
Feb 2018

The Monte Carlo generator CASCADE:

LHE interface and initial state parton showers from TMDs

Version 3.0.01-beta01

H. Jung1,
1DESY, Hamburg, FRG

Abstract

The interface to read in LHE files into the CASCADE package is described. The LHE
files can be either files with off-shell initial state partons, as generated by the KATIE pack-
age or also files which are generated by collinear fixed order calculations like POWHEG
or MADGRAPH, where a transverse momentum of the initial state partons is added ac-
cording to the appropriate transverse momentum dependent (TMD) parton distribution.

1



PROGRAM SUMMARY

Title of Program: CASCADE 3.0.01-beta01

Computer for which the program is designed and others on which it is operable: any with stan-
dard Fortran 77 (g77 or gfortran), tested on SGI, HP-UX, SUN, PC, MAC

Programming Language used: FORTRAN 77

High-speed storage required: No

Separate documentation available: No

Keywords: QCD, TMD parton distributions.

Method of solution: Since measurements involve complex cuts and multi-particle final states,
the ideal tool for any theoretical description of the data is a Monte Carlo event generator
which generates initial state parton showers according to Transverse Momentum Depen-
dent (TMD) parton densities, in a backward evolution. The evolution follows the DGLAP
evolution equation exactly as used for the determination of the TMD.

Restrictions on the complexity of the problem: Any LHE file (with on-shell or off-shell) initial
state partons can be processed.

Other Program used: PYTHIA (version > 6.4) for hadronization, TMDLIB as a library for TMD
parton densities BASES/SPRING 5.1 for integration (supplied with the program package).

Download of the program: http://www.desy.de/˜jung/cascade

Unusual features of the program: None

2



1 Introduction
In recent years the simulation of processes at the LHC has been often separated into two
parts, the precision calculation of the hard process at higher order in the strong coupling αs
at next-to-leading (or even higher) order as implemented in packages like POWHEG [1, 2] or
MC@NLO [3–6] or HERWIG and the simulation of the subsequent parton radiation in form
of parton showers and hadronization and multiparton interaction, which is then performed
by PYTHIA or HERWIG. The interface between both parts is the so-called Les Houches Event
(LHE) file [7], which contains all the information of the hard process including the color
structure.

With the developments in determination of transverse momentum dependent (TMD)
parton densities [8, 9], it is natural to develop a scheme, where the initial parton shower fol-
lows exactly the TMD parton density and where either collinear (on-shell) of kt-dependent
(off-shell) hard process calculations can be combined. The Monte Carlo event generator CAS-
CADE [10–12] is used for this, since it provides already a frame to perform initial state parton
showers following the un-integrated gluon density. In this report we describe, how this
frame can be extended to include all flavors in the parton shower and how the hard process
can be used via LHE files.

2 The hard process
The hard process is generated externally either with POWHEG [1,2] with on-shell kinematics
or with KATIE [13] with off-shell kinematics for the initial state partons. The events from the
hard process are read into the CASCADE package via LHE files.

For processes generated with KATIE no further corrections need to be performed and the
event can be directly passed to the showering procedure, described in the next section.

For processes with collinear kinematics of the initial state partons, a transverse momen-
tum is added, according to the TMD parton density, however, care has to be taken, that
energy and momentum is still conserved. The procedure is the following: for each initial
parton, a transverse momentum is assigned according to the TMD density, and this system
is rotated and booted to its center-of-mass frame. Since the initial state partons have trans-
verse momentum, they acquire a virtuality. The energy and longitudinal component of the
initial momenta are recalculated taken this virtuality into account, by [14]:

E1,2 =
1√
2ŝ

(
ŝ± (Q2

2 −Q2
1)
)

(1)

pz 1,2 = ± 1

2
√
ŝ

√
(ŝ+Q2

1 +Q2
2)

2 − 4Q2
1Q

2
2 (2)

where Q2
1 and Q2

2 are the virtualities of parton 1, 2 after the transverse momentum is as-
signed. The final partons of the hard system are rotated and boosted to it’s center-of-mass
frame. Then the whole system of initial and final state partons is boosted and rotated back
to its original system. This procedure is similar to the procedure applied in standard parton

3



showers like PYTHIA, when a transverse momentum is created from the shower. The differ-
ence here is, that the transverse momentum is taken from the TMD directly, and the initial
state shower will not change this anymore.

3 Initial State Parton Shower based on TMDs
The parton shower, which is described here, follows consistently the parton evolution of the
TMDs. By this we mean that the splitting functions Pab, the order in αs, the scale in the
calculation of αs as well as the kinematic restrictions applied are identical in both the parton
shower and the evolution of the parton densities.

A backward evolution method, as now common in Monte Carlo event generators, is ap-
plied for the initial state parton shower, evolving from the large scale of the matrix-element
process backwards down to the scale of the incoming hadron. However, in contrast to the
conventional parton shower, which generates a transverse momentum of the initial state
partons during the backward evolution, the transverse momentum of the initial partons of
the hard scattering process is fixed by the TMD and the parton shower does not change the
kinematics. The transverse momenta during the cascade follow the behavior of the TMD.
The hard scattering process is obtained directly using off-shell matrix element calculations
as described in section 2.

The backward evolution of the initial state parton shower follows very closely the de-
scription in [10–12, 14]. The evolution scale µ is selected from the hard scattering process,
with µ2 = p̂2T or µ2 = Q2

t + ŝ for an evolution in virtuality or angular ordering, with p̂T being
the transverse momentum of the hard process, Qt being the vectorial sum of the initial state
transverse momenta and s being the invariant mass of the subprocess.

Starting with the hard scale µ = µi, the parton shower algorithm searches for the next
scale µi−1 at which a resolvable branching occurs. This scale µi−1 is selected from the Su-
dakov form factor ∆S making use of the TMD densities Aa(x′, k′t, µ′) which depend on the
longitudinal momentum fraction x′ = xz of parton a, its transverse momentum k′t probed at
a scale µ′ (see also [10]). The Sudakov form factor ∆S for the backward evolution is given by
(see fig. 1 left):

∆S(x, µi, µi−1) = exp

[
−
∫ µi

µi−1

dµ′

µ′
αs(µ̃

′)

2π

∑
a

∫
dzPa→bc(z)

x′Aa(x′, k′t, µ′)
xAb(x, kt, µ′)

]
(3)

which describes the probability that parton b remains at x with transverse momentum kt
when evolving from µi to µi−1 < µ. Please note, that the argument in αs is µ̃′ and depends
on the ordering condition as discussed later. 1

In the parton shower language, the selection of the next branching comes from solving the
Sudakov form factor eq.(3) for µi−1. However, to solve the integrals in eq.(3) numerically for

1In equation eq.(3) ordering in µ is assumed, if angular ordering, as in CCFM [15–18], is applied then the ratio
of parton densities would change to x′Aa(x

′,k′t,µ
′/z)

xAb(x,kt,µ
′) as discussed in [10].

4



every branching would be too time consuming, instead the veto-algorithm [14,19] is applied.
The selection of µi−1 and the branching splitting zi−1 follows the standard methods [14].

The splitting function Pab as well as the argument µ̃ in the calculation of αs is chosen
exactly as used in the evolution of the parton density. In a parton shower one treats “resolv-
able” branchings, defined via a cut in z < zM in the splitting function (see eq.(??)) to avoid
the singular behavior of the terms 1

1−z , and branchings with z > zM are regarded as “non-
resolvable” and are treated similarly as virtual corrections: they are included in the Sudakov
form factor ∆S .

qti, µi

qt i−1, µi−1

kt i−2, zi−2

kt i−1, zi−1

kti, zi

qt i−2, µi−2

a

cz = xa/xb

xbp
+, kt,b

xap
+, kt,a

qt,c → µ

b

Figure 1: Left: Schematic view of a parton branching process. Right: Branching process
b→ a+ c.

The longitudinal momentum fraction xi−1 = xi
zi−1

is calculated by generating zi−1 accord-
ing to the splitting function. With zi−1 and µi−1 all variables needed for a collinear parton
shower are obtained.

The calculation of the transverse momentum kt is sketched in fig. 1 right. The transverse
momentum qt i can be obtained by giving a physical interpretation to the evolution scale µi
(see fig. 1 right), and qt i can be calculated in case of angular ordering (µ is associated with the
angle of the emission) in terms of the angle Θ of the emitted parton wrt the beam directions
qt,c = (1− z)Eb sin Θ:

q2
t,i = (1− z)2µ2i . (4)

Once the transverse momentum of the emitted parton qt is known, the transverse mo-
mentum of the propagating parton can be calculated from

kt i−1 = kt i + qt i−1 (5)

with a uniformly distributed azimuthal angle φ is assumed for the vector components of k
and q.

The whole procedure is iterated until one reaches a scale µi−1 < q0 with q0 being a cut-off
parameter, which can be chosen to be the starting evolution scale of the TMD. However, it
turns out that during the backward evolution the transverse momentum kt can reach large
values, even for small scales µi−1, because of the random φ distribution. On average the

5



transverse momentum decreases, and it is of advantage to continue the parton shower evo-
lution to a scale q0 ∼ Λqcd ∼ 0.3 GeV, to allow enough emissions to share the transverse
momenta generated.

3.1 The TMD parton density

In the previous versions of CASCADE the TMD densities where part of the program. With the
development of TMDLIB [20] there is easy access to all available TMDs, they can be selected,
as before, via IGLUwith a value> 100000. For example the TMDs from the parton branching
method [8,9] are selected via IGLU=101600 or the ones from the KMR approach, as used in
are selected via IGLU=410000 as in Ref. [21]

3.2 αs

The strong coupling αs is calculated via the PYTHIA [?] subroutine PYALPS. Maximal and
minimal number of flavours used in αs are set by MSTU(113) and MSTU(114), ΛQCD =
PARU(112) with respect to the number of flavours given in MSTU(112) .

3.3 Final state parton showers

The final state parton shower uses the parton shower routine PYSHOW of PYTHIA with the
default scale µ2 = 2 · (m2

1 ⊥ + m2
2 ⊥) (IFIN=1), with m1(2) ⊥ being the transverse mass of

the hard parton 1(2). Other choices are possible: µ2 = ŝ (IFIN=2) and µ2 = 2 · (m2
1 + m2

2)
(IFIN=3). Relevant for processing LHE files is the scale SCALUP provided from the hard
scattering process. This scale can be used for final state parton shower with IFIN=4 In
addition a scale factor can be applied: SCAF×µ2 (default: SCAF=1).

4 Description of the program components
In CASCADE all variables are declared as Double Precision. The

The program has to be compiled and linked together with PYTHIA 6, to ensure that the
double precision code of JETSET is loaded.

When HEPMC is included, the output of CASCADE is a standard HEPMC [22] file, which
can be further processed for example with Rivet [23].

4.0.1 Parameters

NEVENT: number of events to be processed, for NEVENT = -1 all event in the LHE
file are read.

IPRO: =-1 read LHE file

6



4.0.2 Parameters for parton shower and fragmentation

NFRAG: (D: = 1) switch for fragmentation
= 0: off
= 1: on

IFPS: (D: = 3) switch for parton shower .
= 0: off
= 1: initial state
= 2: final state
= 3: initial and final state

ITIM: (D: =1)
=0: no shower of time like partons
=1: time like partons may shower

ICCFM: (D: =1)
=0: DGLAP type evolution (one loop, old version)
=1: CCFM evolution (all loops)
=2: full flavor TMD parton shower with DGLAP splitting function. No
upper cut on ktin shower applied
=3: full flavor TMD parton shower with DGLAP splitting function with
upper cut on ktof shower given by ktof off-shell initial partons

IFIN (D:=1) scale switch for final state parton shower
= 1: µ2 = 2(m2

1 t +m2
2 t)

= 2: µ2 = ŝ
= 3: µ2 = 2(m2

1 +m2
2)

= 4: 2*SCALUP
SCAF (D:=1.) scale factor for final state parton shower

4.0.3 Parameters for parton densities

IGLU: (D: = 1201) select TMD parton density
> 100000: call TMDLIB for TMD densities
IGLU=410000 BHKS TMD [21]
IGLU=101600 parton branching TMD [8]

4.0.4 Parameters for LHE files

CLHE name of LHE file
ITMW =0: LHE file has off shell initial partons

= 1: generate ktaccording to TMD given with IGLU and change initial on-
shell partons
= 2: same as =2, but reweight also to TMD given with IGLU but with
fact.scale

7



5 Program Installation
CASCADE now follows the standard AUTOMAKE convention. To install the program, do
the following
1) Get the source

tar xvfz cascade-XXXX.tar.gz
cd cascade-XXXX

2) Generate the Makefiles (do not use shared libraries)
./configure --disable-shared --prefix=install-path --with-pythia6="pythia_path" --with-lhapdf="lhapdflib_path"
--with-tmdlib="TMDlib-path" --with-gsl="gsl_lib" --with-hepmc="hepmc_path"

with (as example):
pythia_path=/afs/desy.de/group/alliance/mcg/public/MCGenerators/pythia6/422/i586_rhel40
lhapdflib_path=/afs/desy.de/group/alliance/mcg/public/MCGenerators/lhapdf/5.8.1/i586_rhel40

3) Compile the binary
make

4) Install the executable and PDF files
make install

4) The executable is in bin
run it with:
export CASED=1242425
export HEPMCOUT=outfile.hepmc

cascade < steer_pp-LHEin

References
[1] S. Alioli, K. Hamilton, P. Nason, C. Oleari, and E. Re, JHEP 04, 081 (2011). 1012.3380.

[2] S. Frixione, P. Nason, and C. Oleari, JHEP 0711, 070 (2007). 0709.2092.

[3] S. Frixione and B. R. Webber (2006). hep-ph/0612272.

[4] S. Frixione, P. Nason, and B. R. Webber, JHEP 08, 007 (2003). hep-ph/0305252.

[5] S. Frixione and B. R. Webber (2002). hep-ph/0207182.

[6] S. Frixione and B. R. Webber, JHEP 0206, 029 (2002). hep-ph/0204244.

[7] J. Alwall et al., Comput. Phys. Commun. 176, 300 (2007). hep-ph/0609017.

[8] F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik (2017). 1708.03279.

[9] F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik, Phys. Lett.
B772, 446 (2017). 1704.01757.

[10] H. Jung, S. Baranov, M. Deak, A. Grebenyuk, F. Hautmann, et al., Eur.Phys.J.
C70, 1237 (2010). 1008.0152.

[11] H. Jung, Comput. Phys. Commun. 143, 100 (2002). hep-ph/0109102.

[12] H. Jung and G. P. Salam, Eur. Phys. J. C19, 351 (2001). hep-ph/0012143.

8



[13] A. van Hameren (2016). 1611.00680.

[14] M. Bengtsson, T. Sjostrand, and M. van Zijl, Z. Phys. C32, 67 (1986).

[15] M. Ciafaloni, Nucl. Phys. B296, 49 (1988).

[16] S. Catani, F. Fiorani, and G. Marchesini, Phys. Lett. B234, 339 (1990).

[17] S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. B336, 18 (1990).

[18] G. Marchesini, Nucl. Phys. B445, 49 (1995). hep-ph/9412327.

[19] S. Platzer and M. Sjodahl, Eur.Phys.J.Plus 127, 26 (2012). 1108.6180.

[20] F. Hautmann, H. Jung, M. Krämer, P. Mulders, E. Nocera, et al., Eur. Phys. J. C
74, 3220 (2014). 1408.3015.

[21] M. Bury, A. van Hameren, H. Jung, K. Kutak, S. Sapeta, and M. Serino (2017).
1712.05932.

[22] M. Dobbs and J. B. Hansen, Comput. Phys. Commun. 134, 41 (2001).

[23] A. Buckley, J. Butterworth, L. Lonnblad, D. Grellscheid, H. Hoeth, J. Monk, H. Schulz,
and F. Siegert, Comput. Phys. Commun. 184, 2803 (2013). 1003.0694.

9


