NETGeographicLib  1.51
TransverseMercatorExact.h
Go to the documentation of this file.
1 #pragma once
2 /**
3  * \file NETGeographicLib/TransverseMercatorExact.h
4  * \brief Header for NETGeographicLib::TransverseMercatorExact class
5  *
6  * NETGeographicLib is copyright (c) Scott Heiman (2013)
7  * GeographicLib is Copyright (c) Charles Karney (2010-2012)
8  * <charles@karney.com> and licensed under the MIT/X11 License.
9  * For more information, see
10  * https://geographiclib.sourceforge.io/
11  **********************************************************************/
12 
13 namespace NETGeographicLib
14 {
15  /**
16  * \brief .NET wrapper for GeographicLib::TransverseMercatorExact.
17  *
18  * This class allows .NET applications to access GeographicLib::TransverseMercatorExact.
19  *
20  * Implementation of the Transverse Mercator Projection given in
21  * - L. P. Lee,
22  * <a href="https://doi.org/10.3138/X687-1574-4325-WM62"> Conformal
23  * Projections Based On Jacobian Elliptic Functions</a>, Part V of
24  * Conformal Projections Based on Elliptic Functions,
25  * (B. V. Gutsell, Toronto, 1976), 128pp.,
26  * ISBN: 0919870163
27  * (also appeared as:
28  * Monograph 16, Suppl. No. 1 to Canadian Cartographer, Vol 13).
29  * - C. F. F. Karney,
30  * <a href="https://doi.org/10.1007/s00190-011-0445-3">
31  * Transverse Mercator with an accuracy of a few nanometers,</a>
32  * J. Geodesy 85(8), 475--485 (Aug. 2011);
33  * preprint
34  * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>.
35  *
36  * Lee gives the correct results for forward and reverse transformations
37  * subject to the branch cut rules (see the description of the \e extendp
38  * argument to the constructor). The maximum error is about 8 nm (8
39  * nanometers), ground distance, for the forward and reverse transformations.
40  * The error in the convergence is 2 &times; 10<sup>&minus;15</sup>&quot;,
41  * the relative error in the scale is 7 &times; 10<sup>&minus;12</sup>%%.
42  * See Sec. 3 of
43  * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for details.
44  * The method is "exact" in the sense that the errors are close to the
45  * round-off limit and that no changes are needed in the algorithms for them
46  * to be used with reals of a higher precision. Thus the errors using long
47  * double (with a 64-bit fraction) are about 2000 times smaller than using
48  * double (with a 53-bit fraction).
49  *
50  * This algorithm is about 4.5 times slower than the 6th-order Kr&uuml;ger
51  * method, TransverseMercator, taking about 11 us for a combined forward and
52  * reverse projection on a 2.66 GHz Intel machine (g++, version 4.3.0, -O3).
53  *
54  * The ellipsoid parameters and the central scale are set in the constructor.
55  * The central meridian (which is a trivial shift of the longitude) is
56  * specified as the \e lon0 argument of the TransverseMercatorExact::Forward
57  * and TransverseMercatorExact::Reverse functions. The latitude of origin is
58  * taken to be the equator. See the documentation on TransverseMercator for
59  * how to include a false easting, false northing, or a latitude of origin.
60  *
61  * See <a href="https://geographiclib.sourceforge.io/tm-grid.kmz"
62  * type="application/vnd.google-earth.kmz"> tm-grid.kmz</a>, for an
63  * illustration of the transverse Mercator grid in Google Earth.
64  *
65  * See GeographicLib::TransverseMercatorExact.cpp for more information on the
66  * implementation.
67  *
68  * See \ref transversemercator for a discussion of this projection.
69  *
70  * C# Example:
71  * \include example-TransverseMercatorExact.cs
72  * Managed C++ Example:
73  * \include example-TransverseMercatorExact.cpp
74  * Visual Basic Example:
75  * \include example-TransverseMercatorExact.vb
76  *
77  * <B>INTERFACE DIFFERENCES:</B><BR>
78  * A default constructor is provided that assumes WGS84 parameters and
79  * a UTM scale factor.
80  *
81  * The EquatorialRadius, Flattening, and CentralScale functions are
82  * implemented as properties.
83  **********************************************************************/
84  public ref class TransverseMercatorExact
85  {
86  private:
87  // a pointer to the unmanaged GeographicLib::TransverseMercatorExact.
88  GeographicLib::TransverseMercatorExact* m_pTransverseMercatorExact;
89  // the finalizer frees the unmanaged memory when the object is destroyed.
91  public:
92  /**
93  * Constructor for a ellipsoid with
94  *
95  * @param[in] a equatorial radius (meters).
96  * @param[in] f flattening of ellipsoid.
97  * @param[in] k0 central scale factor.
98  * @param[in] extendp use extended domain.
99  * @exception GeographicErr if \e a, \e f, or \e k0 is not positive.
100  *
101  * The transverse Mercator projection has a branch point singularity at \e
102  * lat = 0 and \e lon &minus; \e lon0 = 90 (1 &minus; \e e) or (for
103  * TransverseMercatorExact::UTM) x = 18381 km, y = 0m. The \e extendp
104  * argument governs where the branch cut is placed. With \e extendp =
105  * false, the "standard" convention is followed, namely the cut is placed
106  * along \e x > 18381 km, \e y = 0m. Forward can be called with any \e lat
107  * and \e lon then produces the transformation shown in Lee, Fig 46.
108  * Reverse analytically continues this in the &plusmn; \e x direction. As
109  * a consequence, Reverse may map multiple points to the same geographic
110  * location; for example, for TransverseMercatorExact::UTM, \e x =
111  * 22051449.037349 m, \e y = &minus;7131237.022729 m and \e x =
112  * 29735142.378357 m, \e y = 4235043.607933 m both map to \e lat =
113  * &minus;2&deg;, \e lon = 88&deg;.
114  *
115  * With \e extendp = true, the branch cut is moved to the lower left
116  * quadrant. The various symmetries of the transverse Mercator projection
117  * can be used to explore the projection on any sheet. In this mode the
118  * domains of \e lat, \e lon, \e x, and \e y are restricted to
119  * - the union of
120  * - \e lat in [0, 90] and \e lon &minus; \e lon0 in [0, 90]
121  * - \e lat in (-90, 0] and \e lon &minus; \e lon0 in [90 (1 &minus; \e
122  e), 90]
123  * - the union of
124  * - <i>x</i>/(\e k0 \e a) in [0, &infin;) and
125  * <i>y</i>/(\e k0 \e a) in [0, E(<i>e</i><sup>2</sup>)]
126  * - <i>x</i>/(\e k0 \e a) in [K(1 &minus; <i>e</i><sup>2</sup>) &minus;
127  * E(1 &minus; <i>e</i><sup>2</sup>), &infin;) and <i>y</i>/(\e k0 \e
128  * a) in (&minus;&infin;, 0]
129  * .
130  * See Sec. 5 of
131  * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for a full
132  * discussion of the treatment of the branch cut.
133  *
134  * The method will work for all ellipsoids used in terrestrial geodesy.
135  * The method cannot be applied directly to the case of a sphere (\e f = 0)
136  * because some the constants characterizing this method diverge in that
137  * limit, and in practice, \e f should be larger than about
138  * numeric_limits<double>::epsilon(). However, TransverseMercator treats the
139  * sphere exactly.
140  **********************************************************************/
141  TransverseMercatorExact(double a, double f, double k0, bool extendp );
142 
143  /**
144  * The default constructor assumes a WGS84 ellipsoid and a UTM scale
145  * factor.
146  **********************************************************************/
148 
149  /**
150  * The destructor calls the finalizer.
151  **********************************************************************/
153  { this->!TransverseMercatorExact(); }
154 
155  /**
156  * Forward projection, from geographic to transverse Mercator.
157  *
158  * @param[in] lon0 central meridian of the projection (degrees).
159  * @param[in] lat latitude of point (degrees).
160  * @param[in] lon longitude of point (degrees).
161  * @param[out] x easting of point (meters).
162  * @param[out] y northing of point (meters).
163  * @param[out] gamma meridian convergence at point (degrees).
164  * @param[out] k scale of projection at point.
165  *
166  * No false easting or northing is added. \e lat should be in the range
167  * [&minus;90&deg;, 90&deg;].
168  **********************************************************************/
169  void Forward(double lon0, double lat, double lon,
170  [System::Runtime::InteropServices::Out] double% x,
171  [System::Runtime::InteropServices::Out] double% y,
172  [System::Runtime::InteropServices::Out] double% gamma,
173  [System::Runtime::InteropServices::Out] double% k);
174 
175  /**
176  * Reverse projection, from transverse Mercator to geographic.
177  *
178  * @param[in] lon0 central meridian of the projection (degrees).
179  * @param[in] x easting of point (meters).
180  * @param[in] y northing of point (meters).
181  * @param[out] lat latitude of point (degrees).
182  * @param[out] lon longitude of point (degrees).
183  * @param[out] gamma meridian convergence at point (degrees).
184  * @param[out] k scale of projection at point.
185  *
186  * No false easting or northing is added. The value of \e lon returned
187  * is in the range [&minus;180&deg;, 180&deg;).
188  **********************************************************************/
189  void Reverse(double lon0, double x, double y,
190  [System::Runtime::InteropServices::Out] double% lat,
191  [System::Runtime::InteropServices::Out] double% lon,
192  [System::Runtime::InteropServices::Out] double% gamma,
193  [System::Runtime::InteropServices::Out] double% k);
194 
195  /**
196  * TransverseMercatorExact::Forward without returning the convergence and
197  * scale.
198  **********************************************************************/
199  void Forward(double lon0, double lat, double lon,
200  [System::Runtime::InteropServices::Out] double% x,
201  [System::Runtime::InteropServices::Out] double% y);
202 
203  /**
204  * TransverseMercatorExact::Reverse without returning the convergence and
205  * scale.
206  **********************************************************************/
207  void Reverse(double lon0, double x, double y,
208  [System::Runtime::InteropServices::Out] double% lat,
209  [System::Runtime::InteropServices::Out] double% lon);
210 
211  /** \name Inspector functions
212  **********************************************************************/
213  ///@{
214  /**
215  * @return \e a the equatorial radius of the ellipsoid (meters). This is
216  * the value used in the constructor.
217  **********************************************************************/
218  property double EquatorialRadius { double get(); }
219 
220  /**
221  * @return \e f the flattening of the ellipsoid. This is the value used in
222  * the constructor.
223  **********************************************************************/
224  property double Flattening { double get(); }
225 
226  /**
227  * @return \e k0 central scale for the projection. This is the value of \e
228  * k0 used in the constructor and is the scale on the central meridian.
229  **********************************************************************/
230  property double CentralScale { double get(); }
231  ///@}
232  };
233 } // namespace NETGeographicLib
.NET wrapper for GeographicLib::TransverseMercatorExact.
TransverseMercatorExact(double a, double f, double k0, bool extendp)
void Forward(double lon0, double lat, double lon, [System::Runtime::InteropServices::Out] double% x, [System::Runtime::InteropServices::Out] double% y, [System::Runtime::InteropServices::Out] double% gamma, [System::Runtime::InteropServices::Out] double% k)
void Forward(double lon0, double lat, double lon, [System::Runtime::InteropServices::Out] double% x, [System::Runtime::InteropServices::Out] double% y)
void Reverse(double lon0, double x, double y, [System::Runtime::InteropServices::Out] double% lat, [System::Runtime::InteropServices::Out] double% lon, [System::Runtime::InteropServices::Out] double% gamma, [System::Runtime::InteropServices::Out] double% k)