the retroactive addition of missing values, and the reconstruction
of historic statistics and predictions. Comparing the outcome of different forecast
algorithms based on the historic data is another use case.

Internet of Things Controller The application manages several independent Inter-
net of Things (IoT) devices. These devices send status information to the controller,
which maintains a global view on all devices and issues new commands to them. The
global view of the controller is based upon the status information which it receives
from the devices; commands are issued based on this constructed view. As such,
this scenario possesses a close coupling between the application and its environment:
The system state affects the environment, which in turn affects the system state. Re-
troactive use cases here include the analysis of incidents. Not only can incidents be
reconstructed, changes to the controlling logic can be simulated as well. Furthermore,
the historical application data can be used to optimize the control algorithm.

Online Shopping Service The online shop combines warehousing, order process-
ing, pricing, and accounting. By utilizing retroaction, prices or inventory errors can
be corrected retroactively. Simulations of changes to discount algorithms or price
calculations can be performed based on past transactions. This scenario is heavily
affected by side effects (e.g. sending order confirmations), hidden causalities (e.g. the
impact of prices on actual orders), and a strong coupling (e.g. effect of orders on
article availability).

4.21 Command Sourcing

In a strict event-sourced system, only events are sourced, but not the commands
which triggered their creation in the first place. The current state of a system de-
rives from this series of events and can at any time be rebuilt by applying each event
successively again (starting from the first event). It is important to note that in such
an event replay no commands are invoked, since the events are not newly computed.
This is opposed to a command replay, in which each command is invoked again. As
a result, the commands may yield the same events or different ones, but the events
have been newly computed. A command replay poses a central issue to retroactive
computing: If a command is invoked again, side effects might occur again. An event-
replay, on the other hand, does not trigger any side effects, since only existing events
are used to rebuild state.

By sourcing commands and events, the retroactive capabilities gain in expressive-
ness and a number of applications are possible, which are not feasible in a system
which sources only events. For instance, it is possible to test how a system would
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Potentially unnecessary
computation

Figure 4.2: This figure depicts a possible course of computation when events are ap-
pended to denote retroactive modifications.

have reacted differently, if a different logic (i.e. a different command processing) had
been in place. In order to evaluate how a different command processing would have
affected the behavior of a system differently it is necessary (1) to source commands
and (2) for the command processing to be decoupled from the command. Decoupling
the command processing from commands can be modelled by a command processor
component which receives a request to invoke a certain command, executes appropri-
ate processing logic, and produces events (Chapter 2). One can then use the recorded
set of commands and replay them with a different processing implementation. In re-
lation to our three scenarios, commands can be modelled as sensor data streamed into
the system (weather station, IoT) or as orders and inventory updates (online shop).

For the remainder of this thesis, we focus on systems which source commands and
events. We refer to the log of such systems, the combination of command and event
log, as the timeline. Figure 4.1 depicts an example of a timeline. Here, a command in
the timeline can result in one or more events. If we write of “events” resulting from
a command (as opposed to the singular “event”), we imply that the result could also
consist of a single event.

4.2.2 Editing the Event Log

The append-only nature of the event log in event-sourced systems creates a lot of
the advantages which one usually aims for with an event-sourced architecture (see
Section 2.2.2 for a detailed explanation). For retroactive commands, this append-only
restriction implies that retroactive changes to the event log need to be appended as
well. We mentioned Fowler’s retroactive events [5] as a mean to apply retroactive
changes to the event log. These retroactive events are appended to the event log to
denote that the effect of a previous event should be revoked by modifying the current
status in a way as if a certain event had never occurred. In the case of the online shop,
a retroactive event which fixes a false inventory update could set the inventory stock
back to a prior number. It is important to note that the originally false event remains
in the event log. The usage of these retroactive events is not motivated by retroactive
explorations of insert or delete modifications to the event log, the intention rather is
to add fixes to the log. Fowler proposes three basic types of retroactive events for this:
out of order events, rejected events, and incorrect events.
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Retroactive events suit well for typical productive event-sourced systems, in which
it is crucial that events are only ever appended and never deleted or retroactively in-
jected. Otherwise a lot of the event sourcing characteristics (e.g. benefits for scala-
bility, traceability, or the possibility to rebuild application state at arbitrary points in
the timeline) would no longer hold. The motivation behind the research in this thesis,
on the other hand, is to explore how modifications to the past of a timeline affect the
current state of a system. Appending reversal events is not an appropriate tool for
this purpose, since it cannot always be easily calculated how the current state of the
system would differ. This calculation would be equivalent to resetting the system to
a previous state, applying modifications there, and re-playing events (or replaying
commands) from that point on. A series of retroactive changes would then lead to
expensive and potentially unnecessary computations being executed (Figure 4.2).

A contrary possibility to apply retroactive modifications, is to directly edit a time-
line without appending commands or events to the timeline. We refer to such retro-
active modifications as retroactive operations. These are the insertion or deletion of
commands (or events), as well as the exchange of command processing logic. Even
though direct editing violates the append-only behavior of the timeline, this does not
necessarily contradict the principles of an event-sourced system. We propose to ap-
ply two different views here. By distinguishing between a main timeline and branches
of this timeline, we can utilize the advantages of both options. The main timeline re-
sembles the application itself and retains the append-only behavior. It cannot modify
its own past. It is though possible to create branches of this main timeline. Branches
are copies of a timeline. They were created at a certain time and contain everything
that was in the timeline at that point in time. Modifications on them do not affect the
original timeline. In contrast to a timeline, they possess a direct editing semantics.
If results from these branches are to be returned into the main timeline, this can be
done using event sourcing primitives — by appending events.

This decoupling of “productive” system and retroactive explorations already pre-
vents obvious issues of retroactive systems: A paradox could emerge once the ap-
plication modifies its own timeline in an inconsistent way. This can happen once it
introduces a contradiction to the current state into its own past — e.g. by modifying
its history in a way that it could never have executed such a modification. Moreover,
keeping the append-only characteristic for the main system flow does not break with
benefits of event-sourced architectures for e.g. scalability and traceability. The fol-
lowing example illustrates this issue with a delete operation. For this, we assume
that a system receives commands which influence and trigger the purchase of stock
options. In the example, we use numbers as unique identifiers for commands (c) and
events (e), but this is only for illustration purposes. Events usually do not have an
incremental identifier.

cO: someComputation(): // ...

e0: buyStock = false

cl: newData(...): if (data.price < 100) buyStock = true;
el: buyStock = true

c2: checkBuying(): if (buyStock = true) buyStock();
e2: boughtStock = true

c3: delete(”cl” and ”el”);

The resulting timeline looks like this:



4.2. CONCEPTUAL CONSIDERATIONS 25

c0: someComputation(): // ...
e0: buyStock = false

c2: checkBuying(): if (buyStock = true) buyStock();
e2: boughtStock = true

c3: delete(”cl” and ”el”);

It is no longer clear why stock was bought in the first place. In some corner cases,
this may get clearer if the command model only possesses one possibility which could
have triggered buyStock(), but this cannot be generalized.

In the case of insert operations the traceability of a system breaks as well. In the
following example it can no longer be clearly traced what originally triggered the
purchase, if an event “bar = true” is inserted after ee. There are certainly means
to circumvent this behavior (e.g. saving timestamps with events), but this then still
works against the append-only behavior of the event log.

co: foo = false;
eo: foo = false

cl: if (foo == false || bar == true) buyStock();
el: boughtStock = true

If a system applies retroaction only to branches and appends the results from re-
troactive computations on branches to the timeline using command/event primitives,
then it is still possible to trace how certain states of the timeline occurred. From
our point of view, Fowler’s retroactive events are the only appropriate mean to ap-
ply retroactive operations on the main timeline without breaking traceability or the
append-only property. Thus, in the case of the weather station, they are an appropri-
ate tool to correct faulty values or retroactively insert later ones. Branches, on the
other hand, fit very well to conduct e.g. experimental retroactive analyses and return
their result to the application. In the IoT scenario this could e.g. be the analyses of
an experimental device controller. For the remainder of this thesis, we focus on the
direct editing of branches. As illustrated, it fits better to the objectives of retroaction
in our context. Furthermore, we use the term retroactive queries when referring to
queries which operate on a branch.

4.2.3 Consistency and Validation

An implication of directly editing a branch is that whenever a change is introduced
into the past, these changes affect the subsequent part of the branch. Thus, in order
to ensure a consistent branch, editing operations need to be complemented by further
measures. Otherwise causal violations (i.e. a paradox) could occur when a contradic-
tion is introduced into the branch. For example, an excerpt of the online shop’s event
log could look like this:

cO: Create Product A, Inventory Stock = 10
e0: Created Product A, Inventory Stock = 10

cl: Order 10 Items of Product A
el: Ordered 10 Items of Product A

An example of an illegitimate change to this example would then be to inject the
event “Ordered 1 Item of Product A”between eo and e1, since this would result in
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anegative inventory and depending on the domain model a negative inventory might
be prohibited. The event e1 would thus not be consistent with the domain model
after this particular retroactive modification. There are a number of options how the
consistency of a timeline can be ensured. In the related work chapter on time travel
theory (Chapter 3), we already mentioned two possibilities to prevent paradoxes: the
usage of parallel universes and the self-consistency principle. We now describe how
the self-consistency principle can be applied to retroaction in event-sourced systems:

Removal of Causally Dependent Events Causally dependent events can be recur-
sively removed, by forward deleting all events which have been directly or indirectly
influenced by a specified event. After this cleanup process, all consequences of an
event have been removed from the timeline. In order to realize this, causal dependen-
cies between events need to be recorded. In the online shop scenario, this can be used
to prevent paradoxes. When e.g. an event PlacedOrder is removed from the timeline,
all causally dependent events (e.g. ParcelShipped) can automatically be removed as
well. The concept of tracing causal dependencies among events will be detailed in the
next section. Limitations of this approach are discussed there as well.

Replay of Causally Dependent Events A similar approach to ensure consistency
is to recompute all events from the point of the retroactive change on. This can
be achieved by reprocessing the commands belonging to these events, which en-
sures that succeeding events were computed with these retroactive changes taken
into account. Transferred to time travelling, this means that everything happens
again, though it might happen differently this time. This possibility requires cap-
turing causal dependencies as well. Its limitations will also be detailed in the next
section.

Validation The self-consistency principle from time travel theory can also be ap-
plied to restrain the possibilities of retroactive modifications. Invariants and pre-
/postconditions are possibilities to validate the timeline and ensure its consistency. If
the validation of a retroactive modification fails, this indicates that the timeline would
no longer be consistent and the modifications thus are not allowed. Invariants fit well
with the DDD approach of describing a domain model and the constraints within it.
In the online shop, the invariant could describe domain-specific constraints (e.g. that
product stock has to be a positive number) and event dependencies (e.g. that in a
shopping cart, ProductRemoved events need a foregoing ProductAdded event). The
challenge with validation conditions is that they can only be checked after the exe-
cution of a command. Only then it is clear in which events the command results. If
the validation succeeds, the command and event can be appended to the timeline. If
it fails, appending the command and event to the timeline can just be discarded. The
state of the overall system then remains unchanged. But these validation mechanisms
pose a challenge for a command yielding side effects. Then discarding the command
and event from appending is not enough, since the side effects have already occurred.
This issue and a possible solution is discussed in Section 4.2.5.

It can also be appropriate not to constrain modifications to the timeline at all. Incon-
sistent manipulations of the past might even be a fully intended effect. A use case for
this is to define a certain application state as a desired target state. As a next step, the
application’s past is modified until the target state is reached. This process yields the
necessary retroactive modifications as a result. Thus, constraining the set of possible
operations on the timeline by imposing validation conditions and constraints might
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- depending on the context — even weaken the retroactive capabilities. An expressive
concept can allow to specify the validation behavior when manipulating the time-
line: validate the timeline for consistency (e.g. by supplying an invariant with the
intended modification) or execute the modifications with full knowledge of possible
inconsistencies.

4.2.4 Tracing Causal Dependencies

With each operation, which modifies the past of a timeline and is not append-only,
a nontrivial problem emerges: The state of the system from this point on might no
longer be correct, since the reprocessed commands could yield different events. Thus,
the succeeding commands would have had a different premise for their execution and
they might have yielded different events as a result. Thus succeeding events might
be causally dependent on prior events. But it is not sufficient to only take these di-
rectly affected events into account. Commands or events which have indirectly built
on these direct events, may then have had a different premise as well. This trace of
causal dependencies affects events which are directly and indirectly affected by a mod-
ification. Mathematically spoken, these are the events in the transitive closure of the
modified event. In the previous section, we described the concept of self-consistency
for a timeline by either recursively recomputing causally dependent events or by re-
cursively removing them. This recursive process can lead to a cascade of rippling
replays (or removals) which work through the timeline.

The concept which we just described lacks the information how it is possible to
trace which commands are affected by a state change. This trace can be described
using event sourcing primitives: For each command it needs to be clear what infor-
mation it used to get to its result, i.e. upon which events it built to calculate the events
which it yielded as an output. This approach enables the creation of a trace for each
command, tracing which commands are affected by a retroactive modification, and re-
cursively recompute them. A concrete algorithm for this is detailed in Section 5.2.1. A
limitation of this process is that hidden causalities outside of a system might exist (e.g.
through side effects). It is not possible to capture those and thus not all commands
necessary might be replayed. This limitation is described further in Section 4.3.1.

We see multiple possibilities how the information upon which events the com-
mands have built can be recorded. One possibility is for developers to manually an-
notate this information and e.g. return it from the command. Another option is the
usage of getter and setter methods which record access to objects. In some cases, this
annotation could also be done automatically through an underlying platform (e.g. uti-
lizing source code analysis).

4.2.5 Side Effects

Dealing with side effects is an important and nontrivial issue, which needs to be
solved in order to fully utilize the retroactive capabilities of event-sourced systems.
Certainly one can prohibit applications to yield any side effects, but as other authors
[45, 35] have recognized, many interesting applications are only possible because of
side effects (e.g. input/output or networking).

In the context of our scenarios, the weather station application possesses no side
effects. The application only gets data into the system via commands and its interac-
tion with the outside system is limited. The IoT scenario and the online shop, on the
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other hand, possess a number of side effect afflicted operations: sending order confir-
mations to customers, validating payment details using external services, or issuing
control commands to devices, for example. When examined closer, it becomes clear
that the problem has two parts to it: validation and control. We examine these two
issues subsequently.

Validation of Side Effect Afflicted Commands

The timeline can only be validated for consistency after a — possibly side effect af-
flicted — command has been executed. Only then it becomes clear, in which events
the command results. If this validation fails, the event is not persisted and the ques-
tion arises how the already invoked side effects within the command can be revoked.
For purely reading side effects this is not a problem, since they do not mutate state
outside of the system. But for state mutating side effects this problem needs to be
handled. One could see the solution in adding adding undo (or rollback) commands,
which would reverse these side effects. But this idea hits upon problems as soon as
the side effect is irreversible — which is the case with e.g. order confirmations (online
shop) or actions sent to devices outside of the system (IoT). A better possibility is to
delay the execution of state mutating side effects until the result of the command has
been validated and it is certain that the resulting events are appended to the time-
line. This approach has limitations as well, as soon as e.g. internal logic depends on
their prior invocation. But it at least is a possibility to validate side effect afflicted
commands.

Controlling Side Effects in Replays

The second challenge concerns the question how the behavior of side effects can be
controlled when a side effect afflicted command is replayed. When state is rebuild,
this can be done by examining the series of events in the timeline (Figure 4.1). There
are no side effects from such an event replay, since events denote only changes in
state and their replay does not trigger their recomputation. But side effects can be
caused by replaying (i.e. reprocessing) commands. A problem here is that one cannot
find a general rule of how to handle side effects in a replay. If commands are replayed
with a purely experimental intention, it can be undesirable to have some of the side
effects triggered again. An online shop which replays customer interactions on the
new backend for pure testing purposes will not want to have order confirmations sent
out again. Console output or logging facilities, on the other hand, might be desirable
side effects of such a replay for testing purposes.

Handling this ambiguity of side effects when working retroactively is an issue
which Salkeld et al. [35] have described: “We are continuing to investigate the best
approach for managing side effects. It is unclear how to rigorously permit intentional,
safe side effects in retroactive advice [...]”. Since the treatment of side effects is highly
domain and context dependent it needs to be possible to specify how a side effect
should behave when it is replayed. There are two behaviors which we aim for:

1. Reinvoke them and use the new result for the further processing (e.g. fetching
a web page again).

2. Suppress their new invocation and reuse the result from their first invocation
(e.g. reusing a generated random number or reusing the result from a prior
dispatching of a mail message, instead of sending it again).
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One could see the solution in adding the possibility for the command processing
to know if it is currently replayed. If the command processing can be exchanged
before a replay takes place, this would enable developers to specify how specific side
effects within a command should be handled. This would solve some problems with
side effects, by providing some form of control over them. But it does not solve all
issues with side effects. For example, a command might have had a side effect which
returned a value. In a command replay scenario it might be desirable for the side
effect to return the same value as it did when executed for the first time. For example,
in the online shop scenario a PlaceOrder command could have an internal credit card
validation logic which uses an online service. If one were to replay the commands in
the timeline, in order to find out if an optimized warehousing algorithm would have
reacted better to inventory changes, it would be desirable to have the side effect return
the same validation results as it did in the “original” recording. Otherwise it would
be hard to compare the results of both algorithms. For this purpose, the result of the
validation requests needs to be recorded somehow. Enabling commands to know if
they are currently replayed does not solve this issue. Additionally, for commands to
know if they are currently replayed contradicts a deterministic behavior of replays. A
replay could then yield entirely different results, each time it is conducted. In order to
gain full control over the behavior of side effects in replays, it is necessary to record
the result of side effect afflicted operations.

A concept proposed by Fowler, as a mean to handle side effects in event-sourced
systems, is the usage of gateways [1]. He describes gateways as special objects which
encapsulate side effect operations [4, p. 466]. The behavior of these gateways in a
replay is defined by the application which triggers the replay. An issue here is that
it is unclear how gateways should record the operations which pass through them.
Additionally, gateways do not suit well for the concept of branches: they would need
special attention and handling when creating or replaying branches, since they do
not tie in with the common event sourcing primitives.

Before we describe a possibility for handling these issues further, let us first exam-
ine what types of side effects can occur in an event-sourced system. There are three
kinds of side effects which may occur in commands in event-sourced systems (Fowler
uses a similar categorization [1]):

o External Query: Reading data by interacting with an outside system. In the
online shop scenario this can e.g. be the reading of a currency exchange rate
from an online service.

« External Command: Mutating data in an outside system. In the IoT scenario, the
controller sends commands to devices outside of the system. These commands
are irrevocable, as soon as they leave the system. Sent order confirmations in
the online shop are a further example.

« External Query + Command: The combination of both. An example is an exter-
nal payment service used by an online shop. The shop could request a payment,
as part of a process to place an order. A notification could indicate if the pay-
ment was successful or failed.

For external queries in a replay scenario, it should be possible to specify if they
should either be executed again or if the result which was originally returned should
be reused. Reusing an already existing result implies that the new invocation is
skipped. External commands are supposed to be strictly state mutating and to not
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Figure 4.3: The figure depicts different possibilities for replays of a timeline. In an
event replay, state is rebuilt based solely on events. In a command re-
play, each command is invoked again and events are newly computed.
In a partial replay, it is possible to control which commands are re-
executed. In “Example 17, the side effect afflicted command is re-executed.
In “Example 2”, the side effect afflicted command is not executed again,
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return any state. It should be possible to specify if they should either be executed
again or not be executed again (skipped). It should also be possible to handle the
combination of both by specifying re-executions or the reusage of prior results.

To achieve this, we propose an idea which ties in with the characteristics of an
event-sourced system — namely the event log and sourcing commands and events for
restoring state or reprocessing commands. The concept of partial replays enables us
to control the behavior of side effect afflicted commands in a replay. Partial replays
form a combination of event and command replay. Here it is possible to specify the
behavior of individual commands and events in a replay by controlling:

1. If a persisted event should be used instead of invoking the command again.

2. If a command should be re-processed.

Different replay sequences are depicted in Figure 4.3. The figure though only
depicts small sequences. A problem which becomes visible in larger sequences, is
that through the reprocessing of a command, a different event (or multiple different
events) than in the original computation may be computed. The state of the system
from this point on would then be different. Thus, subsequent commands may have
executed a different logic, which possibly would have yielded other events. Section
4.2.3 discussed two solutions to this problem: recomputing causally dependent events
as well or removing causally dependent events.

We propose to leave control over how fine-grained side effect afflicted commands
can be controlled to the programmers and domain experts. We therefore propose
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to split side effect afflicted commands into multiple commands, with the side effects
being isolated in individual side effect afflicted commands with few logic. In partial
replays, all three types of side effects result in command-events pairs with no further
distinction if they have a reading or writing side effect, or none at all. Side effects then
are encapsulated in individual commands and events. This concept enables us to view
side effects as isolated and thus we can control their individual behavior in a replay. It
is then possible to e.g. specify that results of a command SendOrderConfirmation()
should always be reused. Thus the order confirmation side effect will not be invoked
again. This also enables us to specify that e.g. a command FetchStockPrice() is
invoked again. As a consequence, all events which are causally dependent on this re-
sult can be reprocessed as well (i.e. the respective commands are reinvoked). This can
be achieved by examining the trace of causalities among events as described in Sec-
tion 4.2.4. But this concept implicates that it needs to be possible to split commands.
Three possibilities how this can be achieved are:

1. For the application, which issues commands to the API, to split a command
into an ordered series of multiple, smaller commands. These commands are
issued sequentially. Each command in the series needs to complete, before the
subsequent command is issued.

2. For the APIto provide a thin logic layer which splits an incoming command into
multiple internal commands which are invoked sequentially, one after another.

3. For the command processor to invoke other commands during the processing
of a command.

The implication of (3) is that the definition of the timeline as a series of atomic com-
mand and succeeding affiliated events would break up. Instead the timeline would
consist of nested series’ of commands and their respective events:

(command, — (commandy, — event,) — event,)

Such nested series’ break with the event sourcing primitives of pairs of commands
and event(s). We thus do not consider (3) further. The requirements for (1) and (2) are:

« When executing a series of commands, this series is fixed. The component
which issues the individual commands (the API or the application) does not de-
viate from this series. No further logic is executed during the execution of the
series. Otherwise the determinism of replays is endangered, since this “logic
layer” would not be persisted in the timeline and could not be taken into ac-
count in replays. Thus, replays might not perform the operation as it would
have really occurred.

« Each command is persisted in the timeline, independent of its success or failure.
This enables later replays with possibly different results.

« The execution of this series is done sequentially (or in a causally equivalent,
serializable order). Each command has to finish its execution before the subse-
quent command in the series is invoked. After each command returns, it needs
to be checked if the command succeeded. If it did, the command and the re-
sulting event are persisted to the timeline and the next command in the series
is invoked. If the command failed, the commands in the series will not be in-
voked further. But the commands will still be persisted to the timeline, in order
to enable later command replays.
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Without those requirements, a causally equivalent (i.e. deterministic) replay of
persisted commands in the timeline is no longer possible. This issue is detailed further
in Section 4.3.4.

We now describe a brief example of this concept. Consider a hypothetical com-
mand ValidateCreditcard as part of the logic behind the online shop scenario. The
command authorizes a credit card using an external service, which it accesses over a
web service:

CommandModel.process(”ValidateCreditcard”){
/* side effect */
var validation = fetch(”https://.../check-card”, ...);
if (validation == true) {
return Event(”OrderPlaced”);
} else {
return Event(”OrderCanceled”);
}
}

This command can be broken into two succeeding commands, ValidateCredit-
card and PlaceOrder. The ValidateCreditcard command executes the side effect
afflicted operation. This results in an event being persisted and the side effect effec-
tively becoming part of the state of the system:

cO: ValidateCreditcard()
e0: ValidationSuccessful

cl: PlaceOrder()
el: OrderPlaced

The PlaceOrder command can then execute logic based on the fetched validation
result. In a replay it can be controlled if the side effect should be executed again (i.e.
the command reprocessed) or if the already persisted stock price should be used.

The advantage of such a series of (possibly side effect afflicted) commands and
their events, over the concept of gateways is that they specify clearly how the results
of side effects are recorded and how their behavior can be controlled when a replay is
executed. Also this concept ties in with event-sourced primitives: commands, events,
and the timeline. This comes in helpful when we use the concept of branches on the
timeline, since we do not have to pay special considerations to gateways and their
behavior when branching. As detailed earlier, this splitting can be done by the API or
by the application. As long as the component adheres to the described requirements,
a deterministic replay is possible.

4.2.6 Separated Query and Command Model

When retroactive explorations are conducted, the goal usually is to determine what
the current state would be if the past would have differed. Such what-if questions
typically consist of a similar sequence of actions: a series of operations on the timeline
and a concluding query (or multiple queries). An example of such a series is:

1. Branch timeline at a certain point in the past.
2. Insert an event at a certain point in the past of the newly created branch.

3. Query current state of the branch.
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What-if questions are hard to realize in a standard CQRS architecture, since they
require to first execute a series of operations (in commands), before a subsequent
query can be deposed. A separated command and query model with an eventually
consistent semantics works against such a causally dependent series of commands
and queries (Chapter 2). Without further measures, an application cannot safely as-
sume that the branch and its modifications have already been replicated to the query
model(s). Because of this eventually consistent behavior, it is entirely possible for
an application to address a query model where not all what-if modifications have
yet been applied to a branch. As described in Section 2.4, an eventually consistent
behavior can be seen as a positive artifact of a CQRS architecture. For what-if ques-
tions, however, this behavior is disadvantageous, since a causally ordered behavior
fits better to series’ of causally dependent operations and queries. A possibility to ad-
dress this, is to mitigate the eventually consistent behavior and delay the fulfillment
of queries until the query model is updated to a certain version number (a concept
used for conditional requests in Eventuate'). Another option is to dissolve the model
segregation for retroactive operations and retroactive queries, so that they operate
on the same model. Causality can then be enforced through the model. A separated
retroactive model for retroactive operations and queries offers the same benefits as
a separated model for application commands and queries: individual optimization
of each model and the creation of applications with inherent eventual consistency
in mind. On the other hand, what-if questions are easier for developers to write, if
retroactive operations and retroactive queries can be issued causally dependent. De-
velopers then do not have to take on the task of ensuring that queries are only issued,
once all retroactive operations have been applied.

4.3 Constraints and Limitations of Retroaction

Before we address retroactive architectures further, limitations and constraints of re-
troaction are described in this section. The degree to which they apply depends on
the actual context of an application. We do not claim to have solutions for them, they
should rather point out the limitations of retroaction.

4.3.1 Hidden Causalities

In an ideal scenario, no hidden causalities exist in an event-sourced system. Thus,
when a retroactive change is made to the timeline and a subsequent replay is con-
ducted, the outcome is exactly as it would have been if the change had originally
been in place. But this ideal scenario is not the case for many systems, as they have
some coupling to the real world or to other systems. A danger in the informative
value of retroaction lies in hidden (i.e. untracked) causalities of events. One event
may influence — directly or indirectly — the occurrence of subsequent events. This
is even more problematic if these causalities occur outside of the event-sourced sys-
tem, since they then cannot be tracked. These hidden causalities might weaken the
informative value which can be derived from the results of retroactive changes.

To illustrate this on the online shop scenario: The retroactive manipulation of the
inventory could result in only three car tires being available for purchase. This would
affect existing car tire order commands in the timeline, since most customers would

‘https://rbmhtechnology.github.io/eventuate/userguide. html#conditionalrequests
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probably only have issued an order if four tires had been available. The issue can get
even more complex. Maybe there were only three tires in the inventory all along and
through retroactive changes there are now four. A customer might have taken this
opportunity to place an order of four tires. On the other hand, a car dealer might have
ordered four tires with the intention of supplying them as spare tires to four different
cars, one for each. Ordering three tires would have still been fine then. Without
knowledge about these causalities in the real-world, the system cannot distinguish
these cases. The influence of prices on placed orders is a similar issue. Thus, caution
should be exercised when deriving informative value from retroactive results. One
should at least take domain knowledge and the possibility of causalities outside of
the system into account.

These issues are smaller, when an outside system does not further process the
results of queries. Furthermore, an outside system should not save any state based
on the result of queries. This can otherwise lead to a (possibly outdated) copy of the
data outside the system. If the outside system makes decisions based on a copy of the
data, the informative value and expressiveness of retroaction is heavily reduced. This
issue is especially relevant when the event-sourced system is used as a component
within a larger system. Such shadow state caches in the application are discouraged.
Hidden causalities can also occur through side effects. These effects take place in an
outside world and their behavior may be influenced by factors outside the scope of
the event-sourced system.

4.3.2 Causality Violations

A further danger of retroaction lies in retroactively induced causality violations, such
as paradoxes or causal loops. Causality violations occur when we observe an effect
before its cause. In Section 3.8, we have described temporal paradoxes where scenar-
ios contain their own negation (grandfather paradox). In event-sourced systems, a
logical paradox can e.g. emerge once an object removes its own producer at a point
before it was created. We have described the emergence of domain model contra-
dicting paradoxes in the previous section (e.g. placing orders when an item is out
of stock). Another problem of retrocausality concerns causal loops. Causal loops
emerge when one event is cause for another event, which is a retroactive cause for
the first event. Without further measures, it can then no longer be determined which
event was the initial cause. If not handled properly this can break the traceability
(audit log) of event-sourced systems and when computed can lead to infinite loops.
Figure 4.4 depicts an example of a causal loop.

These issues are a direct consequence of breaking with the append-only behavior
of the timeline - they emerge when the own past is modified. Issues of retrocausality
limit the possibilities of retroaction and can be source for a number of problems. Nev-
ertheless, the possibilities of retroaction can enable powerful retroactive capabilities
and there are options to limit the impact of these issues. Obvious issues of retroaction
can already be prevented by allowing retroactive modifications only on branches of the
own timeline. This resembles the many-worlds interpretation from time travel the-
ory. Instead of a single timeline, retroactive modifications yield a new, parallel, uni-
verse. In the context of retroaction in event-sourced systems, we proposed to keep
the append-only semantics for the main timeline and feed results from retroaction
back using commands/events (Section 4.2.2). This also complements event sourcing
characteristics of traceability and scalability, which emerge from an append-only re-
striction.
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x=0 if (x <= 0): if (x >= 0):
X++ insert (¢, "x--")

Figure 4.4: A causal loop is caused when one event is cause for another event, which
itself is cause for the first event.

4.3.3 Command Semantics

When a command has an effect independent of the current state of the system, this
can have an annihilating effect on retroactive modifications. For example, a com-
mand EmptyShoppingCart might remove all products from the shopping cart. Thus,
the effects of a retroactively injected command AddProductToCart prior to an Emp-
tyShoppingCart command will be overwritten. This can lead to unintended reversals
of retroaction. This is not necessarily a limitation of retroaction, but it can have an
unintended limiting effect if not taken into account.

4.3.4 Causal Equivalence of Replays

In terms of performance, it can be desirable to optimize a command replay (using
e.g. parallelization in threads or distributed processing). But this cannot be achieved
trivially by e.g. arbitrarily distributing the command processing among threads. Due
to differences in e.g. thread scheduling or network transmission times, a replay could
then result in a non-deterministic order of processing. If the persisted order is devi-
ated from in a replay, the resulting events can break the deterministic cause of sub-
sequent events. Thus, an entirely different application state may emerge each time
a replay is conducted. To illustrate this on the online shop scenario: If PlaceOrder
commands are issued in a different order, items in the replay could at different times
be out of stock instead of available. Orders which have previously been executed suc-
cessfully could then suddenly fail in a replay, due to a different order of processing.

A causally equivalent replay also makes it feasible to compare the impact of dif-
ferent command processing implementations. For this, commands are replayed in a
serializable order with a different implementation. The results can then be compared
against each other. In a non-deterministic replay, on the other hand, unintended vari-
ations in e.g. processor utilization could as well be responsible for the difference in
the outcome.

Thus, an event-sourced platform applying CQRS and supporting retroactive com-
puting capabilities needs to either (1) provide the guarantee of determinism for replays
by issuing commands in a serializable order or (2) consciously decide to break deter-
minism to gain a better replay performance. This decision depends on the context of
the application and either behavior can be desirable.

4.3.5 Performance

As examined in Section 4.2.3, the validation of a retroactive modification can require
checking the foregoing and subsequent timeline from the point of the modification for
consistency. Removing or recomputing direct and indirect causally dependent events



36 CHAPTER 4. THE CONCEPTUAL MODEL

Application

CQRS Retroactive
Application Application

Queries Interface c d Retroactive Interface Retroactive

ommands Queries Operations

Query Command
Model Model

Read-only

Retroactive
Operations
Model

Retroactive
Query Model

Read-only

Access Access

Current Event

,,,,,,,,,,,,,,,,,,,,,, Retroactive
State State Updates Log Read-only Store
(Events) Access
eventually consistent always consistent

Figure 4.5: The retroactive computing features are introduced as a plug-in. The dotted
connection marks the only connection from the component to the original
model: the retroactive store needs access to the event log.

might be further performance issue. Thus, separating retroactive computations on
branches from the computations of the live system, on the main timeline might even
become necessary. When retroactive computations are decoupled in a separate, asyn-
chronous environment, the main timeline might advance whilst retroactive compu-
tations are conducted. When computations are expensive and take hours, days, or
even weeks, both systems might diverge and the computed results might no longer
be relevant to the live system. Hence, performance issues can have a limiting effect
on the value of retroaction and it can be important for retroactive computations to be
efficiently computable.

4.4 Retroaction-enabled Architectures

In this section, we examine two contrasting possibilities how retroaction can be inte-
grated in an event-sourced architecture following CQRS: (1) as a separate component
with no modifications to the original architecture (i.e. as a plug-in) or (2) designed
right into the architecture (i.e. unified). This is not to say that these are the only two
possibilities. In fact, there are a lot of possibilities how this can be achieved, but we
focus on two outstanding possibilities.

The idea of CQRS is that commands and queries operate on separate models. As
detailed in Section 4.2.6, this is well suited when building systems in which an even-
tually consistent behavior is inevitable, but not appropriate for our use cases of retro-
action. Following our argumentation from Section 4.2.6, we thus do not apply CQRS
for the retroactive computing features in the following architectures. Instead, we pro-
pose for retroactive operations and retroactive queries to both operate on the same
data model. This way, the data model can enforce causality.
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Figure 4.6: This architecture design integrates the retroactive computing capabilities
into the ES+CQRS architecture in a more unified approach.

4.4.1 Plug-in Architecture

The first option which we describe introduces retroactive computing as an additional,
separate component into an existing ES+CQRS system. The system is strictly event-
sourced: commands are not persisted, solely events are sourced. Retroactive comput-
ing in this architecture takes place on a high level, in the application. This is how
CORS is usually applied: The business logic resides within the high level application
layer and commands merely hide implementation details of how commands are ex-
ecuted. This architecture is depicted in Figure 4.5. The retroactive features can be
accessed within the application — which already has access to the CQRS API over a
Retroactive API. The application using the component can execute retroactive queries
and operations over this APL The results from retroactive queries and operations are
returned back to the application, which can then decide how to use them. A “Retro-
active Store” component holds all branches and their modifications in relation to the
timeline. The “normal” event log possesses an append-only semantics and may not
be retroactively modified. Branches in the retroactive store, on the other hand, can
be edited directly. Causality of retroactive operations and retroactive queries can be
enforced by accessing the same model (marked as “always consistent” in the figure).
This follows our ideas described for what-if questions in Section 4.2.6.

We have created a prototypical implementation of this architecture with JavaScript
as the scripting language for the underlying runtime engine and JSON as the data for-
mat for events and commands. The scenario implemented in our prototype is an
online shop with retroactive capabilities. The online shop exposes functionalities via
a web service API (displayed as the “CQRS API” in the figure). Through this interface
it is possible to add products to a cart or place orders. Over the “Retroactive API” it is
possible to invoke retroactive commands, such as calculating hypothetical discounts,
if orders would have been executed as a privilege customer.
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4.4.2 Unified Architecture

A contrasting possibility to the described plug-in architecture, is to integrate retro-
active computing as an integral part of the ES+CQRS architecture in a way that re-
troactive operations or retroactive queries can be invoked within commands. Retro-
action thus can be viewed as an integral part of the programming model. As in the
plug-in architecture, causality of retroactive operations and retroactive queries is en-
forced in this architecture as well. This is achieved by accessing the same model
(“always consistent” in the figure). The only way for the application to access retro-
active capabilities is by issuing commands. It is not possible to access retroactive
features directly from the query model. In order for the application to query results
of retroactive operations, an event needs to be appended to the log. This is not ideal
for all use cases, since the event is replicated to all query models. Especially in large
systems with many replicated query models, this might be an unnecessary overhead.
But this concept of persisting retroaction via events, resonates with the idea that
state mutations are persisted and thus the state of a system can always be traced or
rebuilt. There exists only one store in this architecture, it contains the timeline and
its branches. A conceptual and prototypical implementation of this architecture is
described in Chapter 5.

4-4.3 Comparison

Each architecture addresses a different layer of interaction with the retroactive ca-
pabilities. In the plug-in architecture, retroaction is added as an additional feature
to a traditional CQRS architecture. Application commands can even be issued based
upon retroactive insights. Though this should not have the consequence that the
application creates its own commands by querying the retroactive store and issue
application commands based upon the results. The idea behind CQRS for the applica-
tion is to issue commands, but not to define commands. If this happens, this results in
an architecture where commands (i.e. application logic) and state resides in multiple
components. Thus commands and state are not always persisted in the timeline. This
breaks the traceability of a system and restoring arbitrary states is no longer possible.

In the unified architecture, on the other hand, application commands access re-
troactive features indirectly. Retroaction is integrated into the programming model,
which thus gains the ability to access and manipulate past states of objects and ex-
plore alternate states. This enables a retroactively expressive programming model
and makes certain application commands and queries feasible, which are not possi-
ble otherwise (e.g. calculating a discount based on previous orders, in a PlaceOrder
command). A further advantage of this unified approach is that the access to retro-
active features happens in the same environment as the programming takes place.
This enables developers to use data structures, functions, and libraries from the pro-
gram in the retroactive code.

Introducing retroactive computing as a plug-in requires no modifications to an
existing CQRS architecture and can thus be advantageous when enhancing an exist-
ing architecture. There is only one connection from the plug-in to the original model:
the plug-in needs access to the event log. The integration of retroactive computing as
a core part of an ES+CQRS architecture, on the other hand, does not suit well with ex-
isting event-sourced systems, since it requires profound architectural modifications.
Nevertheless, it yields more expressive commands and has possibilities which cannot
be reached with a plug-in.
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In the separate architecture, modifications to the event log are recorded in the
retroactive store, but not in the event log. Restoring state based solely on the event
log thus is no longer sufficient, the retroactive store needs to be rebuild as well. In the
unified architecture, on the other hand, the commands using retroaction are sourced,
as well as their resulting events. Retroaction is part of a command and results in
events. Thus, the timeline always contains all retroactive operations ever applied - it
is still the only source of application history.

Retroactive operations can be quite costly, since they might require a lot of re-
computations. In the plug-in, these costs arise only when retroactive operations are
applied; otherwise they are not present and do not influence the performance of the
system. The unified architecture, however, imposes more costs to the overall sys-
tem performance, since commands need to be sourced and the effects of retroactive
operations are replicated. Furthermore, if a command in the unified architectures ap-
plies complex retroactive operations, the further execution of sequential commands
is blocked. Thus, if a command starts with expensive retroactive calculations, the
execution of subsequent commands halts. The eventually consistent semantics of
commands and queries mitigates this issue, but it is still not ideal.

Many of the ideas introduced in this chapter only play out their full strength if
an ES+CQRS system is built with them in mind from the ground up. For example,
splitting the side effects from larger commands into individual commands for better
control in replays is hard to do in existing systems.

4.5 Summary

In this chapter, we described a number of conceptual issues when utilizing retro-
action in event-sourced systems. The two most pressing issues concern the dealing
with side effects and issues of keeping a consistent timeline. We illustrated that re-
straining direct editing operations to branches of a timeline can prevent causality
issues. Furthermore, it is possible to retain traceability and append-only behavior in
event-sourced systems if results from retroaction are integrated back into the system
as events.

In order to impose control over side effect afflicted commands in replay scenarios,
we discussed several possibilities and concluded the discussion by introducing the
idea of partial replays which require tracking causalities among events. If side effects
are outsourced into separate, individual commands they can be partially reused or
reinvoked. The command and event primitives of event sourcing are an ideal match
for imposing control over side effects. Through events, side effects can be recorded
and re-used. Through the sourcing of commands, side effects can be reinvoked.

Next, we discussed a number of ideas for keeping a consistent timeline after a
retroactive modification. For this, we transferred ideas from time travel theory to re-
troaction in event-sourced systems. As correspondences to parallel universes we pro-
posed to prohibit editing the own timeline and allow direct retroactive modifications
only for branches. Analogue to the self-consistency principle, we proposed valida-
tion conditions and the replay (or removal) of causally related events. We examined,
that validation conditions can only be imposed once the result of a command is clear,
for which the command needs to be invoked. This problem is especially challeng-
ing once the command yielded side effects, which cannot be revoked. Furthermore,
this chapter contributed an overview on constraints and limitations of retroaction in
event-sourced systems. We highlighted the central role of hidden causalities through
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real-world coupling or through side effects. Further limitations, which we identified,
were the influence of causality violations, causally equivalent replays, and the seman-
tics of commands which may annihilate retroactive modifications. The performance
of retroactive computations can be a further limiting factor.

Our conceptual considerations were concluded with the suggestion of architec-
tural modifications (e.g. resolving the command/query segregation for retroaction)
and the demonstration how different architectures can be used for enabling retro-
active capabilities of event-sourced applications.



Chapter 5

The Programming Model

The previous chapter has examined the application of retroaction in event-sourced
systems. We described conceptual considerations and challenges which emerge from
this combination. Furthermore, we examined two very different architectures which
utilize retroaction. The objective of this chapter is to illustrate how a programming
model for the unified architecture can work. For this, we outline an appropriate pro-
gramming model and its prototypical implementation.

5.1 System Model

We describe the outline of a programming model and make many simplifying assump-
tions in order to focus on relevant concepts. The objective of our programming model
is to illustrate how retroaction in event-sourced systems can work. We do not claim
to lay out a programming model which withstands challenges such as performance,
scalability, parallelization, or distribution. We make the assumption that the program-
ming model runs in a single-threaded environment with one timeline, that sufficient
resources are available, and that no error handling is required. In the remainder of this
chapter, the term runtime engine is used when referring to the system which provides
underlying functions (such as the persistence of events). We will not deepen details
of such a runtime engine, since this is not subject of this work. The code examples in
this chapter are written in the scripting language JavaScript. They are excerpts from
our prototypical implementation, which is detailed in the second part of this chapter.
The code examples have in most cases been shortened to focus on the concepts, but
they are otherwise in correspondence to our implementation.

5.2 Primitives of Retroaction

The objective of the programming model outlined in this chapter, is to provide pro-
grammers with access to an application’s history in the programming environment.
We aim for the possibility of modifying and interacting with the application’s history
retroactively in a single environment. The primitives of retroaction which we require
for this are:

41
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1. Branching: It needs to be possible to create a branch at a certain branching
point in the timeline. The subsequent timeline from this point on is copied
to the branch and can be modified. Modifications on the branch do not affect
the timeline. Through the specification of a branching point, the retroactive
operations can be restrained to the part of the timeline from the branching
point on.

2. Access to Prior States: The application can access its own history and the history
of branches.

3. Interaction with Branches: The state of branches can be queried and results from
computations on branches integrated back into the timeline.

4. Delete/Insert Commands or Events: Specified commands or events can be retroac-
tively deleted or inserted.

5. Exchange Command Processing: The command processing implementation can
be retroactively exchanged and evaluated by replaying the application’s com-
mand history.

For our further considerations we build upon the principles of the unified archi-
tecture described in Section 4.4.2 and illustrated in Figure 4.6 (both on page 37). In
short, we retain the overall CQRS architecture with a segregated command and query
model. Commands are issued from an application layer and result in events, which are
published to the query model. In commands, developers have access to retroactive
operations. They can create branches, as well as insert (or delete) commands and
events. The only mean to read state is by issuing queries. A close coupling of queries
and subsequent, dependent command to the actual CQRS interface is discouraged for
the higher application logic.

5.2.1 Events
Events as State Modifications

In a strictly event-sourced architecture, events are viewed as implicit changes to an
abstract system state (e.g. AddedProductToCart(id=533)). In order to derive the cur-
rent state of the application (e.g. the list of items in the shopping cart), state has to
be constructed by interpreting events. For our programming model we propose a dif-
ferent point of view: system state as an object, accessed and modified by commands.
Events are created by an underlying runtime engine after modifications have been
applied; they contain the modifications which were applied to the state object. The
event is created by the runtime engine, which computes the differences to the prior
state object. This point of view eases us to record which persisted events and com-
mands in the timeline possess a causal relationship, by annotating commands with the
information which properties of the state objects were used to compute the state mod-
ification. Among other things, tracking these dependencies can be used to determine
what needs to be replayed after a retroactive modification has been applied (Section
4.2.4). This can be achieved by tracing which state properties in the future are affected
by a retroactive modification. A retroactively inserted command AddProductToCart
could e.g. require the recomputation of a subsequent PlaceOrder command, in order
to keep the timeline consistent. Similarly, when removing an event, all causally de-
pendent events can be removed as well. This can prevent issues of causality violations
(e.g. temporal paradoxes).
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The following algorithm can be used to compute the causally related events to a
selected event. The underlying concept is that a causal relationship exists when the
computation of an event has built on a prior event. The algorithm is initialized with
a selected event and returns all forward events in the timeline, which have a causal
relationship with it.

1. Lookup which state properties were modified during the computation of se-
lectedEvent. Save those as modifiedProperties. Create an empty array
causalityTrace.

2. Examine the subsequent event in the timeline (nextEvent), until the algorithm
returns or the end of the timeline is reached:

« Was nextEvent computed by reading any of these modifiedProperties?

— Yes? The event has a direct causal relationship to nextEvent, add the
event to causalityTrace. To find the indirect causally dependent
events, apply this algorithm recursively for nextEvent.

— No? Check if the computation of nextEvent modified any of the
modifiedProperties.

* Yes? The computation replaced certain properties without read-
ing anything originally used by selectedEvent. These proper-
ties can then be removed from modifiedProperties, since sub-
sequent events will not have a causal relationship to selectedE-
vent based on these properties. The next step is to check, if there
are any properties left in modifiedProperties.

- Yes? Process to the next event in the timeline.
- No? The algorithm returns its results.

* No? Process to the next event in the timeline.

Capture State Changes in Events

Events capture state changes to the system state object. In the context of retroaction,
the form in which state changes are recorded (i.e. the delta encoding) is important
to consider. The delta encoding heavily impacts the possibilities of retroaction. Let
us examine two options how data differences can be encoded: Unix diffs and JSON
Patches.

In Unix, the diff tool can be used to output differences between two files. This
output can be used to transform matching parts of a file using e.g. the patch tool.
Both tools are commonly used for software development and utilize basically this
format:

-state.shoppingCart = [1, 2, 3];
+state.shoppingCart = [1, 2, 3, 4];

This so called “diff” describes the difference from one file to another on a line-by-
line basis. Diffs are commonly applied to replace parts of one file (the ones prefixed
with “-”) with other parts (prefixed with “+”). Thus, the diff can only be applied to
exactly the first line, prefixed with “-”. If we modify line 1 of the original file to
“state.shoppingCart = [0, 1, 2, 317 the above patch then could no longer be

applied to the file, since line 1 of the above diff would no longer match the file. This
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is a desirable behavior when working with source code, where minor differences can
have a big impact.

For retroaction, however, a different behavior can be more appropriate. If we in-
troduce a retroactive change, it is desirable to retain the possibility of applying all
subsequent changes (i.e. diffs or patches) in the timeline. For example, adding an
id to the above shoppingCart array in the original file should not annihilate previ-
ously created patches which are placed later in the timeline. If these later patches add
other products to the cart it would be desirable to retain the possibility of still apply-
ing them. This can be achieved by capturing the operations which were applied to the
state object. A technology which uses such a mechanism are JSON Patches [46]. They
encode modifications to JavaScript objects and provide the ability to rebuild the state
of an object by applying these modifications successively. The JSON Patches specifi-
cation defines six operations which can be applied to properties of objects. Among
them are operations which encode that properties were added, removed, replaced, or
moved. Transferred to the above example, an according JSON Patch can be of this
form:

{ ”op”: ”add”, ”path”: ”/state/shoppingCart/-”, ”value”: 4 }

The “-” suffix in this case specifies that the value 4 is appended to the array
state.shoppingCart. In this case, changes to the original file do not conflict with
the patch - it can still be applied. But the issue is not solved completely; in the case
of direct value assignments to a variable, or the direct modification of a value at a
certain index in the array, the patch still annihilates retroactive modifications. This is
not necessarily an issue, but it can have a limiting impact on retroactive modifications.
In Section 5.2.4, we describe how retroaction-aware programming can be utilized to
mitigate this issue. For the programming model in this chapter we focus on events as
recordings of the operations behind state changes, as used by JSON Patches.

5.2.2 Commands

We apply the view on commands as described for CQRS (Chapter 2): commands as
requests to invoke a certain logic. This decoupling enables us to separate intended
modifications from the command processing implementation which they trigger. Sep-
arating these concerns enables us to retroactively replace the command processing
implementation at an arbitrary point in the timeline and reprocess commands with
a different processing implementation. This allows for the observation of alternate
application states.

In our programming model, the runtime engine splits “external” requests into a
series of multiple “internal” commands. The commands in this series then are sequen-
tially processed. After the processing of a command is finished, the runtime engine
checks if it succeeded. Therefore the processing function returns information on its
success or failure. If the processing succeeded, an event is computed and persisted
to the timeline. Next, the subsequent command in the series is processed. If the
command failed, the commands in the series will not be processed further. But the
subsequent commands — which were not invoked — are still persisted to the timeline.
This serves the purpose of enabling later command replays.

The resulting event from a command processing is created by the underlying run-
time engine. This event contains modifications of the state object which occurred
during the command processing. Together with the command which triggered the



5.2. PRIMITIVES OF RETROACTION 45

processing, it is appended to the timeline. This concept follows our conceptual consid-
erations from Section 4.2.5: We argued that it is important for expressive retroaction
to view side effects as isolated, for they can be controlled individually in a replay.
Furthermore, we argued that each of the commands must be persisted in the timeline,
independent of their failure or success.

In the programming model in this chapter, a developer writes individual process-
ing functions for each command. Listing 5.1 displays the processing of a simplified
command. The depicted command applies a discount to an order, and annotates what
it used for its computation. Furthermore, the command and the resulting event are
tagged. These tags can be used to reference commands or events (e.g. for removals or
as branching points). The concept of tagging commands and events will be detailed
in Section 5.2.3 of this chapter.

Listing 5.1: Example of a command.

commands.tags.applyDiscount = [”discount-modifications”];

commands.applyDiscount = function(request, state) {
/* find the total order price in the global state object */
var totalPrice = state.orders[request.orderId].totalPrice;

/* apply 10% discount */
state.orders[request.orderId].discount = totalPrice * 0.1;

/* if the order 1is changed retroactively at a past point this
command needs to be replayed, since a different discount
would then be computed x/

var readDuringComputation = [

”state.orders[” + request.orderId + ”].totalPrice”

1;

/* specify tags for this event x/
var eventTags = [”applied-discount”];

return {
success: true,
newState: state,
read: readDuringComputation,
eventTags: eventTags

1

5.2.3 Retroaction
Scope of Branches

There are a number of possibilities concerning the duration of a branch’s existence.
Two possibilities are (1) for branches to be persisted as part of the system’s state. This
enables the usage of a branch in multiple commands. An option (2) is for branches to
be only existent temporarily, during the processing of a single command.

If branches are available over the course of processing multiple commands, it
is important to consider that this yields the possibility of nested branches. Nested
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Figure 5.1: The figure depicts a scenario, in which branches exist as part of the system
state. The system at t( creates a branch A at an arbitrary former point.
Branch A exists from then on within the system state (i.e. the timeline).
At t1, a further branch B, with its branching point at ¢, is created. Branch
B then contains the nested Branch A.

branches can then occur when a branch is created within a command and succeed-
ing commands create further branches (Figure 5.1). The further branches would then
contain the system state — and thus the earlier created branches as well. To avoid
problems here, the same branch object should not be referenced in multiple branches.
Each event and command should be assigned to exactly one branch This allows for
the coexistence of a branch in various branches. If the same branch object is nested
in multiple branches, unforeseeable behavior can occur. For our programming model
we view branches as only temporarily existent, for the scope of a command. Persist-
ing branches as part of the system state would imply that they are replicated to all
data models. For the use cases in this chapter this is unnecessary.

Timeline Pointers and Tags

In order to enable expressive retroactive operations, it needs to be possible to ref-
erence points in the timeline. These timeline pointers can then be used to refer-
ence events and commands as branching points, insertion marks, or for removal. To
achieve this, we propose the possibility of annotating events and commands with
a list of tags. These tagged events and commands can then be used as pointers to
locations in the timeline.

Enabling the tagging of commands and events makes sense, since they both serve
a different purpose. A request to invoke a command is always issued by the appli-
cation, whereas an event describes how the system reacts to it. The resulting event,
triggered through the command, depends on the command processing implementa-
tion of the system. Therefore it makes sense to annotate the resulting event with tags
in the command processing. Annotating commands enables us to filter for commands,
independent of how they are processed. For commands, tagging allows to dynami-
cally exclude message categories (or individual messages) in replays. This can be used
to exclude e.g. side effect afflicted operations, in order to prevent side effects from
being reinvoked.

Access to Retroaction

The retroactive capabilities in our programming model can only be accessed from
within commands — not within queries. This characteristic adheres to the design of
the unified architecture as described in 4.4.2. In this section we examine individual
operations of our API in detail. In order to utilize retroaction, the first step in our
programming model is always to create a branch of the “main” timeline. For this, a
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branching point needs to be specified. The following retroactive operations can be
applied to create branch objects and gain retrospective information:

(¥

(i)

(iii)

branchObject = createBranch(:tag, ”before” || ”after”)

A branch of the timeline can be created by invoking this function within a com-
mand. The : tag is a unique tag of either a command or an event. By supplying
“before” or “after”, it is possible to specify if the branching point should pre-
cede the tag or be placed after it.

stateObject = branchObject.getState()
This method can be applied to a branch object, it returns the latest state object.

eventArray = branchObject.getEvents([:tag])

Returns an array of events, which match the supplied tags. For each event the
state of the timeline at the time of the event is supplied as well. This state can
be accessed under the property :event.state. When called on a branch object,
the events are returned from this branch.

Retroactive modifications of an application’s history can be removal or insert op-
erations, as well as a retroactive change of the underlying application logic (the com-
mand processing). Following our argumentation from Section 4.2.2, retroactive mod-
ifications can only be applied to branch objects. Furthermore, a branch cannot apply
retroactive modifications to itself. The following operations can be used to apply
modifications to the branch object:

(iv)

v)

(vi)

(vii)

branchObject.insertEvent(:tag, :event, ”before” || ”after”,
:validatorFn)

An event in the form of a JSON Patch can be inserted at a unique, tagged point.
The validator function :validatorFn is optional and will described in more de-
tail in this chapter.

branchObject.deleteEvents([:tag], :dependentOnes)
If :dependentOnes is set to true, the events which have a causal relationship to
the ones supplied are removed as well.

branchObject.insertCommand(:tag, :command, ”before” || ”after”)
A command can be inserted by specifying an insertion point and a command.
The listings in this chapter contain examples for this command.

branchObject.deleteCommands([:tag], :dependentOnes)

If commands are deleted, the respective event is deleted as well. Otherwise it
would no longer be possible to conduct a command replay for a corresponding
event.

(viii) branchObject.changeCommandFunction(:old, :new)

changeCommandFunction(:old, :new)

This function can be invoked either for branch objects or for the timeline. It
inserts a special type of “runtime engine command-event pair” in the timeline.
This pair takes a special role in command and event replays. It denotes that for
the processing of the :0ld command, the :new function should be used from
this point on. We utilize call-by-naming for this and supply the function names
as arguments. It is necessary to insert a command-event pair to denote this
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change in the processing function. Inserting solely an event, would pose an issue
to command replays, since this event would not be considered in a command
replay.

Another possibility for persisting changes in the command processing, is to un-
derstand the command processing implementation of a system as part of the
state. This concept is used by the Chronograph platform and will be detailed in
Chapter 7.

Our programming model exposes additional operations, to manually trigger re-

plays. An alternative would be an immediate evaluation strategy, where the com-
putation of changes takes place immediately after e.g. an insert operation has been
invoked. But this does not suit well, for the reasons described in Section 4.2.2: using
immediate evaluation in conjunction with a series of multiple retroactive operations
then leads to potentially unnecessary computations.

(ix) branchObject.rebuildState()

State on the branch is rebuilt based upon the persisted events.

(x) branchObject.commandReplay ([:tag])

This method triggers a replay of the commands supplied in the tags array. The
recomputed commands yield newly computed events. For these “new” events,
causal dependencies to subsequent events are checked. If subsequent events
with a direct or indirect causal relationship exist, these are recursively recom-
puted as well (by re-processing their respective commands).

(xi) branchObject.partialReplay([:reuse], [:recompute])

The :reuse and :recompute arrays contain tags. If causally dependent events
exist, they are recomputed as well.

The following listing (Listing 5.2) depicts an example of a command which creates

a branch, applies retroactive operations to it, and integrates results from the branch
back into the main timeline. The branch is encapsulated in an object, which exposes
access to retroactive modification methods, replay mechanisms, and the branches’ his-
tory, and current state. It is then possible to create history-aware algorithms, which
utilize the application’s history as part of their computation. We describe examples
of such commands in the later part of this chapter.

Listing 5.2: Example command, which utilizes retroaction.

var newCommandFn = function(command, state) {

/] ..

return { newState: ..., read: ... };

var exampleCommand = function(command, state) {
/* the branch is an object which exposes retroactive operations */
var branchingPoint = ”timeline-tago”;
var b = createBranch(branchingPoint);

/* an event 1is created (in the form of a JSON Patch) and inserted */
var evt = createEvent({”op”: ”add”, ”path”: ”/state/-”,
”value”: {”name”: ”Alice”}});

b.insertEvent(”timeline-tagl”, evt, ”before”);
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b.rebuildState();

/* get the state from the branch x/
var s = b.getState();

/* retroaction x/

b.changeCommandFunction(”exampleCommand”, ”newCommandFn”);
b.insertCommand(”footag”, ”AddToCart({ product: 321 })”, ”before”);
b.commandReplay ([”?AddToCart”], true);

/* analyze state of the branches and save result */
var s2 = b.getState();
if (...) state.retroactiveAnalysis = ...;

return { newState: state, read: [] };

}

After the function has returned, the underlying runtime engine creates an event
consisting of the command, the command’s arguments, and the state modification.
This event is published to the query models and then visible to queries.

The above listing described only command and event replays. As illustrated in
Section 4.2.5, the concept of partial replays gives us fine-grained control over when
to newly compute an event and when to use an already persisted one. This feature can
be used to control side effects. In a partial replay, causal relationships between events
are taken into account. Thus, if only one command is replayed this has the recursive
effect of causally dependent commands being replayed as well (Section 4.2.5). For the
events which are specified to be reused, the reprocessing of the command is skipped.
Listing 5.3 illustrates how a partial replay can be conducted.

Listing 5.3: The listing depicts how a partial replay can be conducted.

/* newly compute the commands in this array. instead of reusing
the already persisted events, the command is newly invoked.
events which possess a causal relationship to the newly
resulting events are recomputed as well. %/

recomputeCommands = [ ”stock-price” ];

/* for the tags in the array use the persisted events instead of
newly processing the command */
reuseEvents= [ ”stock-price” ];

/* conduct the partial replay on a branch %/
var b = createBranch(”timeline-tag0”);
b.partialReplay({ recompute: recomputeCommands, reuse: reuseEvents });

As described in Section 4.2.3, the recordings of causal dependencies between events
cannot only be used to recompute subsequent, causally dependent events, they can
also be used to remove subsequent, causally dependent events. The following listing
depicts an example of such a modification:

var b = createBranch(”timeline-tag0”);
var deleteCausallyDependentOnes = true;
b.deleteEvent(”some-event-reference, deleteCausallyDependentOnes);
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5.2.4 Retroaction-aware Programming

Programming constructs in commands can conflict with retroactive modifications.
For example, a developer might always decrement a certain state property by one
in a command processing implementation, whilst relying on some knowledge about
the context of the application. An assumption could be that a value x is defined as
x € {1,... ,n}. The developer could apply the decrement, in order to shift the value
to reference array indices so that « € {0, ... ,n}. Through retroactive changes, this
“one off” assumption may no longer hold and the decrement operation thus suddenly
have a different semantics.

A first idea to cope with this issue, is to provide more semantics to certain op-
erations. This can be done by providing helper functions (or an API) to the devel-
oper, in order to resolve the ambiguity of operations. For example, a helper function
ConvertToIndices could be provided to developers. This function would convert
numbers to array indices and could be used instead of the decrement operation. Thus,
the intention behind the operation would be clear. In a replay, the helper function
could be adapted, in order to not break programming instructions. Another exam-
ple is the usage of getLast() over “var last = state.foo[99]”, where 99 is a pre-
sumed last index.

The delta encoding of events can also be used to persist the semantics of state
changes. If the appending of a value to the just mentioned array is done whilst rely-
ing on the knowledge that the last element will “always” be 99, this could be a direct
assignment of the form “state.foo[100] = ’bar’”. The delta encoding would then
not capture that the intention was to append a value. An array push instruction —
e.g. “state.foo.push(’bar’)” — is a better alternative, since this allows the runtime
engine to capture that the intention was to append a value to the array. There are
various possibilities how the intention of a state change can be captured: for the de-
veloper to capture this intention manually by creating the patch by himself, through
source code analysis, or through helper functions which provide more semantics. The

decision depends on the context of the application and either behavior can be desir-
able.

5.2.5 Validation

Validation conditions can be written as a validator function. Such a validator func-
tion can be supplied along with the retroactive operations. The validator function
in this case gets the state before the modification and the state after the intended
modification supplied as arguments. The NoSQL database CouchDB uses a similar
mechanism for validating changes to documents®. If the validation is successful (i.e. it
returns true), the event is persisted to the timeline. If not successful (returns false),
the event is discarded. The following listing illustrates an example of a retroactive
modification, where a validator function is supplied.

var b = createBranch(branchingPoint);

var validatorFn = function(oldState, newState) {
if (newState.price < 0) return false;
else return true;

b5

b.insertEvent(”timeline-tagl”, ”{ items: o }”, ”before”, validatorFn);

‘http://guide.couchdb.org/draft/validation.html
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As detailed in Section 4.2.3, state mutating side effects require special attention
when validating the timeline for consistency. They need to be delayed, until it is clear
if the validation of the command’s processing results succeeded. Otherwise, the side
effect would already have occurred and could not be revoked. This can be solved
by returning an array with functions which need to be delayed from the command
processor. If the validatorFn succeeds, the functions in the array are invoked sub-
sequently.

var cmdWebRequest = function(cmd, state, validatorFn) {

/] ...
var writingSideEffectFn = function () { http.post(...); };

return {
state: state,
read: [],
delayUntilvalidated: [ writingSideEffectFn ]
};
}

A possible scenario to apply this concept, is to retroactively reprocess a command
which executes a reading side effect. Based on the return value, the command modi-
fies the system state and executes a writing side effect. Using the described concept,
it is possible to validate the modified state, before persisting the event and trigger-
ing the side effect. The expressiveness of this concept is limited to simple scenarios
though, but it provides a — admittedly narrow - possibility to use validation in combi-
nation with side effect afflicted commands. This basic concept could be enhanced by
supplying e.g. the entire branch with all its events and commands. Other possibilities
are to supply the command, which triggered the processing, as an argument.

5.2.6 Return-values of Commands

As illustrated in Section 2.4, commands in a strict ES+CQRS architecture possess no
return value. But the opinion on the question whether commands may still return a
value, is disputed in the CQRS domain. Some projects which apply CQRS allow for
replies’, whereas authors like Greg Young promote an explicit no: a command should
never return a value [9, p.17]. Commands are described as possessing a void return
type. They mutate state, but do not return a value. Instead, solely queries can be used
to gather data. If commands never return anything, there is no way of knowing when
a command has been executed or when a corresponding event has been appended to
the timeline. But for certain use cases it is desirable to have this information returned
to the application. This information can be used to e.g. delay queries, until a certain
command has been processed.

Aswe view it, the overall intention behind th no-return value nature of commands,
is to prevent bilateral commands which return and mutate state. But this does not
necessarily imply that commands cannot return any value at all. We propose for com-
mands to asynchronously return a reference to an event, once it has been appended
to the event log. From our point of view this does not break with the intention of
commands not returning state, since the return value of commands in this case is a
meta value — not comparable to returning application state. Integrating the reporting
of this reference could be done by supplying a callback method with the command,

‘http://rbmhtechnology.github.io/eventuate/architecture html#event-sourced-actors
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setting a listener, or by polling the visibility status. Our prototypical implementation
utilizes a further possibility, which will be detailed in Section 5.3.5.

5.3 Implementation

In this section we describe a prototypical implementation of the previously described
programming model. As a scenario for this, we implement a simple online shop. This
scenario enables us to illustrate the concepts described in the foregoing chapters of
this thesis, as it poses a number of interesting challenges — such as side effects or hid-
den causalities — to retroaction. We deliberately do not take functionalities necessary
for a productive “real world” online shop into account: authentication, authoriza-
tion, or validation, for example. Considering these features would distract from the
concepts which we want to illustrate and make the implementation unnecessarily
complex. Furthermore, we make the assumption that the online shop has only one
customer. This is certainly not realistic, but supporting multiple customers would
merely make the code less clear and comprehensible. Since we aim for the code and
API to illustrate conceptual matters, we thus deliberately leave out these features and
focus on a simple scenario.

The prototype was implemented in the scripting language JavaScript, an inter-
preted language with functional aspects. Functions in this language are considered
higher class citizens and can be used like other variables. These functional aspects
work in favor of our concepts, since they enables us to e.g. dynamically switch the
command processing implementation, supply validator functions with retroactive op-
erations, or delay the invocation of side effects. Moreover, JavaScript forms a sym-
biotic relationship with the lightweight data format JSON [47], which we use in con-
junction with the already mentioned JSON Patches for the events. JSON is also used
as the underlying data format when issuing commands and queries, or receiving re-
sponses. The prototype was built with node.js? as the underlying JavaScript platform.
Our prototype runs in a single-threaded loop, in which incoming commands are pro-
cessed.

In the remainder of this chapter we describe further internals of our prototype.
For this, we focus on the interesting parts and leave some of the underlying imple-
mentation details (such as persisting events) out. The code examples are excerpts
from our prototypical implementation. In some cases we have shortened them to the
relevant parts, but they concur with our implementation.

5.3.1 The Application Interface

Representational State Transfer (REST) is a resource-oriented style of architecture [48],
which corresponds to the principles of the World Wide Web. This architectural style
was introduced by Roy Fielding and has gained popularity in recent years. Today,
many large web services — Twitter, Facebook, or Google, for example — utilize REST
to provide APIs over the web. There are numerous reasons for this. Among them is
that REST promotes statelessness — each request to an API holds everything needed
to fulfill it. The server does not hold session state, which makes it easier to build scal-
able systems. The most common application of REST is the usage of HTTP to provide

*https://nodejs.org/
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Figure 5.2: The figure is a schematic illustration of our prototype. A client sends
HTTP requests to the REST API and receives a response. The API maps
these requests to application commands and queries.

| Semantics | Method | Resource | Payload | Application Mapping
Q | List all products GET /products getProducts()
Q | List details of product GET /products/:id getProduct(:id)
Q | Display items in cart GET /cart getCart()
C | Empty shopping cart DELETE /cart/ emptyCart()
C Put item in cart POST /cart/:id {qty: 1} addToCart(:id, :qty)
C | Update item quantity PUT Jcart/:4id {qty: 5} updateQty(:id, :qty)
C | Remove item from cart DELETE /cart/:id removeFromCart(:1id)
C | Place order POST /order 1) fetchCurrencyRate()
2) createOrder ()
2) sendConfirmation()

Table 5.1: The table lists resources and operations of the online shop. The REST in-
terface maps and distributes HTTP requests to system commands (C) and
queries (Q). Two application commands yield side effects: fetchCurren-
cyRate() is an external query and returns data, sendConfirmation() isan
external command, which triggers the transmission of a mail message.
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web services: Uniform Resource Identifiers (URIs) are used as identifiers when access-
ing resources, HTTP methods are used as verbs to operate on these resources. The
HTTP verbs possess a clearly specified semantics [49]: GET and HEAD, for example,
are considered safe and should not mutate state, whereas e.g. POST, PUT, or DELETE
may change state.

Our prototype provides a RESTful API to clients. We chose to use REST, since
it already provides a clear segregation in queries (safe verbs) and commands (not
safe verbs). This inherent segregation works in favor of our CQRS architecture. The
API can be accessed using e.g. a browser or command-line tools, such as cURL or
wget. Table 5.1 lists all resources which are exposed over REST and the HTTP verbs
which can be used on them. A shopping cart in a REST architecture is typically mod-
elled as one resource /cart, which can be updated using the PUT verb. But in HTTP,
PUT possesses the semantics of replacing a resource: “The PUT method requests that
the enclosed entity be stored under the supplied Request-URL [...] the enclosed entity
SHOULD be considered as a modified version of the one residing on the origin server.”
[49]. This can conflict with retroaction. As described in Section 4.3.3, the semantics
of commands can lead to unintended reversals of retroaction. Here, a PUT command
overwrites an entire resource each time it is invoked. Thus, retroactively injected
updates of the cart would be annihilated by the next cart update in the timeline. As
a consequence, we modelled individual items in the cart as separate resources. By
applying POST, items can be added to the cart. Their quantity can be updated using
PUT. By applying DELETE on individual cart item resources, they can be removed from
the cart.

Furthermore, we provide a command with the semantics of emptying the shop-
ping cart. The operation DELETE /cart can be used to empty the cart. This command
will annihilate previous addToCart() commands (and events), but in this case the
semantics is different: delete all items from the cart. Thus, annihilating prior events
is an intended consequence.

In our prototype, HTTP requests are sent to the REST APL This interface contains
a thin logic layer, it maps and distributes requests to system commands and queries.
Figure 5.2 depicts a schematic illustration of this process. The mapping of applica-
tion commands and requests is visible in Figure 5.1. In order to fulfill e.g. the POST
/order command, a fetchCurrencyRate(), a CreateOrder (), and a SendConfirma-
tion() command are issued subsequently by the APIL This is done sequentially; the
runtime engine waits for each command to finish its execution. After each command
returns, the runtime engine checks if the command succeeded. If it did, the command
and the resulting event are persisted to the timeline and the next command in the
series is processed. If the command failed, the commands in the series will not be
processed further. But the commands are still persisted to the timeline, in order to
enable later replays. The following figure depicts a possible course of computation
for the mentioned series. First, the currency is fetched, then the order creation is at-
tempted. This fails and hence the subsequent sendConfirmation() command is not
processed (highlighted in yellow). It is persisted to the timeline though and can be
recomputed in a replay.

Event

Command Command Event Command
success = true = —— — —

fetchCurrencyRate () createOrder () success = false sendConfirmation()
usd2eur = 1.3

Listing 5.4 displays a relevant excerpt from the runtime engine, which depicts
this process. The fetchCurrencyRate() has a purely reading side effect (an exter-
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nal query). It fetches current currency exchange rates and persists them to the sys-
tem state. These exchange rates are used during the calculation of an order price.
The sendConfirmation() command triggers a purely writing side effect (an external
command) which sends irrevocable confirmation messages via mail.

Listing 5.4: Shortened and simplified excerpt from the REST APL

restAPI.commands = function(request) {
/* map HTTP requests to commands x/
if (request === ”POST /order) {
var commands = [
”fetchCurrencyRate(request, state)”,
”createOrder (request, state)”,
”sendConfirmation(request, state)”

1;

// 1) invoke each command in the series sequentially.

// this enforces a causal order by waiting for each

// command to terminate, before the next is dinvoked.

// 2) for each comand, calculate event from state changes
and persist command + event.

// 4) publish events to query model(s).

runtimeEngine.processCommands (commands, request);

5.3.2 Command Implementation

Commands are implemented as modifying the system state object. The runtime en-
gine generates an event after a command has been executed. This event captures
the change to the prior state object. Within commands, the programmer annotates
which state properties were read during the computation. Modified state properties
are automatically captured by the runtime engine. This enables the runtime engine
to track causalities between events (Section 4.2.4). Thus, if we e.g. remove a Produc-
tAddedToCart event from the timeline, subsequent causally dependent events (e.g.
PlacedOrder) can be automatically removed (or replayed) as well. Listing 5.5 depicts
two command implementations.

Listing 5.5: Two examples of online shop commands.

/* command, which adds items to the cart x/
commands.addToCart = function(request, state){
/* extract parameters from the HTTP request, update state x/
var productId = request.params.productld;
var quantity = request.params.qty;
state.cart[productId] = quantity;

return {
success: true,
newState: state,
read: []

}s
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/* command, which places an order */
commands.placeOrder = function(request, state){
var order = { items: state.cart, sum: ... }
state.orders.push(order);

state.cart = {};

return {
success: true,
newState: state,
read: []

}s

5.3.3 Events

The already mentioned JSON Patches serve as the data format for events. Events
in our implementation are created automatically by the runtime engine. We im-
plemented this feature using an open source library?, which offers the possibility
to output changes to objects in the form of a JSON Patch. For this, it utilizes the
Object.observe() feature from ECMAScript 2016 (ES7), the most recent specifica-
tion of the JavaScript language. This feature provides a mean for recording changes
to an object®. We applied this to record modifications of the system state object. This
enables us to automatically generate the patch after a command has been processed.
Together with event tags, state properties which were used, and a preliminary id (ex-
plained later in this section), this patch forms the event. After the event has been
created, it is persisted to the timeline together with the command. The event is fur-
thermore published to the query model(s). Listing 5.6 displays the patches of some
events, which were automatically generated by the prototype runtime engine.

Listing 5.6: Events in the form of JSON Patches, from our prototype. They depict
modifications of the system state object.
/* add product id 172 to the ”state.cart” object with quantity 1 */
[ { ”op”: ”add”, ”path”: ”/cart/172”, ”value”: 1 } ]

/* update the quantity of the product ”state.cart[172]” */
[ { ”op”: ”replace”, ”path”: ”/cart/172”, ”value”: 3 } ]

/* add an object to ”state.orders” array and remove it from cart x/

[{
Yop”: ”add”,
”path”: ”/orders/-”,
?value”: {
”timestamp”: 1458061070313,
Ycontent”: { ”172”: 3 }
}
},
{
”op”: ”remove”,
”path”: ”/cart/172”
}H

'https://github.com/Starcounter-Jack/JSON-Patch
*https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
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5.3.4 Queries

Queries are sent as HTTP requests to the REST API, using safe HTTP verbs. The
thin logic layer in the API then maps the requests to a query model, which responds
with the state visible in the model. The method in the following listing returns the
shopping cart content, when queried.

queryModel.getCart = function(request, state) {
request.send(state.cart);

}

We apply CQRS here: The query model is decoupled from the command model
and there might exist a multitude of replicated query model instances which could
be used to conduct e.g. load balancing. As examined in Section 2.4, this results in
an eventually consistent behavior of queries. Listing 5.7 displays an excerpt of this
routing, using a simple round robin algorithm.

Listing 5.7: Simplified excerpt from the query routing in the APL

restAPI.queries = (request, state) {
var roundRobin = ++roundRobin % queryModels.length;
if (request === ”GET /cart”) {
queryModel[roundRobin].getCart(request, state));

}
/...
3

5.3.5 Preliminary Command IDs

Following our argumentation from Section 5.2.6, we implement commands in a way
that the HTTP request receives a preliminary command id as an immediate response.
This preliminary id can be used by clients to ensure that queries are only fulfilled, if
the result of a certain command is visible in the query model. We propose a solution
which ties in with the principles behind REST. Commands in our prototype return
the HTTP status code “202 Accepted” to indicate that the request has been accepted
and will be processed asynchronously. The preliminary id is returned as the payload:

HTTP/1.1 202 Accepted
Content-Type: application/jsonj;charset=utf-8

{ ”preliminary_id”: 533 }

Queries can be restricted to a certain preliminary id. If this id is not yet visible
in the query model, the query is rejected. To achieve this, we utilize the If-Match
field available in HTTP/1.1 as a mean for conditional HTTP requests. The specification
matches our use case: “The If-Match’ header field makes the request method conditional
on the recipient origin server either having at least one current representation of the
target resource [...]” [50]. Listing 5.8 depicts a simple script which we used to test our
prototype (among other test scripts). The script sends two succeeding HTTP requests:
a command (line 6-10) and a query (line 14-17). The query is sent as a conditional
request using the preliminary id which was returned by the prior command.
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Listing 5.8: Simple Test Script for our Prototype.

1 #!/bin/ksh

2  URI=http://localhost:8000

3

4 # add item to cart

5 PRELIMINARY_ID=$(

6 curl -X POST \
7 -H ”Content-Type: application/json” \
8 -d ’{ 7qty”: 3 ¥’ \
9 $URI/cart/724 \
10 | grep -o ’[0-9]*’

1)

12

13 # list items 1in cart

14 curl -v -X GET \
15 -H ’Accept: text/plain’ \
16 -H ”If-Match: $PRELIMINARY_ID” \

17 SURI/cart

The command adds a product to the cart and obtains a preliminary id. The HTTP
exchange looks roughly like in the following listing. Lines starting with “>” indicate a

«

HTTP request from the client to the server, lines starting with “<” mark the response.

POST /cart/724 HTTP/1.1
Content-Type: application/jsonj;charset=utf-8

{ ”qtyn . 3 }

HTTP/1.1 202 Accepted
Content-Type: application/jsonj;charset=utf-8

{ ”preliminary_id”: 1458171779004 }

The second HTTP request (from Listing 5.8), obtains the content of the shopping
cart. In accordance to the HTTP/1.1 specification for conditional requests, the server
returns “304 Not Modified” if the condition evaluated to false and “2ee 0K” if it suc-
ceeded [50]. The following listing depicts this rejection (line 5-9) and the alternative
response (line 13-19).

1 > GET /cart HTTP/1.1

2 > If-Match: 1458171779004

3 >

4

5 < HTTP/1.1 304 Not modified
6 < Content-Type: application/json;charset=utf-8
7 <

8 <

9 < { ”visible” : false }
10

1 OR

13 < HTTP/1.1 200 OK
14 < Content-Type: application/json;charset=utf-8
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15 < .

16 <

17 <[

18 < { ”product1” : { ”title”: ”Lorem Ipsum”, ”price”: 99 } }
19 <]

5.3.6 Retroactive Use Cases

In this section we describe some of the use cases for retroaction, which can be applied
to our prototype.

History-aware Algorithms

Through the programming model which we described, the history of the application is
exposed to commands. This can be utilized to create history-aware algorithms. An ex-
ample for this is a PlaceOrder command which calculates an order discount based on
previous orders by this customer. Listing 5.9 depicts the commands’ implementation.
First, a branch of the timeline is created, then all events tagged with placed-order
are searched for. Next, these events are examined in order to compute a discount for
the current order.

Listing 5.9: When placing an order, a discount based on previous orders is calculated.

commands.placeOrder = function(request, state) {
/* ’big bang’ 1is a pre-defined tag of the runtime engine which
refers to the start of the timeline. x/
var b = retroactive.createBranch(”big bang”);

/* find all events tagged with ’placed-order’ =*/
var orderEvents = b.getEvents([”placed-order”]);

var allOrdersAmount = 0;
for (var o 1in orderEvents) {
/* get the system state object at the point of this event
in the timeline x/
allordersAmount += orderEvents[o].getState().totalAmount;

var discount = 0;
if (allOrdersAmount > 1000) discount = 0.1; /* 10% */
else if (allOrdersAmount > 100) discount = 0.05; /*x 5% %/

var order = {

items: ...,

totalAmount: ... * discount
b5

state.orders.push(order);

return { success: ..., newState: ..., read: ... };
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Partial Replay with Control of Side Effects

The concept of partial replays allows for control of the side effects in a replay (Section
4.2.5). It is possible to either reuse prior results or reinvoke them and continue the pro-
cessing with these new results. As we described it, the shop fetches current currency
exchange rates before creating an order. A use case is to replay the shop timeline
and reprocess each fetchCurrencyRate(). In such a replay, the shop fetches each
currency exchange rate from an external web service again. Each causally dependent
command (placeOrder () in this case) will then be reprocessed with the new result.
In order to prevent confirmations from being sent out again, we suppress them. In
this case, suppressing the invocation means that we reuse the event from the last
sendConfirmation() invocation (if an event is available).

Listing 5.10: Partial Replay Example

/* newly compute the events in this array, instead of reusing the
already persisted ones x/
var recomputeCommands = [ ”fetch-currency-rate” 7;

/* for the tags in the array use the persisted events instead of
newly invoking the command =*/
var reuseEvents= [ ”confirmation-mail” ];

/* normal event replay, but for the supplied ’newlyComputeEvents’
array the belonging command is newly invoked. Events which
possess a causal relationship to the newly computed ones are
recomputed as well, as long as they are not specified in the
’reuseEvents’ array. */

var b = createBranch(”big bang”);

b.partialReplay({ recompute: recomputeCommands, reuse: reuseEvents });

In the code above all fetchCurrencyRate() commands and the direct and indi-
rect causally related events are reprocessed. But it would also have been possible to
reprocess just a single specific fetchCurrencyRate() and its causally related events.
This can be achieved through the usage of unique (or appropriately fine-grained) tags
within the commands. These tags can then be filtered for in a later replay.

Alternate Command Behavior

We can adapt the above code to evaluate how different currency exchange rates would
have affected the state. To achieve this, we exchange the fetchCurrencyRate() com-
mand in a branch. Instead a function which returns hypothetical exchange rates from
a fixed list is used. Then a replay of the relevant commands is conducted. Next, the
resulting state can be accessed for further analysis:

var experimentalRatesFn = function(request, state) {
/* use this fixed currency rate for the new processing */
state.currencyRates = { eur2usd: 1.13 };

return {
success: true,
newState: state,
read: []

}s
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var someCommand = function(request, state) {
b.createBranch(”big bang”);
b.changeCommandFunction(”fetchCurrencyRate”,
”experimentalRatesFn”);

b.partialReplay ({
recompute: [”fetch-currency”],
reuse: [”confirmation-mail”]

b
var experimentalOrders = b.getState().orders;

// further processing

/7

return { success: true, newState: ..., read: ... };

Observe Alternate States

We implemented a feature which allows for displaying how the orders would have
been different, if customers would not have removed any products from their cart. For
this, a branch is created and all events tagged with product-removed-from-cart are
deleted from it. Next, a replay of commands tagged with place-order is conducted.

commands.calculatePossibleOrders = function(request, state) {
var b = retroactive.createBranch(”big bang”);

/* supplying true would remove all causally dependent
”place-order” events as well. */
b.deleteEvents(”product-removed-from-cart”, false);

/* only these commands (and the ones which read state modified
by these ones) are recomputed, for other commands the events
are reused *x/

var recomputeCommands = [ ”place-order” ];

var b = createBranch(”big bang”);
var reuseEvents = [”confirmation-mail”];
b.partialReplay ({

recompute: recomputeCommands,

reuse: reuseEvents

s

var branchState = b.getState();
state.whatifOrders = branchState.orders;

return {
newState: state,
success: true,
read: []

b
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The result from this analysis is saved to the state property state.whatiforders
and subsequently persisted to the timeline as an event, by the runtime engine. The
query model(s) eventually receive the events as state updates. Then the results are
visible in the query model. They are exposed to the clients through a query:

queries.getPossibleOrders = function(request, state) {
return state.whatifOrders;

Retroaction for Optimization

It is possible to use the application’s history for optimization or adaption of the ap-
plication’s current behavior. This is the use case which we described in Chapter 3
as history-aware and self-improving algorithms. Concerning the online shop, this
section described the implementation of a history-aware discount algorithm. But it
is also possible to use the system’s history for evaluating experimental — and possi-
bly better performing — algorithms. This can be achieved by replaying commands
from the timeline with a different command processing implementation. The result-
ing state can then be used for comparison against the current state of the timeline
— and thus against the current discount algorithm. Next, we can adapt the future
application behavior based on these insights.

To achieve this, we create a command which creates a branch, exchanges the
placeOrder () command implementation, conducts a replay, and compares the branch
state against the application state. Based on this result, the current command function
can then be exchanged.

commands.tags.placeOrder = [”place-order”];
commands.experimentalFn = function(request, state) { ... }

commands.optimizeAlgorithm = function(request, state) {
var b = createBranch(”beginning of timeline”);
b.changeCommandFunction(”placeOrder”, ”experimentalFn”);
b.partialReplay({ recompute: [ ”place-order” ] });

/* compare branch state against current state */
var branchState = b.getState();
if (..0) {
/* exchange command function in ongoing timeline %/
changeCommandFunction(”commands.placeOrder”,
”commands.experimentalFn”);

return ...;

3

In order to compare different processing implementations against each other, it
has to be clear that the differences after a replay have occurred due to the differ-
ent command processing implementation. Therefore a deterministic command replay
needs to be ensured. If commands are processed in a different order, the differences
might as well be due to this indeterminism. Hidden causalities need to be taken into
account as well, otherwise one could mistakenly attribute differences in the outcome
to the different command processing, although hidden causalities or side effects could
be responsible as well.
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Iterate Towards Target State

A further use case is to define a target state and modify the past until we reach it. We
can determine if we get from a specified start state to a defined target state by applying
subsequent, iterative modifications. This feature is especially interesting for problems
where modifications have to be “played through” and cannot be trivially calculated.
For example, the online shop could have a complex algorithm, which calculates price
increases each time an order is placed. Lets say this calculation is complex. It depends
on the state of the system at the time when an order is placed and takes the number
of similar recent product orders into account. If we want to find out how much more
orders would have had to be placed for the current price of a product to reach a
specified state, we can retroactively insert orders until we reach our target state.

But this strategy is not limited to insertion or removal operations of commands
and events. It can also be applied to the command processing implementation, to
determine how the logic needs to be modified to reach a certain state. This process
then yields the necessary modifications. In general, this can be beneficial for a lot
more cases, where the behavior of the application over time needs to be considered or
is time-dependent. We imagine that this feature allows for novel debugging schemes
and bug fixes.

5.3.7 Prototype Limitations

A limitation of our prototype is that if one command in the series fails, the series will
not be executed further. This limits the expressiveness, since rollbacks of commands
in the series are not possible. Additionally, it is not possible to issue a hierarchical
series, where parts of the series can be executed independent of each other.

The annotation, which state properties were used for the computation of a state
change, is cumbersome and could probably be done by an underlying runtime en-
gine. We are confident that this could be achieved through source code analysis, by
observing which state properties are accessed and modified. Another option is to use
explicit getter and setter methods when accessing properties of the state object. Such
methods can record the access of state properties as well.

Last, we have by far not exhausted the possibilities for retroactive operations,
which the API could expose. For example, forward deleting all events from a certain
branching point could be helpful, if the objective is to append simulated events from a
certain point on. This is not possible with our described prototype, but could certainly
be implemented. We have restrained our description to a basic set of operations to
keep the concept simple and comprehensible.

5.4 Summary

This chapter demonstrated the practical applicability of the concepts described in
Chapter 4. In Section 4.4.2, we described two contrasting architectural modifications
for event-sourced systems following a CQRS style of architecture, as means to utilize
retroaction: a unified architecture and a plug-in architecture. This chapter outlined
a programming model for the unified architecture. A prototypical implementation
using the scenario of an online shop was described. We demonstrated how issues of
retroactive systems can be addressed (e.g. by constraining possible modifications) and
which new problems emerge from the application of our ideas (e.g. retroaction-aware
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programming). Furthermore, the central role which the delta encoding of events
poses to retroaction has been highlighted. Our programming model provides the abil-
ity to access and manipulate the application’s state history in a single environment.
This enables a variety of possibilities, such as history-aware algorithms and novel
debugging schemes. Developers can use the application’s data structures, functions,
and libraries in the retroactive code. They can conduct analyses of the application’s
history, explore alternate branches, or create history-aware algorithms.



Chapter 6

Summary of Architectural
Considerations

Integrating retroaction in event-sourced systems introduces a set of capabilities which
are not feasible in traditional event-sourced architectures. A comparison of our con-
ceptual considerations to existing systems is difficult, since the capabilities which we
propose for event-sourced systems cannot be found in this combination in the event-
sourced field, nor in related work. To the best of our knowledge, there exists no work
which examines retroactive computing in event-sourced systems. Thus, it is not pos-
sible to evaluate our conceptual proposals and ideas against a comparable system in the
event sourcing domain.

If we turn to related work, there are some domains which have similar ideas. But
as illustrated in Chapter 3, most of these domains utilize the recorded history of a
program in a different manner than we do: decoupled from the application (debug-
gers), limited to passive retrospection (history-aware languages and algorithms), or
on a meta level (VCSes). Oftentimes the recorded history of an application is only
utilized for post hoc analysis in separate tools, after the execution has finished. In
Chapter 3, we described related works and efforts to utilize retroaction in data struc-
tures and aspect oriented programming languages. These approaches have parallels
to our work, but do not consider problems of temporal and causal inconsistencies,
necessary restrictions, or side effects. The problem of how to handle side effects in re-
plays is mentioned in the related work concerning reotractive aspects as well, though
there is no clear solution, whereas we have provided an in-depth examination of side
effects in replays and suggested ways of recording and controlling them. If side ef-
fects are outsourced into separate, individual commands, they can be partially reused
or reinvoked. As we view it, these systems do not consider the challenges which
arise from modifying and interacting with the application’s history in a single envi-
ronment. Consistency issues, causality violations, branching, and the control of side
effects in replays, are some of the challenges which we have attempted to solve in the
two previous chapters.

In our approach, applications can examine their state history retrospectively and
modify this history as a mean to explore alternative states. Event sourcing with CQRS
is a perfect match for this, since it inherently captures state changes as commands and
events. In this first of part of the thesis, we identified the major challenge of retro-
action in event-sourced systems. We discussed temporal and causal inconsistencies,
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potential solutions and necessary restrictions. Furthermore, we provided an exten-
sive overview on limitations and constraints of retroaction in event-sourced systems.
Next, we described two appropriate architectural modifications to event-sourced sys-
tems following a CQRS style of architecture. We demonstrated the applicability of
both architectures by implementing them as prototypes. For the unified architecture,
we described an appropriate programming model and its implementation as a proto-
type. In Chapter 4, we illustrated that the usage of retroactive computing is heavily
dependent on the application domain and its domain-specific constraints. Some do-
mains cannot take advantage of its full potential due to strict constraints caused by
side effects, real-world coupling, or hidden causalities. Other domains on the other
hand benefit heavily of retroactive aspects, as it allows for an entirely new perspec-
tive on application state. As can be seen with the other retroactive constraints as well,
it is heavily dependent on the domain model how much can be made of retroaction
and how high the informative value of retroactive modifications can be. If retroaction
is taken into account from the start when building a system, the informative value of
retroactive changes can be maximized.



Chapter 7

The Chronograph Platform

The foregoing chapters of this thesis described how retroactive capabilities with an
ES+CQRS style of architecture can be utilized. In this chapter, we examine if and how
the results from the previous chapters can be transferred to an event-sourced system
with a different architectural style. The Chronograph research platform is the subject
of this examination.

7.1 Background

Chronograph [51] is an event-sourced, distributed platform with the underlying struc-
ture of a graph. The platform thus has potential retroactive capabilities, which have
not been considered so far. Events are only ever appended, but no retroaction is ap-
plied. The programming model is vertex-centric, each vertex in the graph possesses
an individually specified behavior — the behavior function. Vertices communicate via
asynchronous message passing with their neighbors, can spawn new vertices, and
create or remove edges. A message addressed to a vertex triggers the processing of
this message within the vertex. Such a computation can result in changes to the ver-
tex state, modifications to the vertex edges, the spawning of new vertices, or outgoing
messages. State changes are persisted as events into an event log which belongs to
the vertex. Thus, event sourcing is the mean to persist vertex state. The behavior
function is part of the vertex state and is also persisted with the event. It can be ex-
changed dynamically by the vertex. Formally, a vertex at a time ¢ can be described
as reacting to an incoming message m by invoking its current behavior function f;.
The function returns the updated state and a (possibly different) behavior function:

(St+1, fr41) = fi(m, St)

A pseudo code implementation of this formal description can be written like this:

vertices[”foo”].behaviorFn = function(state, msg) {
// local computations
state.foo = state.bar + 1;

return [state, vertices[”foo”].behaviorFn];
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Figure 7.1: In Chronograph, vertices can be spread over multiple workers, which do
not necessarily have to run on the same physical machine.

The behavior function of this vertex “foo” is invoked once an incoming message is
available. The prior vertex state is supplied to the behavior function as an argument.
The function then processes the message and returns the updated state object, as well
as the subsequent behavior function.

In Chronograph, a runtime engine is responsible for providing underlying ser-
vices (message passing, persistence, calculating events, etc.). Multiple instances (i.e.
workers) can be connected, in order to distribute a graph over multiple machines or
processes (Figure 7.1).

7.2 Differences to Prior Architectures

The event-sourced architectures, which we described in Chapters 4 and 5 have some
differences to the Chronograph architecture. Before we examine the application of
retroaction in Chronograph further, we examine these differences first.

7.2.1  Local vs. Global View

In Chronograph each vertex possesses a local view. It can communicate with neigh-
bors, modify its edges, and spawn new vertices, but its computation takes only the
local vertex state and arriving messages into consideration. This is basically the sce-
nario we viewed in Chapter 4 and 5, where we considered a system which receives
commands from an outside world. The IoT scenario, which we used to illustrate our
conceptual considerations in Chapter 4, is a use case which suits well for Chrono-
graph. Independent IoT devices can be modelled as vertices in a graph. The devices
are connected via edges and communicate via asynchronous message passing. De-
vices are independent from each other; each one possesses an individual behavior
function and its own timeline. Though, each device is loosely coupled to nearby de-
vices and there might be causal dependencies among devices. In this IoT scenario, the
local view refers to the view of one device on itself.

But in Chronograph a global view exists as well. Vertices are interconnected via
edges and form a graph topology. This topology restrains the communication possibil-
ities, since only neighboring vertices can communicate with each other. If retroaction
is applied to the graph, new challenges emerge: There is no global timeline, logic, or
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event log — each vertex possesses its own. The global view only emerges when the
graph is examined in its entirety. For this, multiple event logs need to be taken into
account and the creation of a consistent graph snapshot is necessary. The issue of
creating snapshots in distributed event-sourced has been addressed by Habiger [52]
in 2015. In our IoT scenario, a global view could be calculated by a controller device
which keeps track of all devices.

7.2.2  CQRS in Chronograph

Chronograph possesses a segregation of commands and queries as well. But the im-
plementation differs from our prior architectures. Commands are sent by vertices
to vertices, but queries are issued from an underlying platform. Queries take place
outside of the graph, on a different layer than commands. Behavior functions are
written by a programmer to specify the behavior of vertices. Within a behavior func-
tion, incoming messages are processed, state may be mutated, and new messages sent.
Queries on the other hand are issued from the runtime engine (e.g. by an administra-
tor) and refer to the state of the entire graph. There is usually a snapshot mechanism,
which yields a consistent state of the graph, involved.

Messages in Chronograph can be considered what we previously described as
commands. Here, messages which are passed between vertices trigger a computation
within a vertex, and thus possibly an internal state change. To summarize: Queries
and commands are also viewed as separate operations, but a query happens on the
snapshot of a graph and is decoupled from the application itself. Commands, on the
other hand, are sent as messages between vertices.

7.3 Retroaction in Chronograph

This section examines how retroaction can be achieved in the platform. For this, we
apply the ideas introduced in Chapters 4 and 5, in order to utilize temporal aspects of
the platform. There are a number of use case which motivate retroaction in Chrono-
graph.

Retroactive Insights Past states of the graph can be explored. This can be used for
analysis purposes and the results can be utilized to e.g. change the future behavior of
the system.

Compare Behavior Functions It can be examined how different behavior functions
would have affected the system. This can be achieved by replaying the messages from
the graph’s history, with different behavior functions for vertices.

Messages Messages can be retroactively inserted or deleted, to examine how they
would have affected the graph’s state.

Topology Changes Topology changes can be applied retroactively to examine the
impact of a different graph topology.

An example of a retroactive application in the IoT scenario, is to retroactively explore
how different behavior functions in individual devices would have affected the system
state.
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7.3.1 Behavior Function vs. Runtime Engine

In Chronograph, access to retroaction can be exposed either (1) in the behavior func-
tion or (2) in the underlying runtime engine. In case of (1), this leads to a similar
programming model as in Chapter 5.

7.3.2 Local vs. Global

Causalities in Chronograph occur, when (1) local state is read or mutated and (2) when
messages are sent or received. When messages are exchanged with neighboring ver-
tices, they trigger computations, which in turn might modify state and dispatch new
messages. In contrast to the systems in Chapters 4 and 5, this implies that causali-
ties occur to a larger degree outside the local view of a vertex. Thus, to fully utilize
the expressiveness of retroaction, the entire graph needs to be taken into account.
In replays, hidden causalities can otherwise occur in neighbors of a vertex: Since
the vertices outside of a vertex would not be newly computed, there is no coupling
with them - messages sent to them would not be processed and thus not influence
the replay. If retroactive changes are applied in only one vertex this can weaken the
informative value. Side effects can be a reason for further hidden causalities.

It is actually possible to apply a lot of the ideas from the previous chapters to
Chronograph — if we just examine the local view in a vertex we can apply our insights
from Chapters 4 and 5. Though, hidden causalities in the graph outside of a vertex can
have a limiting effect. Through the interaction of the graph with the outside world
(through side effects), additional hidden causalities might exist. Thus, we cannot limit
retroactive capabilities to a local vertex, the nature of the graph rather has to be taken
into account when utilizing retroaction in Chronograph.

Besides the primitives of retroaction which we described in the programming
model from Chapter 5, Chronograph has an additional retroactive primitive which
allows to retroactively edit the topology. Transferred to the IoT scenario, this allows
to explore how a different topology would have influenced the system. For exam-
ple, individual devices might have chosen for different actions if neighboring devices
would have been available.

7.4 Proposals to Implement Retroaction

Some of the concepts, which we applied for implementing retroaction in event-sourced
systems, can be applied to Chronograph as well. In Chapter 4, we argued that causal-
ity violations occur when a timeline modifies its own past. Furthermore, directly edit-
ing the past contradicts the append-only nature of event-sourced systems and breaks
with its benefits for e.g. scalability or traceability. Thus, we proposed to distinguish
between a main timeline and its branches. We restricted direct editing to branches
and retained the append-only behavior for the main timeline. The same reasons hold
true for Chronograph and we propose to apply the differentiation of a main timeline
with branches in Chronograph as well.
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7.4.1 Side Effects

As described in Section 4.2.5, side effects pose a challenge to retroaction. They can
have a negative effect in replays, since they can be a source for hidden causalities.
This can be the reason that the system behaves unforeseeable differently in a replay.
Side effects are also tricky in terms of control in replays. It has to be possible to (1)
suppress their invocation, (2) reuse the result from the original invocation, and (3)
reinvoke them and use the new result for the further processing. In Section 4.2.5, we
proposed the concept of partial replays to impose control over side effects. To briefly
recapitulate on the core insights: We excavated side effects from within application
commands, instead they were placed in individual commands with few application
logic. This concept allows for handling side effects with system primitives, they were
invoked as commands and their results recorded as events. We also highlighted that
through this splitting of large commands into a series of commands and side effect
afflicted commands, three constraints follow:

1. Few logic is executed when the series is issued, only the success and failure of
commands is checked. Otherwise, this logic layer would not be persisted to the
timeline and would not be taken into account in a command replay.

2. Each command in this series needs to be persisted to the timeline, independent
of its success or failure. This way a later replay can re-execute this series with
a modified processing logic.

3. The commands in this series need to be invoked in a serializable order. A non-
serialized replay may break the deterministic cause of events.

This concept can be transferred to Chronograph, by excavating side effect oper-
ations from the behavior function into separate vertices. These operations can then
be dispatched via asynchronous message passing. Vertices conduct the side effect
afflicted operations and return the result via asynchronous messages. This way the
invocation message and the resulting data are persisted in the timeline. Thus, in a re-
play it is possible to control if the result from the original invocation should be reused
(i.e. the persisted message which returned), or if the side effect operation should be
executed again (i.e. the message sent to the vertex again).

But it is not sufficient to solely place side effect operations within separate ver-
tices — these vertices also need a special role. They cannot be treated like normal
Chronograph vertices, since a vertex which performs I/O operations cannot be re-
stored to an arbitrary state. A vertex could e.g. perform the function of processing
data from the TCP connection of a live stream; restoring an arbitrary state of this
TCP connection is generally not possible. Thus the usage of I/O vertices becomes nec-
essary. In terms of communication via asynchronous messages, spawning them, and
programming them, these I/O vertices act like normal vertices. But they do not return
or persist state. The type of a vertex — normal vertex or I/O vertex — can be supplied
when it is initially spawned. The following listing depicts an example how this could
be implemented. In this example, the behavior function does not utilize I/O vertices,
instead “normal” processing logic in the behavior function is blended with side effect
afflicted operations. A stock price is fetched from a web service and depending on
the result, the state object is modified and a mail message may be sent.
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vertices[”foo”].behaviorFn = function(state, msg) {
var stockPrice = http.get(”https://.../price”);
if (stockPrice < 500) {
state.buyingRecommendation = true;
mail.send(”alice@foo.com”, ”Buying recommendation!”);

3

return [state, vertices[”foo”].behaviorFn];

}

The problem here is that in a replay neither reusage, nor reinvoking, nor skipping
of the individual side effects can be controlled. But this behavior function can be re-
written to utilize I/O vertices in this way. In the following listing two special vertices
stockPriceIO and mailIO have been created. The side effect afflicted operations are
moved to these vertices. The code changes to the original function are marked in
red. The functionalities can then be triggered by sending messages to these vertices.
Results are returned to the sender via the native asynchronous message passing prim-
itives of Chronograph.

vertices[”foo”].behaviorFn = function(state, msg) {
sendMsg (”stockPriceI0”, ”get-price”);
if (msg.content === ”price-fetched” && msg.price < 500) {
state.buyingRecommendation = true;
sendMsg (”mailI0”, ”send-alert-mail”);

}

return [state, vertices[”foo”].behaviorFn];

vertices[”stockPriceI0”].behaviorFn = function(msg) {
if (msg.content === "get-price”) {
var data = http.get(”https://.../get-price”);
sendMsg(msg.sender, data);

return [ vertices[”stockPriceI0”].behaviorFn ];

}

In a replay, the stockPriceIO function could be exchanged to e.g. simulate dif-
ferent I/O by returning simulated stock prices from a fixed list or fetch them newly
from a different server. In the above example, the function which controls the I/O ver-
tex logic was described as a behavior function within the system. Since I/O vertices
are a special type of vertex, the I/O vertex could also be provided by the underlying
runtime engine. This may allow for more efficient processing or the coupling with
different programming environments (or components).

7.4.2 Retroactive Modification

As aresult of a retroactive modification, the state at a point in the vertex timeline may
have changed. In Section 4.2.3 we described possibilities to ensure the consistency of
the subsequent timeline. Among them were the removal or recomputation of causally
dependent events. We proposed to annotate the system information which was used
to compute each event for this. In our prototype, this information was defined by the
reading and writing operations which accessed properties of the system state object.
This annotation was done manually, by the developer.
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This concept can be transferred to Chronograph: We propose for the behavior
function to return the properties of the vertex state object which were utilized dur-
ing an invocation of the behavior function. Though, we propose an improvement of
the concept from our prototype: the usage of getter and setter methods when access-
ing properties of the vertex state object. These methods are provided by the runtime
engine and allow to automatically capture which state properties were accessed and
modified. Through this concept, the developer does not have to annotate this informa-
tion by hand. Listing 7.1 illustrates how this concept can be implemented. A further
improvement over the usage of getter and setter methods would be source code anal-
ysis by the underlying runtime engine, to automatically annotate this information.
Developers would then not have to use setter or getter methods, but could rather use
normal language syntax.

But this concept is only sufficient to track causal dependencies of a vertex in it-
self. This was sufficient for our prior architectures, in which only a single event log
existed. In these prior architectures, commands could not invoke other commands.
Commands were issued by an application and it was not clear if newly issued com-
mands had a causal relationship to previous commands. As a consequence, causal
dependencies among commands could not be traced, although they may have ex-
isted. In Chronograph, the underlying model is different. Here, vertices can send
messages to neighbors. These messages trigger a computation in the receiver and
result in new events being appended to individual event logs. Thus, the computation
in vertices has a causal relationship to the computation of the vertex which sent the
message. In case of retroaction, retroactive modifications can result in a message no
longer being sent. This has consequences for the consistency of the timeline, since
the neighboring vertex then would never have received a message, and thus never
executed its computation. This is why direct — and recursively indirect — causal de-
pendencies in other vertices need to be taken into account when retroactive changes
are applied (Section 4.2.4). In terms of causal dependencies among messages, the con-
cept of vector clocks could be applied. Vector clocks can be used to trace causalities
among messages in a distributed system [53]. To ensure a consistent timeline, the
computations in vertices which have received direct messages and sent subsequent
indirect messages, need to be recursively removed (or replayed) as well.

Listing 7.1: Getter and setter methods can be used to capture causalities among com-
putations. If a retroactive modification is applied, dependent computa-
tions can be recursively handled. In the case of e.g. a message which is
retroactively removed, all consequences can be removed from the subse-
quent timeline as well.

vertices[”foo”].behaviorFn = function(state, msg) {
var f = state.get(”foo”); /* state.foo x/
state.set(”bar”, f++); /* state.bar x/

return [state, vertices[”foo”].behaviorFn];

}

7.4.3 Tagging Events and Commands

In Section 5.2.3, we described the concept of tagging commands and events. We pro-
pose to apply this concept in Chronograph as well. Enabling the tagging of messages
and events makes sense, since they both serve a different purpose: A message is
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always issued by the vertex which sends the message; the event describes how the
vertex who received the message reacts to it. This resulting event depends on the
behavior function of the receiver. Therefore it makes sense to annotate the resulting
event with tags in the behavior function. Annotating messages enables us to filter for
them, independent of how they are processed. For messages, tagging allows to flexi-
bly exclude message categories (or individual messages) in replays. This can be used
to exclude e.g. messages to I/O vertices, in order to prevent side effects from being
reinvoked.

Concerning events, tagging allows for an additional use case: creating references
to certain points in the timeline. These references can be used as timeline pointers
in retroactive operations (e.g. as branch or insert marks). Concerning the implemen-
tation of tagging, we can utilize the return values of the behavior function to return
tags as well. The following code example illustrates how the concept of tagging in
the behavior function can work:

vertices[”foo”].behaviorFn = function(state, msg) {
var eventTags = [ ”branching-pointl”, ”important-data-processed” ];

var messageTags = [ ”some-message-tag” ];
msg.addTags (messageTags) ;

return [state, vertices[”foo”].behaviorFn, eventTags];

}

7.4.4 Capturing State Changes in Events

In Chronograph, events are implicit changes to a state object. The difference before
and after the modification is calculated by the underlying platform. The persisted
event captures these state changes and can be used to rebuild state. But the Chrono-
graph specification does not yet define how these deltas are encoded.

In the context of retroaction, the form how state changes are encoded is impor-
tant to consider, since this has a large impact on the expressiveness and limitations
of retroaction. In Section 5.2.1, we described this impact in detail. For the reasons
described there, the form of JSON Patches suits better for Chronograph. Here, the
patch contains the operations which were applied — opposed to the mere recording
of the result. This allows for retroactive changes to not be annihilated by subsequent
events. But the issue is not solved completely. JSON Patches record the operation
which has been applied to an object only in some cases; appending an element to an
array, for example. But in the case of direct value assignments or the direct modifi-
cation of a value at a certain array index, the JSON Patch still annihilates retroactive
modifications. This is not necessarily an issue, but it can have a limiting effect on the
insertion of retroactive events and commands.

Individual instructions within commands can conflict with prior retroactive modi-
fications. For example, in a behavior function a programmer could always decrement
the value a vertex receives from a certain vertex, relying on some knowledge of the
context. Through retroactive changes, this context may no longer hold and the oper-
ation thus suddenly have a different semantics. In Section 5.2.4, we provided a more
detailed examination of this issue and proposed retroaction-aware programming to
provide more semantics to instructions. This can be done by providing underlying
functions to the developer, which resolve the ambiguity of instructions (getLast()
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instead of object[99]). This way, conflicts of retroactive changes with later opera-
tions can be mitigated.

The delta encoding in an event can be used to capture the intention of a state
change as well. In Section 5.2.4 we mentioned the example of encoding append oper-
ations to an array in the event, opposed to direct value assignments of array indices.

7.4.5 Integrating Results from Branches

There are a number of possibilities, how results from computations on branches can
be integrated back into the main timeline.

System Primitives One possibility is an object-oriented approach, in which branches
are viewed as objects with a getter method for the current state object of a vertex. This
is the concept that we applied for the programming model in Chapter 5. It can be im-
plemented as illustrated in the following listing. In this example, the results from
branches are persisted to the timeline as part of the state.

vertices[”foo”].behaviorFn = function(state, msg) {
var timelinePointer = ”timeline-tago”;
var branchVertex = retroactive.branchVertex(timelinePointer)

var excludeMessages = [Zalert-mail”];
var recomputeMessages = [”fetch-price”, ”alert-mail”];
branchVertex.partialReplay(fromReference, excludeMessages);

/* get state object of a certain vertex */
var s = branchVertex.getState();

return [state, vertices[”foo”].behaviorFn];

Timeline«>Branch Portal Another possibility is to implement a “portal” between
a branch and the timeline. Portals could be considered “magical” doorways between
branch and timeline universes. Messages could then be exchanged between timeline
and branch through such a portal. The following listing depicts how this can work if
a branch of an entire graph is created.

/* on branch x/
vertices[”foo”].behaviorFn = function(state, msg) {
/* send a message to the ”main” graph. the portal 1s
addressed as the vertex ’timelinePortal’. x/
sendMsg(”timelinePortal”, { to: ”vertexAlice”, msg: ... });

}

This concept though would require the introduction of a further “portal vertex”
type (besides normal and I/O vertices). Furthermore, the direction in which messages
can pass through the portal can be restricted in order to prevent domain-specific is-
sues and blending of computations on branches and the timeline. When aiming for a
strictly deterministic replay, communication among universes (i.e. the timeline and
its branches) is discouraged. Otherwise a coupling of vertices in both universes can
lead to non-deterministic behavior in replays.



76 CHAPTER 7. THE CHRONOGRAPH PLATFORM

7.4.6 Exchanging the Behavior Function

The behavior function in a vertex can be exchanged after a behavior function has
been invoked. This is achieved by returning a pointer to a different behavior function.
This change in the behavior function is persisted with the event. The next time the
vertex receives a message, the new behavior function is invoked. The following listing
illustrates this.

/* newBehaviorFn is a new behavior function x/
var newBehaviorFn = function(state, msg) {

/] ...

return [state, this];

3

/* the current behavior function is invoked when the vertex
receives a message */
vertices[”foo”].behaviorFn = function(state, msg) {
/* newBehaviorFn is invoked, the next time the vertex
receives a message */
return [state, newBehaviorFn];

}

This versatile feature is considered to provide a flexible programming model in
which vertices can modify their own behavior. But it poses challenges, when the
behavior function of a vertex needs to be retroactively exchanged. This is due to the
characteristic that the behavior function belongs to the state of a vertex and changing
it can only be done by persisting an event with the modified behavior function. This
is sufficient when an event replay is conducted and state is restored solely based on
events. For command replays though, it is not. If one wants to replay all commands
of a vertex with a modified behavior function, the already persisted events are not
taken into account and thus one cannot insert an event to denote a change in the be-
havior function. Retroactively exchanging the behavior function for a certain vertex
in a command replay cannot be done using solely Chronograph system primitives.
This is in contrast to the programming model from Chapter 5, where the command
processing implementation can be replaced without a need for new primitives. For
Chronograph, there has to be some mean to describe that from this very point in the
timeline on, the vertex should operate with a different behavior function. A possibil-
ity is to introduce a special type of meta message, which advises a vertex to change its
behavior function to a specified function. Such a message can then be retroactively
injected and will be taken into account in a command replay.

7.4.7 Message Replays

Our prior architectures possessed only a single event log (or timeline), to which events
were appended in the sequence in which the commands had been invoked. For re-
plays, we branched the timeline and utilized this order by re-executing commands
in a causally equivalent order. This concept can be applied to an isolated vertex in
Chronograph as well. By recomputing messages, it is possible to examine the influ-
ence of e.g. a different behavior function or different messages. In the case of a single
vertex, the computation is limited to information consumption, though. Since the ver-
tices outside of the vertex are not newly computed, there is no coupling with them
- messages sent to them would not be processed and thus not influence the replay.
Thus, hidden causalities in the neighbors are not taken into account.
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This issue could potentially be addressed by replaying a subgraph of neighboring
vertices or even the entire graph. But this leads to a number of challenges. A global
message replay raises the issue of how newly yielded messages and events should
be processed. For example, a vertex in a replay might reprocess a message and issue
a different message than in the original timeline to a neighbor. It is unclear, how
the originally sent message should be handled. It could either be sent again or not.
If the original message is sent again, the new state of the vertex is still persisted as
an event and an inconsistent graph may result. If it is not sent again and instead
the newly computed messages are sent, the graph may still be inconsistent since its
state resulted from the old message. This issue of blended original and new events
(and messages) can lead to confusion if not clearly specified. There is a lot of room
for possible decisions here. However, a global message replay raises a number of
questions which are heavily dependent on the actual application. From our point of
view, a use case can also be to not conduct global message replays. Instead, a branch
of the graph at a certain snapshot could be created and the subsequent timeline after
the branching point removed. The application could then continue its processing
from there on or append simulated messages.

7.5 Limitations of Retroaction

The limitations of retroaction (as described in Section 4.3) apply to Chronograph as
well. Though, the degree to which they have a limiting effect is influenced heavily by
the actual application and the context in which retroaction is applied. This section
briefly recapitulates limitations of retroaction.

Hidden Causalities In Section 4.3.1 we examined hidden causalities. In an ideal
case for retraction, there are no hidden causalities in an event-sourced systems. Thus,
when a retroactive change is made to the timeline and a replay is conducted, the
outcome is exactly as it would have been if the retroactive change had originally
been in place. But through side effects or real-world coupling, hidden causalities can
occur outside of Chronograph, making it impossible to track them. These hidden
causalities impact the informative value which can be derived from the results of
retroactive changes. If only a subgraph is examined and computations in the rest of
the graph are not reprocessed, hidden causalities in the rest of the graph might also
not be taken into account.

Causality Violations Causality violations can occur through paradoxes (such as
causal loops). We described this issue in detail in Section 4.3.2.

Message Semantics The semantics of messages may annihilate retroactively applied
modifications (see Section 4.3.3). This is not necessarily a limitation, but needs to be
taken into account when applying retroaction.

Determinism in Replays The causal equivalence of replays can be another limiting
factor for retroaction, as it affects the outcome of replays (Sections 4.3.4 and 7.4.7). In-
determinism can weaken the comparability of results from computations on branches.

Decoupled Retroaction Retroaction in large graphs may come with high costs of
performance, since it requires the creation of snapshots and replay mechanisms. If the
system advances, whilst retroaction is applied in a decoupled component, the results
may be longer longer be valid once they are available to the system (Section 4.3.5).
Thus it can be important for retroaction to be efficiently computable.
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Type of Diffs The delta encoding of events can have a limiting impact on retroaction
as well (see Sections 5.2.1 and 7.4.4). In Chronograph, it poses an essential role to
retroaction and is connected to issues of retroaction-aware programming.

7.6  Further Research Areas

Some challenging areas with room for further interesting research emerged in this
chapter. These challenges are out of the scope for this thesis, but we list them here as
reference for future works in the project.

Annotation of Causal Dependencies In our proposals, we used getter and setter
methods when accessing the state object. This allows the runtime engine to track
causalities among events. The question arises if causalities between events can be
annotated automatically by an underlying runtime engine. We are confident that this
can be achieved through source code analysis and by examining sent and received
messages, but this issue needs to be investigated further.

Serializable Graph Replay The issue of a serialized, causally equivalent message
replay of the entire graph arose. If a replay is non-deterministic, the order of process-
ing can otherwise result in entirely different states. Chronograph has the underlying
model of distributed, asynchronous processing and a multitude of vertices with inde-
pendent event logs. In order to realize a serialized global replay, all event logs need
to be combined. This is no trivial issue and further research is required here.

7.7 Summary

This chapter examined how the conceptual considerations from Chapter 4 and 5 can
be applied to the Chronograph platform. As illustrated in these earlier chapters, ap-
plying retroaction in event-sourced systems can get complex fast. Thus, it is impor-
tant to clearly define the context in which it is applied and the objectives which should
be reached.

In this chapter, we illustrated that there is a broad spectrum of how to apply
retroaction in Chronograph and individual decisions depend heavily on the actual
application. We described the introduction of a special I/O vertex type, causal re-
lationship annotations via tags, retroaction-aware programming, and the impact of
the delta encoding. Moreover, we proposed platform-specific solutions, such as I/O
vertices or portals. What can be transferred to Chronograph as well, are the limi-
tations of retroaction. They influence the expressiveness and informative value of
retroaction heavily. If taken into account when creating a system their limitations
can be reduced.



Chapter 8

Results and Conclusion

This thesis provides an extensive examination of the concept of retroactive comput-
ing in event-sourced systems. We identified key challenges, proposed solutions, and
demonstrated their applicability. This chapter provides our concluding remarks.

8.1 Summary

Event sourcing is a perfect match for retroactive computing, since it inherently cap-
tures state changes as modifications. Thus, prior states can be restored or retroactively
modified. The Chapters 2 and 3 described the field, related work, and delimitations
of existing work to our objectives. In Chapter 4 we identified major issues of retro-
action, such as temporal and causal inconsistencies, or side effects. We illustrated that
restraining direct editing operations to branches of a timeline can prevent causality
issues. Furthermore, it is possible to retain traceability and append-only behavior in
event-sourced systems if results from retroaction are integrated back into the system
as events.

Considering commands in replay scenarios, we discussed several possibilities of
imposing control over potential side effects, and concluded by introducing partial
replays, which require the tracking of causalities among events. The command and
event primitives of event sourcing with CQRS are an ideal match for imposing control
over side effects. Through events, side effects can be recorded and reused. Through
the sourcing of commands, side effects can be reinvoked. If side effects are outsourced
into separate, individual commands, they can be partially reused or reinvoked.

Next, we discussed a number of ideas for keeping a consistent timeline after a
retroactive modification. For this, we transferred ideas from time travel theory to
retroaction in event-sourced systems. Corresponding to parallel universe theories,
we proposed the prohibition of editing the system’s own timeline, while allowing di-
rect retroactive modifications only for branches. Analogous to the self-consistency
principle, we proposed validation conditions and the replay (or removal) of causally
related events. Furthermore, this chapter contributed an overview on constraints and
limitations of retroaction in event-sourced systems. We highlighted the central role
of hidden causalities through real-world coupling or through side effects. Further
limitations, which we identified, were the influence of causality violations, causally
equivalent replays, and the semantics of commands which may annihilate retroactive
modifications. The performance of retroactive computations can be a further limit-
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ing factor. Our conceptual considerations were concluded with the suggestion of
architectural modifications (e.g. resolving the command/query segregation for retro-
action) and the demonstration how different architectures can be used for enabling
retroactive capabilities of event-sourced applications. We argued that it is heavily de-
pendent on the actual application domain how much can be made of retroaction and
how high the informative value of retroactive modifications can be. If retroaction is
taken into account from the start when building a system, the informative value of
retroactive changes can be maximized and limitations reduced.

Chapter 5 demonstrated the practical applicability of the concepts described in
Chapter 4. We outlined a programming model for the unified architecture. Moreover,
aprototypical implementation was described using the scenario of an online shop. We
demonstrated how issues of retroactive systems can be addressed in a programming
model (e.g. by constraining possible modifications) and which new challenges emerge
from the application of our ideas (e.g. retroaction-aware programming). Furthermore,
the central role of the delta encoding of events was highlighted for its effect on re-
troaction. Our programming model provides the ability to access and manipulate the
application’s state history in a single environment. This enables a variety of possibili-
ties, such as history-aware algorithms and novel debugging schemes. Developers can
use the application’s data structures, functions, and libraries in the retroactive code.
They can conduct analyses of the application’s history or explore alternate branches.

Integrating retroaction in event-sourced systems introduces a set of capabilities
which are not feasible in traditional event-sourced architectures. Chapter 6 illustrated
that a comparison of our conceptual and architectural considerations to existing sys-
tems is difficult, since the capabilities which we propose for event-sourced systems
cannot be found in this combination in the event-sourced field, nor in related work.

In Chapter 7, we applied the ideas described in Chapters 4 and 5 to the Chrono-
graph research platform. Many of the described concepts can be applied there as
well: timeline pointers via tagging, the delta encoding of events, retroaction-aware
programming, or tracking causalities, for example. Moreover, we proposed platform-
specific solutions, such as I/O vertices or portals. An additional element that can
be transferred to Chronograph consists of the limitations of retroaction. These lim-
itations pose a significant restriction to the expressiveness and informative value of
retroaction. They can be reduced when taken into account while creating a system.

8.2 Outlook and Future Work

Retroactive computing allows for self-improving, self-modifying, self-learning, and
self-referential algorithms in event-sourced systems. Applications can adapt their fu-
ture behavior by analyzing their own past. An area where this might have interesting
applications is the usage of retroactive computing in event-sourced systems for ma-
chine learning, artificial intelligence, or data mining. The application’s history could
be used as input to optimize parameters of an algorithm. In a further step, updated or
modified versions of algorithms could be evaluated and compared against each other
by replaying commands from the timeline in experimental branches.

Future work on the topic should further analyze which domains could benefit
of retroactive computing. For this, more event-sourced architectures which enable
retroactive capabilities need to be taken into consideration, apart from the two archi-
tectures that we examined.
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8.3 Conclusion

To the best of our knowledge, we provide the first detailed examination of the concept
of retroactive computing in event-sourced systems. The utilization of retroaction in
event-sourced systems enables a set of features that cannot be accomplished with tra-
ditional application architectures. Applications cannot only analyze their own history
retrospectively, they can also actively modify their past in order to explore alternative
states. We illustrated that the usage of retroactive computing is heavily dependent
on the application domain and its domain-specific constraints. Some domains can-
not take advantage of its full potential due to strict constraints caused by side effects,
real-world coupling, or hidden causalities. Other domains on the other hand benefit
heavily of retroactive aspects, as it allows for an entirely new perspective on applica-
tion state.
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