PHISH Documentation

http://www.sandia.gov/~sjplimp/phish.html

Sandia National Laboratories, Copyright (2012) Sandia Corporation
This software and manual is distributed under the modified Berkeley Software Distribution (BSD) License.

PHISH Documentation

Table of Contents

PHISH TalES....cueiotiitieiiiieee ettt ettt sttt b ettt sb e sat et e st sbe et ebesbeebeennenae e 1
(documentation for the PHISH IIDIary).........c.cooiiiiiiiiiiieee e e 1
VETSION IOttt ettt ettt ettt ettt b e eae et st e e bt et e naesueeseebenre e 1
L INEEOAUCHION. ...ttt sttt ettt st e b e bt e et ettt ebe et e b s beebee s e b e 3
LT IMIOBIVALION ...ttt ettt ettt st beeb et b e bt ee et sbeeat et e sbesbeentenbenue e 3

1.2 PHISH HNZO ..ttt ettt ettt sae st st bt e b sne s 4

1.3 PHISH PREATUTESueiiiiiiiiii ettt ettt e st esabeesabeesabeeeas 4

1.4 Steps to create and run @ PHISH NEL........cocioiiiiiiii e 5

1.5 SIMPIE EXAMPLE. ..ottt ettt ettt et et et ettt eate et eabe e 6

1.6 Acknowledgments and CIEAtIONS.cccueeueertierteeie et ettt ettt ettt ettt et ettt et e eateebeeateeaees 8

2. BaTtPY TOOL. .ttt ettt ettt et ettt et e et st e et eatesate et eas 10
2.1 INPUL SCTIPE COMIMANAS ... ettt ettt ettt ettt ettt et e st e satesatesatesateesaesaaesaaesneeeas 10

2.2 Building and running Dait.Py........cccueeueeieeieeiieie ettt ettt sttt ettt 10

2.3 CommAaNd-liNe ArUMEIIESc...eeutiiuiieiteeiie ettt ettt ettt e eeteeateeateeatesatesatesatesateeaeesseesanesaaesaeeeas 12

2.4 Input SCript SYNtaX aNd PATSINE.....eeveeterieeieeieeie et et eteete et e ettt estesitestesatesatesaeesaaesaeesneeeas 13

2.5 SIMPIE EXAMPIE. ...cueiiiiiiiiiie ettt ettt ettt st st e st e st e st e et e saaesaeesaeeeae 14

3. PHISH MINNOWS....cueiiiiiiiiiiieieiieeitetenie ettt ettt et ettt et et be bt esa b sbeeeeestenaeeaeennen 16
3.1 LISt Of ININIOWS. c..cuttiieiiitirieeiete sttt sttt ettt ettt ettt sttt sb e ebe et sbeebe et enbeeaeenee 16

3.2 Code Structure Of @ MINMIMOW......cc.couereeriererertentinieeieetente ettt ettt sttt et st sbeessesresbeeseebenbeeaeenee 17

3.3 COMMUNICALION VIA POTTS ..uutiutiauteiiteaiteeiteeiteeite ettt ettt eitesatesatesateenseeatesatesaeesaeesatesaeesseesnnesanesneenas 18

3.4 Shutting dOWN @ MINNOW......coueriiriiriieiintinieetetene ettt sttt ettt sttt este st sbe e sesbesbeeseebenbeeaeenee 19

3.5 BUIldiNg MINNOWScoueiiiiieiiiiii ettt ettt ettt sttt sttt et st e saeesatesatesateesaesanesanesneeeas 20

AL PHISH LADTATY ...ttt ettt et ettt ettt ettt et et e et e eabeembeembeenneeneeensean 22
4.1 List Of lIDrary fUNCHIONS.cueiiiiiieiieie ettt et ettt et e 22

4.2 Building the PHISH IDIary.........ccoooiiiiiiiie et 23

4.3 C vS C++ VS PYthon INterface........coouiiiiiiiiiiiii et 24

4.4 FOrmat Of @ daAtUIL....co.eeuiriiriieititinie ettt sttt ettt ettt aesbe b entesaeebeens 25

S EXAIMIPIES. ...ttt ettt ettt ettt e e bt et e et et ente et s 27
TILFILETIS T ettt sttt b e ettt b et b et be et saeeaeent 27
INLROOK ...ttt ettt ettt et ettt 27
TILSLOW. ettt ettt ettt et bbbt bbbt ebe b na e bt et et sheeaeens 27

TN WOTACOUNL. ...ttt ettt ettt ettt b et sh e bt et e bt e bt esa ettt e ebe et e nbesbeeanentesaeeneens 28

DL WIAPSTIIK -ttt ettt ettt et e ea bt et e et e e bt enteenteeabeenbeenbeenbeenneentean 28

L WTAPSOUTCE. .ttt et et et et et et et eat e e st e eateeateeateeabeeabeeabeemteem bt eabeembeemeeenseemteenteenbeenbeenbeenneensean 28

TN WIAPSOUTCETIIR ..ottt ettt et ettt et ettt et eaeenee s 28

TTL WIAPISS ettt ettt sttt s bbbt s bt st e st bt eat e st e st s bt e et et sh e ebe et e bt eh e e s e et bt e bt et et e sbe et e tenheebeens 29

6. Python Interface to PHISH........cooo ot 30
T EITOTS. et ettt et et ettt et et ettt et et ettt et ettt e neeane s 32
Debugguing PHISH NELS.....oouiiiiiiiiie ettt e 32
Error and warning messages from the PHISH library...........cccoocoiiiiiiiiiiiieeceeeee 32
Error messages from Dait.Py......c.eeiiiiiiiiieeee et 33
NOOK COMMEANA.eitiriiiiiiiiitccte ettt ettt et sa e sttt be e ene 34
MINNOW COMIMANG...c..evteutetietieiietinte ettt ettt ettt st sbeeatesbesbeebeestesbesbeessenaeabeeasestesaesbeemsenbesbeeaeensenbesueenee 37
SChOOL COMIMEAN....c..eeuiiiiiiiriieiee ettt ettt st b e sbe et be et et enae bt eanen 38
SEL COMIMEAN ...ttt ettt ettt st e e et sae e s e s e sanesaeesaaesanesanesane e 41
Variable COMMEANT.c..cocuiiiiiiiiiiiee ettt sttt ettt ettt et sa e sttt sae et e be b saeenee 44
COUNE IUIIMOW. .c.euteteteeatete et ettt et est et e bt est e testesbeeatebesbeebeemte bt ebeess e bt ebeeatentenaesbeemtenbesbeeueemtenbesaeenne 45

ECRO PIOZIAIL ...ttt ettt ettt a bt et e bt e bt e bt enbeeateenteenbeembeenbeenseeneeentean 46

PHISH Documentation

Table of Contents

THIE2WOIAS IMINIOW.vvviiieee it e ettt e e ettt e e e e e et e eeeeenaaaaeeeeesseesaaeeeeeessasssaeeseeeessannseaeseeeseanns 47
FLLEZEN MUNNMOW.cutitiriieiiiieetceitetete ettt ettt st eb ettt bt et esa e bt e a et sae bt et et sbeeae e benbesaeenee 49
Phish_callback() fUNCHION.coouiiiiiie ettt ettt ettt sb e b e ees 50
Phish_Check() FUNCLION.ooiiiiiiii ettt ettt b et e b e bt e b ees 52
PhiSh_error() fUNCHIOMN.........oiiiiiiei ettt ettt ettt e b e bt bt et e st e e sbe e b e enbeenees 54
PhiSh_wWarn() fUNCHON.iiiiiie ettt ettt et e bt b et e bt et e e sbeenbeenbeenees 54
Phish_abort() fUNCHION.oooiiiiiii ettt ettt ettt e bt e bt e b eees 54
PhiSh_qUery () fUNCHION. ...cc.eiiiiiii ettt et b e bt e bt e b et e et e sbeesbe e beenees 56
PhiSh_init() FUNCHION.eiiiiiiiii ettt ettt e b e bt et e b et e e sbeesbe e beenes 59
PRISH_TEPACK ...ttt et e b e bbbt e bt et e bt e b e e b enes 62
PRISI_PACK _TAW... ettt ettt ettt et b e bt e bt e bt et e et e e s be e b e e b enns 62
PhISH_PACK _CRAT ...ttt e b e bt b et e st e e sbe e be e b ees 62
PhISh_PACK TNottt ettt et e bt e bt e bt e bt e beenbeesbe e bt e beenees 62
PhISh_PACK_INETA ..ttt ettt et e bt e b e bt e bt e be et e e sbeenbeenbeenns 62
PhISh_PaCK_INE32. ...ttt et ettt e b e bt e bt e bt et e et e e ebe e be e b enns 62
PhISh_PaCK_INEOA ...ttt ettt et e bt e bt e bt e bt et e e beesbe e bt enbeenns 62
PhiSh_pack TNooiiii ettt ettt et e bt e bt e bt e be e beesbe e b e enbeennes 62
PhiSh_pack _TINETG......cocuiiiiiiiie ettt ettt et e bt e bt et e b e e beesbeesbeenbeenees 62
PhiSh_pack_TINE32......oiiiiii ettt ettt et ettt et e e bt e bt e bt e be e beesbeenbeenbeenns 62
PhiSh_pack_TINEOA...........oiiiiiiie ettt ettt et e bt e bt e bt e bt et e e bt e sbeenbeenbeenne 62
PhISH_PACK _Tl0AL.....c.eiiiie ettt ettt e b bt b et et e bt e bt e b nes 62
PhiSh_pack_dOUDIE..........ooiiiiii ettt ettt b e b et e b e bt e b es 62
PRISH_PACK _SITIINIE ..ttt et ettt ettt e bt e bt e bt et e beenbeesbe e bt e beenes 62
PhiSh_pack_INt8_AITAYiiiiiiiiiieti ettt ettt ettt e bt e bt e bt et e e bt e sbeenbeenbeennes 62
PhiSh_pack_INETO_AITAY......cootiiiiiiieiiete ettt ettt ettt ettt e bt e bt bt et e e beesbeesbeenbeennes 62
PhiSh_pack _IN32_AITAY......ceouiiiiiiieie ettt ettt ettt et e bt e bt et et e e beesbeesbeenbeenes 62
PhiSh_pack_INTO4 _AITAYcccuiiiiiiieiiee ettt ettt ettt et e bt e bttt e bt e beesbeenbeenbeenes 62
PhisSh_pack_UINEE_AITAYcccuiiiiiiieiieiee ettt ettt et e b bttt e bt et e e sbeesbeenbeenees 62
Phish_pack_UINEIO_AITAYccueiiiiiiieiieit ettt ettt et e bt e bt et e b e beesbeesbeenbeenees 62
Phish_pack_UINt32_ATTAY....cccueiiiiiiieiieieetee ettt ettt et ettt e bt e bt e bt et e beenbeesbeenbeenbeennes 62
PhisSh_pack_UINtO4_ATITAY........eiiuiiiieiieeee ettt ettt et e bt et e e bt e bt et ebeenbeesbeenbeenbeennes 63
Phish_pack _float_arTay........cceooiiiiiiiei ettt ettt b bbbttt e bt b e 63
Phish_pack_dOUDIE_arTay.......ccouiiiieiiiiieieeeee ettt ettt ettt e sbe e b e es 63
PhiSh_PaCK _PICKIE. ...t ettt e b bttt e b et e b e b e b eees 63
PhiSh_input() FUNCHION.iiiiiiiii ettt e eb bbb e st et e b e b eees 67
PhiSh_OUtPUL() TUNCHION. ..c..eeiiiiiii ettt ettt ettt e bt e bt e bt e bt et e e beesbe e bt enbeenees 67
PhiSh_qUete() TUNCHIOM.......oiiiiiiiit ettt ettt e b e bt et et et e e sbe e beenbeenees 70
Phish_dequete() FUNCHION.coouiiiiii ettt ettt b et e b et e b e b e b enees 70
PhiSh_NQUEUE() TUNCHIOML.couiiiiiiii ettt ettt e sb e bt bt et e st e sbe e be e beenees 70
PhiSh_I0OP() FUNCLION.eouiiiiiiiii ettt ettt et e b b e b et e b e b e beenees 72
PhiSh_probe() fUNCHION. ...cc.eiiiiiiieie ettt ettt e b e bt et e be et e e sbeesbeenbeenees 72
PhiSh_TECV() TUNCHION.eiiiiiie ittt ettt et et e bt e bt et et e e beesbeenbeenbeenes 72
PhiSh_SENd() fUNCHION......eiuiiiii ittt ettt et et e bt e bt et e bt e beesbeenbeenbeenns 75
Phish_send_Key() FUNCHION.cc.oiiiiiiiiieee ettt ettt ettt e b e 75
phish_send_dir€Ct() fUNCHION.......cocuiiiiiiieiiee ettt bbbt e e b e bt e b eees 75
PhiSh_eXit() FUNCHIOMN.eiiiiiiiii ettt ettt ettt b e b e bt e bt e be e beesbeenbeenbeennes 77
PhiSh_ClOSE() FUNCLION.eiiiiiiiiie ettt et b b e bt e e b e bt e beenees 77
PhiSh_timer() TUNCHION.........iiiiiii ettt ettt et et e bt e bttt e be et e e sbeenbeenbeennes 80

PHISH Documentation

Table of Contents

phish_unpack() FUNCLION.........cccuiiiiiie ettt ettt ettt e enee s 81
phish_datum() fUNCHON.couiiiiiee ettt et ettt ettt et et e e e eneean 81
PIINE THNTIOWttt ettt ettt ettt ettt et et e eat e eateeae e eabeeabeeabeembeemteem b e emteeabeem bt embeembeemteenbeembeenseenseenseensean 84
TEVETSE PIOZTAIL .u.teeueteetreenuteenuteeateeeteeatteesteesateesateesateesateeaabeeebeeensbeensseensteesabeesabeeeabeeanbaeenbaeensneesaseens 85
SLOWAOWI TIIIIMOW. ...ttt sttt ettt ettt et ettt et et sb et e bt sae bt et e bt sbeese e be bt eaeentenaeebeeanen 86
SOTE TMHITIIIOW.vtentitieetentente sttt et st et et et eb e ebe et et ebeest e et bt eas et e nb e e bt eat e besheebeemb e bt sbeese et e ebeeunenbenteebeennen 87
WIAPSINK IIIIIOW. ...ttt ettt ettt ettt ettt e s bt e bt e bt e bt embeeabeemteenbeenbeenbeenseenseensean 88
WIAPSOUTCE TIIIIIOW. ... c.eevtenteteeueenteteeteestententeestensestesueemsentesteeseensenbesbeessenseaseessentesaesueemsensesbeeneensenbesueenne 90
WIAPSS TIHIMOW. c..c.eeveteeutententeeteenteteeteestentesteeseessestesbeeasenbesbeeseemsenbesbeessenaeabeeasentenaesbeemtenbesbeeueemtenbesueenne 92

PHISH Tales
(documentation for the PHISH library)

Version info:

The PHISH "version" is the date when it was released, such as 1 Nov 2012. PHISH is updated continuously.
Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of the WWW
site. Each dated copy of PHISH contains all the features and bug-fixes up to and including that version date. Each
time you use the bait.py tool, the version date is printed to the screen. It is also in the file bait/version.py and in
the PHISH directory name created when you unpack a tarball.

¢ If you browse the HTML or PDF doc pages on the PHISH WWW site, they always describe the most
current version of PHISH.
¢ If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.

PHISH stands for Parallel Harness for Informatic Stream Hashing. The phishy metaphor is meant to evoke the
image of many small minnows (programs) swimming in a stream (of data).

PHISH is a lightweight framework which a set of independent processes can use to exchange data as they run on
the same desktop machine, on processors of a parallel machine, or on different machines across a network. This
enables them to work in a coordinated parallel fashion to perform computations on either streaming, archived, or
self-generated data.

The PHISH distribution includes a simple, portable library for performing data exchanges in useful patterns either
via MPI message-passing or ZMQ sockets. PHISH input scripts are used to describe a data-processing algorithm,
and additional tools provided in the PHISH distribution convert the script into a form that can be launched as a
parallel job.

PHISH was developed at Sandia National Laboratories, a US Department of Energy facility, with funding from
the DOE. It is an open-source code, distributed freely under the terms of the Berkeley Software Distribution
(BSD) License.

The authors of PHISH are Steve Plimpton and Tim Shead who can be contacted at sjplimp, tshead at sandia.gov.
The PHISH WWW Site at http://www.sandia.gov/~sjplimp/phish.html has more information about the code and
its uses.

The PHISH documentation is organized into the following sections. If you find errors or omissions in this manual
or have suggestions for useful information to add, please send an email to the developers so we can improve the
PHISH documentation.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 Motivation
1.2 PHISH lingo
1.3 PHISH pheatures
1.4 Steps to create and run a PHISH net
1.5 Simple example
1.6 Acknowledgments and citations
2. Bait.py Tool

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.zeromq.org
http://en.wikipedia.org/wiki/BSD_license
http://en.wikipedia.org/wiki/BSD_license
http://www.sandia.gov/~sjplimp/phish.html
http://freecode.com/projects/htmldoc

AN D

2.1 Input script commands

2.2 Building and running bait.py
2.3 Command-line arguments

2.4 Input script syntax and parsing
2.5 Simple example

. PHISH Minnows

3.1 List of minnows

3.2 Code structure of a minnow
3.3 Communication via ports
3.4 Shutting down a minnow
3.5 Building minnows

. PHISH Library

4.1 List of library functions

4.2 Building the PHISH library
4.3 C vs C++ vs Python interface
4.4 Format of a datum

. Examples
. Python Interface to PHISH
. Errors

7.1 Debugguing PHISH nets

7.2 Error and warning messages from the PHISH library

7.3 Error messages from bait.py

Previous Section - PHISH WWW Site - PHISH Documentation - Next Section

1. Introduction

This section explains what the PHISH software package is and why we created it. It outlines the steps to creating
your own PHISH program, and gives a simple example of using PHISH to perform a parallel calculation. These
are the topics discussed:

¢ 1.1 Motivation

¢ 1.2 PHISH lingo

¢ 1.3 PHISH pheatures

¢ 1.4 Steps to create and run a PHISH net
¢ 1.5 Simple example

¢ 1.6 Acknowledgments and citations

1.1 Motivation

Informatics is data-driven computing and is becoming more prevalent, even on large-scale parallel machines
traditionally used to run scientific simulations. It can involve processing large archives of stored data or data that
arrives on-the-fly in real time. The latter is often referred to as "streaming" data. Common attributes of streaming
data are that it arrives continuously in a never-ending stream, its fast incoming rate requires it be processed as it
arrives which may limit the computational effort per datum that can be expended, and its high volume means it
cannot be stored permanently so that individual datums are examined and discarded.

A powerful paradigm for processing streaming data is to use a collection of programs, running as independent
processes, connected together in a specified communication topology. Each process receives datums
continuously, either from the stream itself, or read from a file, or sent to it from other processes. It performs
calculations on each datum and may choose to store "state" internally about the stream it has seen thus far. It can
send the datum on to one or more other processes, either as-is or in an altered form.

In this model, a data-processing algorithm can be expressed by choosing a set of processes (programs) and
connecting them together in an appropriate fashion. If written flexibly. individual programs can be re-used in
different algorithms.

PHISH is a small software package to make the task of designing and developing such algorithms easier, and
allowing the resulting program to be run in parallel, either on distributed memory platforms that support MPI
message passing, or on a collection of computers that support socket connections between them.

PHISH stands for Parallel Harness for Informatic Stream Hashing.

Here is what these words mean, in the PHISH context. "Parallelism" can be achieved by using multiple copies of
processes, each working on a part of the stream, or by using the memory of multiple processes to store state about
the stream of data. It is a framework or "harness" for connecting processes in a variety of simple, yet powerful,
ways that enable parallel data processing. While it is designed with "streaming" "informatics" data in mind, it can
also be used to process archived data from files or in a general sense to perform a computation in stages, using
internally generated data of any type or size. "Hashing" refers to sending datums to specific target processes based

on the result of a hash operation, which is one means of achieving parallelism.

It is important to note that PHISH does not replace or even automate the task of writing code for the individual
programs needed to process data, or of designing an appropriate parallel algorithm to perform a desired

http://www.sandia.gov/~sjplimp/phish.html

computation. It is simply a library that processes can call to exchange datums with other processes, and a setup
tool that converts an input script into a runnable program that can be easily launched in parallel.

Our goal in developing PHISH was to make it easier to process data, particularly streaming data, in parallel, on
distributed-memory or geographically-distributed platforms. And to provide a framework to quickly experiment
with parallel informatics algorithms, either for streaming or archived data. Our own interest is in graph algorithms
but various kinds of statistical, data mining, machine learning, and anomaly detection algorithms can be
formulated for streaming data, in the context of the model described above. We hope PHISH can be a useful tool
in those settings as well.

1.2 PHISH lingo

The name PHISH was also chosen because it evokes the image of fish (programs) swimming in a stream (of data).
This unavoidably gives rise to the following PHISH lingo, which we use without apology throughout the rest of
the documentation:

® minnow = a (typically small) stand-alone application, run as a process

¢ school = a set of duplicate minnows, swimming (working) together in coordinated fashion

¢ hook = a connection between two schools in a defined communication pattern

¢ net(work) = a PHISH program, consisting of one or more schools, hooked together to perform a
calculation

¢ bait.py = a tool for creating PHISH nets from an input script

e wrapper = a wrapper of the PHISH library for Python

e tales = the PHISH manual

1.3 PHISH pheatures

The model described above is not unique to PHISH. Many programs provide a framework for enabling data to
flow between computational tasks interconnected by "pipes"” in a dataflow kind of paradigm. Visualization
programs often use this model to process data and provide a GUI framework for building a processing pipeline by
connecting the outputs of each computational node to the inputs of others. The open source Titan package, built
on top of VTK, is one example, which provides a rich suite of computation methods, both for visualization and
data processing. The commercial InfoSpheres tool from IBM uses a similar dataflow model, and is designed for
processing streaming data at high rates. Twitter recently released an open-source package called "Twitter Storm"
which has been advertised as Hadoop for streaming data, since it enables streaming MapReduce-style
computations and runs with fault-tolerance on top of a parallel file system like HDFS. PHISH has many
conceptual similarities to Storm, though PHISH has fewer features, such as no support for fault tolerance.

Dataflow frameworks like these are often designed to run as a single process or in parallel on a shared memory
machine. The computational nodes in the processing pipeline are functions called as needed by a master process,
or launched as threads running in parallel.

By contrast, PHISH minnows (computational nodes in the processing pipeline), are independent processes and the
PHISH library moves data between them via "messages" which requires copying the data, either using the MPI
message-passing library or sockets. This allows PHISH programs to be run on a broader range of hardware,
notably distributed-memory parallel platforms, but also incurs a higher overhead for moving data from process to
process.

The following list highlights additional PHISH pheatures:

http://titan.sandia.gov
http://www-01.ibm.com/software/data/infosphere/stream-computing
http://hadoop.apache.org

¢ The PHISH package is open-source software, distributed under the Berkeley Software Development
(BSD) license. This effectively means that anyone can use the software for any purpose, including
commercial redistribution.

¢ The PHISH library is a small piece of code (few 1000 lines), with a compact API (couple dozen
functions). It has a C interface, so that it can be easily called from programs written in a variety of
languages (C, C++, Fortran, Python, etc). The library can be compiled on any platform with a C++
compiler.

¢ The PHISH library comes in two flavors with the same API: one based on message passing via the MPI
library, the other based on sockets via the open-source ZMQ library. This means you need one or both of
these packages (MPI, ZMQ) installed on your machine to build a minnow (process) that uses the PHISH
library.

¢ PHISH nets (programs) consist of one or more collections of minnows (schools), hooked together in
defined communication patterns, to encode an algorithm or computation, The toplogy of a PHISH net is
specified in an input script, which is text files with a simple command syntax.

¢ PHISH minnows can define one or more input and output ports for sending and receiving datums. This
allows schools of minnows to be hooked together in a variety of communication patterns.

¢ PHISH minnows can be written to operate on datums of various types (e.g. integers or floating-point
values or strings). This allows minnows to be re-used in various PHISH nets.

¢ A PHISH wrapper (pun intended) for Python is provided, so that minnows that call the PHISH library can
be written in Python. Minnows written in different languages (e.g. C++ or Python) can be used
interchangeably in a PHISH input script.

¢ The PHISH library exchanges data between minnows with strict data typing rules, so that minnows can be
written in different languages (e.g. C++ vs Fortran vs Python) or run on different machines (4-byte vs
8-byte integers).

¢ PHISH input scripts are processed via a tool called bait.py tool which can also run them as an MPI or
socket-based program.

¢ PHISH input scripts use a hook command which allows data to be exchanged in various patterns between
schools of minnows. This enables parallelism in data processing to be easily expressed and exploited.

¢ PHISH nets can be run on a single processor, so long as the OS supports multiple processes. They can be
run on a multicore box. They can be run on any distributed-memory or shared-memory platform that
supports MPI or sockets. Or they can be run on a geographically dispersed set of machines that support
socket connections.

¢ A PHISH net can look for incoming data on a socket port. It can likewise export data to a socket port.
This means that two or more PHISH nets can be launched independently and exchange data. This is a
mechanism for adding/deleting minnows (processes) to/from a calculation on the fly.

¢ PHISH minnows are included that wrap non-PHISH applications that read from stdin and/or write to
stdout. This allows such an application to be used in a PHISH net and exchange data with other minnows.

1.4 Steps to create and run a PHISH net

The PHISH package contains a library and a tool for defining and running PHISH nets. These are the steps
typically used to perform a calculation, assuming you have designed an algorithm that can be encoded as a series
of computational tasks, interconnected by moving data between them.

1. Build the PHISH library

2. Write and build one or more minnows that call the PHISH library.

3. Write an input script that defines a PHISH net as minnows, schools and communication patterns between
them.

4. Use the bait.py tool to process and run the input script

Step (1): An overview of the PHISH library and instructions for building it are given in this section.

http://www.zeromq.org

Step (2): A minnow is a stand-alone program which makes calls to the PHISH library. An overview of minnows,
their code structure, and how to build them, is given in this section. The API for the PHISH library is given in this
section, with links to a doc page for each function in the library.

Step (3): The syntax and meaning of commands used in PHISH input scripts are described in this section.
Step (4): The bait.py tool, its command-line options, and instructions on how to use it, are described in this

section. Before using it the first time, one or more backend libraries must be built, which are in the src directory.
This can be done as part of step (1).

1.5 Simple example

The steps outlined in the preceding section are somewhat abstract. Here is a concrete example of using a PHISH
program to count the number of times different words appear in a corpus of text files. This is effectively a
MapReduce operation, where individual minnow processes perform the map() and reduce() functions. This is a
diagram of how 5 different kinds of minnows can be connected together to perform the computation:

sort print

L\

-
file2words

Code for all 5 of these minnows is in the example directory of the PHISH distribution, both in C++ and Python.
The filegen minnow takes a list of files and/or directories as user input, searches them recursively, and generates a
series of filenames. The filenames are sent one-at-a-time to one of several file2words minnows. Each receives a
filename as input, opens and reads the content, and parses it into words. Each word is hashed and sent to a
specific count minnow, as indicated by the all-to-all green arrows. The key point is that each count minnow will
receive all occurrences of a subset of possible words. It uses an internal hash table to count the occurrences of
each word it receives. Note that parallelism is enabled by invoking multiple copies of the file2words and count
minnows.

When the filegen minnow sends the last filename, it sends a "done" message to each of the file2words minnows.
When they receive a "done" message, they in turn send a "done" message to each count minnow. When a count
minnow has received a "done" message from all the file2words minnows, it sends its entire list of unique words
and associated counts to the sort minnow, followed by a "done" message. When the sort minnow has received
"done" message from all the upstream count minnows, it knows it has received all the unique words in the corpus
of documents, and the count for each one. It sorts the list by count and sends the top N to the print minnow,
followed by a "done" message. N is a user-defined parameter. The print minnow echoes each datum it receives to
the screen or a file, until if receives a "done" message. At this point all minnows in the school have been shut
down.

More details about this example are discussed in subsequent sections of the manual:

¢ In this section of the bait.py tool doc page, the PHISH input script that encodes the minnows and
communication connections of the above diagram is discussed, and its processing by the bait.py tool.

¢ In this section of the PHISH Minnows doc page, the code for the count minnow is discussed in detail, to
illustrate what calls it makes to the PHISH library to send and receive datums.

¢ In this section of the PHISH Library doc page, the format of datums exchanged between minnows is
discussed.

Note that like a MapReduce, the PHISH program runs in parallel, since there can be N file2words minnows and M
count minnows where N >= 1, M >= 1, and N = M is not required. This is similar to the option in Hadoop to vary
the numbers of mappers and reducers.

However, there are also some differences between how this PHISH program works as compared to a traditional
MapReduce, e.g. as typically performed via Hadoop or the MapReduce-MPI library.

In a traditional MapReduce, the "map" stage (performed by the file2words minnows) creates a huge list of all the
words, including duplicates, found in the corpus of documents, which is stored internally (in memory or on disk)
until the "mapper” process is finished with all the files it processes. Each mapper then sends chunks of the list to
each "reduce" process (performed by the count minnows). This is the "shuffle" phase of a Hadoop MapReduce.
The reducer performs a merge sort of all the words in the chunks it receives (one from each mapper). It can then
calculate the count for each unique word.

In contrast, the PHISH program operates in a more fine-grainded fashion, streaming the data (words in this case)
through the minnows, without ever storing the full data set. Only a small list of unique words is stored (by the
count minnows), each with a running counter. PHISH exchanges data between minnows via many tiny messages
(one word per message), whereas a traditional MapReduce would aggregate the data into a few large messages.

This is a simplistic explanation; a fuller description is more complex. Hadoop, for example, can operate in
streaming mode for some forms of MapReduce operations, which include this wordcount example (MapReduce
operations where the "reducer” needs all data associated with a key at one time, are not typically amenable to a
streaming mode of operation.) The PHISH minnows used in this school could be modified so as to aggregate data
into larger and fewer messages. Likewise, in a traditional MapReduce, large intermediate data sets can be stored
out-of-core. PHISH does have the capability to do that unless a minnow is written that writes information to disk
and retrieves it.

However the fundamental attributes of the PHISH program are important to understand. Data moves
continuously, in small chunks, through a school of minnows. Each minnow may store "state" information about
the data it has previously seen, but typically not all the data itself. "State" is typically limited to information that
can be stored in-memory, not on disk. This is because for streaming data, too much data arrives too quickly, for a
minnow to perform much computation before discarding it or sending it on to another minnow.

Here is a diagram of a variant of the wordcount operation that illustrates how PHISH can be used to process
continuous, streaming data. The PHISH program in this case might run for days or weeks, without using the
"done" messages described above.

http://hadoop.apache.org
http://hadoop.apache.org
http://mapreduce.sandia.gov
http://hadoop.apache.org

continuous

stream

F|Ie2Words Cnunt

/ F|I92Words (Count]

AN
—> B F||92Wnrds Cnunt 7 - B

[FlIEZWords

/'

Trlg ger
In this case the filegen minnow is continuously seeing new files appear in directories it monitors. The words in
those files are processed as they appear. A Trigger minnow has been added which accepts user queries, e.g. via a
keyboard or a socket connection. When the user makes a request (hits a key), a message is sent to each of the
count minnows on a different input port than it receives words from the file2words minnows; see this section of
the PHISH Minnows doc page for a discussion of ports. The message triggers the count minnows to send their
current unique word/count list to the sort minnow which is sorted and printed via the print minnow.

The PHISH job now runs continuously and a user can query the current top N words as often as desired. The
filegen, count, and sort minnows would have to be modified, but only in small ways, to work in this mode.
Additional logic could be added (e.g. another user request) to re-initialize counts or accumulate counts in a
time-windowed fashion.

1.6 Acknowledgments and citations

PHISH development has been funded by the US Department of Energy (DOE), through its LDRD program at
Sandia National Laboratories.

The following paper describes the basic ideas in PHISH. If you use PHISH in your published work, please cite
this paper and include a pointer to the PHISH WWW Site (http://www.sandia.gov/~sjplimp/phish.html):

S. J. Plimpton and T. Shead, "Streaming data analytics via message passing with application to graph algorithms",

submitted to J Parallel and Distributed Compuing, 2012.
PHISH was developed by the following individuals at Sandia:

e Steve Plimpton, sjplimp at sandia.gov
¢ Tim Shead, tshead at sandia.gov

PHISH comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code that
is distributed free-of- charge, under the terms of the Berkeley Softward Distribution (BSD) License.

scre
or fil

Source code for PHISH is freely available for download from the PHISH web site and is licensed under the
modified Berkeley Software Distribution (BSD) License. This basically means it can be used by anyone for any
purpose. See the LICENSE file provided with the distribution for more details.

http://www.sandia.gov/~sjplimp/phish.html

Previous Section - PHISH WWW Site - PHISH Documentation - Next Section

2. Bait.py Tool

Bait.py is a Python program which parses a PHISH input script and uses a dynamically-loaded backend to directly
run a PHISH net and perform a calculation, or create a script that can be used to do the same. In PHISH lingo, a
"minnow" is a stand-alone application which makes calls to the PHISH library to exchange data with other
PHISH minnows via its input and output ports. A "net" is collection of schools of minnows.

There are Bait backends for running a PHISH net using MPI, running a PHISH net using ZMQ, generating
configuraiton files for MPI or ZMQ, and generating a dotfile that can be converted into a diagram of a PHISH net
via the GraphViz tool.

You can edit the input script or pass it different parameters via bait.py command-line arguments to change the
calculation. Re-running bait.py will run a new net or create a new script.

The remainder of this page discusses how bait.py is used and how a PHISH input script is formatted. The input
script commands recognized by bait.py have their own doc pages.

¢ 2.1 Input script commands

¢ 2.2 Building and running bait.py

¢ 2.3 Command-line arguments

¢ 2.4 Input script syntax and parsing
¢ 2.5 Simple example

2.1 Input script commands
These are the input script commands recognized by bait.py:

® variable
® set

® minnow
® hook

¢ school

2.2 Building and running bait.py

Before using bait.py for the first time, one or more backend libraries must be built which bait.py uses for
interfacing to MPI and/or ZMQ. This creates shared libraries which your Python must also be able to find.

The easiest way to build all of PHISH, including the bait backend libraries, is to use the cross-platform CMake
build system. We recommend building PHISH with a separate build directory:

tar xzvf phish.tar.gz -C ~/src
mkdir ~/build/phish

cd ~/build/phish

ccmake ~/src/phish-14sepl?

v r 0

Then, in the CMake curses interface, configure the build, generate makefiles, and build phish:

10

http://www.sandia.gov/~sjplimp/phish.html
http://www.graphviz.org
http://www.cmake.org

$ make

You can also build one or more of the backend libraries from the src directory of the distribution by typing one or
more of these lines:

make —-f Makefile.machine baitmpi

make —-f Makefile.machine baitmpiconfig
make —-f Makefile.machine baitzmg

make —-f Makefile.machine baitgraph
make —-f Makefile.machine baitnull

where "machine" is the name of one of the Makefiles in the directory. These should produce files like
libphish-bait-mpi.so or libphish-bait-zmq.so. See the discussion of the --backend command-line switch in the next

section, for the difference between the various backend options. See the discussion in this section if none of the
provided Makefiles are a match to your machine.

When you run bait.py, your Python must be able to find the appropriate backend shared library. The simplest way
to do this is to add a line to your shell start-up script.

For csh or tcsh, add a line like this to your .cshrc file:

setenv LD_LIBRARY_PATH $LD LIBRARY _PATH:/home/sjplimp/phish/src

For bash, add a line like this to your .bashrc file:

export LD_LIBRARY_PATH S$LD_LIBRAY PATH:/home/tshead/build/phish/src
For OSX systems, use DYLD_LIBRARY_PATH instead of LD_LIBRARY_PATH.
After editing your shell start-up script, be sure to invoke it, e.g. source .cshrc.

See the discussion in this section for an alternative way to do this.

You are now ready to use the bait.py tool. It is a Python script in the bait directory of the PHISH distribution. Like
any Python script you can run it in one of two ways:

bait.py —--switch value(s) ... <in.script
python bait.py —--switch values ... <in.script

For the first case, you need to insure that the first line of bait.py gives the correct path to the Python installed on
your machine, e.g.

#!/usr/local/bin/python
and that the bait.py file is executable, e.g.
chmod +x bait.py

Normally you will want to invoke bait.py from the directory where your PHISH input script is, so you may need
to prepend bait.py with a path or make an alias for running it conveniently.

The switch/value command-line arguments recognized by bait.py are discussed in the next section.

11

2.3 Command-line arguments

These are the command-line arguments recognized by bait.py. Each is specified as "-switch value(s)". Each
switch has an abbreviated form; several of them have default settings.

¢ -h or --help

e -b BACK or --backend BACK

¢ -] LAUNCHER or --launch LAUNCHER

¢ -p PATHI1:PATH2.:... or --path PATH1:PATH?2-:...
¢ s NAME VALUE or --set NAME VALUE

e -x SUFFIX or --suffix SUFFIX

¢ .v NAME VALUE or --variable NAME VALUE
e __verbose

Use --help to display a help message and exit.

Use --backend to select the desired bait.py backend. The choice of backend defines how the input script will be

interpreted to run a PHISH net. Current choices for BACK are "graphviz", "mpi", "mpi-config", "null", and
"zmq". We plan to add a "zmq-config" option.

¢ The graphviz backend will write a file in DOT format to stdout. You can process this file using any of the
GraphViz tools to create a diagram of your PHISH net, useful for documentation or presentations.

® The mpi backend will run your PHISH net immediately using the mpiexec command, which must be
available somewhere on your system PATH.

¢ The mpi-config backend will write an mpiexec compatible config file to stdout. You can then run your
PHISH net any time by passing the generated file to mpiexec.

¢ The null backend is a do-nothing backend that is useful for troubleshooting. For example, you can
combine the --verbose option with the null backend to confirm that variables are expanded correctly in
your PHISH input script.

¢ The zmq backend will run your PHISH net immediately using ZMQ sockets. Note that there is a variable
called "hostnames" that must be set to use the ZMQ backend; see the variable doc page for details.

The --launch option will use the program LAUNCHER to invoke all the minnows. This is useful if the minnow is
a Python script, in which case --launch python will launch the minnow using Python. LAUNCH can be multiple
words if desired, e.g. --launch python -x.

The --path option specifies a colon-separated list of one or more directories as PATH1, PATH?2, etc. When bait.py
processes each minnow, as specified by the minnow command, it looks for the minnow's executable file in this
list of directories, so that it can write it to the launch script with an absolute path name.

Use --set to set an option for the input script that is the same as if the set command had been used in the input
script with NAME and VALUE. For example, --set memory 5 is the same as using "set memory 5" in the input
script to specify the maximum datum size to 5 Kbytes. A value specified in the input script will override a
command-line setting.

Use --suffix to supply a SUFFIX string that will be appended to the name of each minnow executable in your
input script. This is useful when you have minnow executables that have been built using different
communication backends - for example, if you have a minnow "foo.c", you might link it against the MPI and
ZMQ backends to produce two executables, "foo-mpi", and "foo-zmq". Using the --suffix option, you can create a
single PHISH input script and run it against either executable by specifying --suffix=-mpi or --suffix=-zmgq. It is
also useful if a minnow is a Python script, ending in ".py", in which case you could specify --suffix=.py and use
the --launch option to invoke the minnow with Python.

12

http://www.graphviz.org

The --variable switch defines a variable that can be used within the script. It can be used multiple times to define
different variables with NAME and VALUE. A variable command can also be used in the input script itself. The
VALUE specified on the command-line will override the value of a variable with the same NAME in the input
script, which allows you to set a default value in the input script and overrided it via the command line.

The variable NAME and VALUE are any alphanumeric string. A list of strings can also be assigned to it, e.g. a
series of filenames. For example,

bait.py —--variable files *.cpp <in.phish
creates the variable named "files" containing a list of all CPP files in the current directory.

Note that there is a variable called "hostnames" that must be set to use the ZMQ backend; see the variable doc
page for details.

The --verbose option causes bait.py to produce verbose output while processing your input script. The verbose
output will vary depending on the backend in use, and will be written to stderr.

2.4 Input script syntax and parsing
A PHISH input script is a text file that contains commands, typically one per line.

Blank lines are ignored. Any text following a "#" character is treated as a comment and removed, including the
"#" character. If the last printable character in the line is "&", then it is treated as a continuation character, the next
line is appended, and the same procedure for stripping a "#" comment and checking for a trailing "&" is repeated.

The resulting command line is then searched for variable references. A variable with a single-character name,
such as "n", can be referenced as $n. A variable with a multi-character name (or single-character name), such as
"foo", is referenced as ${foo}. Each variable found in the command line is replaced with the variable's contents,
which is a list of strings, separated by whitespace. Thus a variable "files" defined either by a bait.py

command-line argument or the variable command as

-v files fl.txt f2.txt f3.txt
variable files fl.txt f2.txt f3.txt

would be substituted for in this command:

minnow 1 filegen ${files}

so that the command becomes:

minnow 1 filegen fl.txt f2.txt £3.txt

After variable substitution, a single command is a series of "words" separated by whitespace. The first word is the
command name; the remaining words are arguments. The command names recognized by bait.py are listed above.

Each command has its own syntax; see its doc page for details.

With one exception, commands in a PHISH input script can be listed in any order. The script is processed by
bait.py after the entire script is read. The exception is that a variable cannot be used before it is defined.

13

2.5 Simple example

This section of the Introduction doc page, discussed this diagram of a PHISH calculation for counting the number
of times words appear in a corpus of files, performed as a streaming MapReduce operation:

' Y
file2words

T ~ -t
. file2words !

- W P
A

z S
: *[]ﬁ Wy
N file2words :
- g
~ j-f

LN &

file2words

-

This is the PHISH input script in example/in.wordcount that represents the diagram:

word

count from files

provide list of files or dirs as -v files command-line arg

minnow
minnow
minnow
minnow
minnow

hook 1
hook 2
hook 3
hook 4

school
school
school
school
school

filegen ${files}
file2words

count

sort 10

print

g W N

roundrobin 2
hashed 3
single 4
single 5

o WwN R
oW o e

The minnow commands list the 5 different minnows used. Note the use of the ${files} variable to pass a list of
filenames or directories to the filegen minnow.

The hook commands specify the communication pattern used bewteen different schools of minnows. The key
pattern for this example is the hashed style, which allows the file2words minnow to pass a "key" (a word) to the
PHISH library. The library hashes the word to determine which count minnow to send the datum to.

The school commands specify how many instances of each minnow to launch. Any number of file2words and
count minnows could be specified.

When this script is run thru bait.py in the example directory, as

14

../bait/bait.py —--backend mpi-config -v files in.* -p ../minnow <in.wc > outfile

using -mpi-config as the backend, then bait.py produces the following lines in outfile. (Note that if --backend mpi
is used, bait.py will launch the parallel job immediately after processing it.)

=W o

./minnow/filegen in.bottle in.cc in.cc.jon in.filelist in.pp in.rmat in.slow in.wc in.wrapsink
./minnow/file2words --phish-backend mpi --phish-minnow file2words 2 5 1 —--phish-in 1 0 0 round
./minnow/count --phish-backend mpi --phish-minnow count 3 3 6 --phish-in 5 1 0 hashed 3 6 0 --
./minnow/sort 10 --phish-backend mpi --phish-minnow sort 4 1 9 —--phish-in 3 6 0 single 1 9 0 -
./minnow/print --phish-backend mpi --phish-minnow print 5 1 10 --phish-in 1 9 0 single 1 10 O

which is the format of an mpiexec config file. There is one line per minnow, as defined by the input script. The
"-n N" specifies how many copies of the minnow will be invoked. The next argument is the name of the minnow
executable, followed by any minnow arguments, followed by backend-specific arguments such as "-minnow",
"-in", and "-out" that encode the communication patterns between the minnows.

This outfile can be launched via the mpiexec command as:

mpiexec —-configfile outfile

for MPICH, or as

mpiexec “cat outfile’

for OpenMPI. (Note that if --backend mpi is used, bait.py will launch the parallel job immediately after
processing it.)

This will launch 11 independent processes as an MPI job. Each process will call the PHISH library to exchange
datums with other processes in the pattern indicated in the diagram. The datum exchanges will be performed via
MPI\Send() and MPI_Recv() calls since the MPI backend of the PHISH library is being invoked.

15

Previous Section - PHISH WWW Site - PHISH Documentation - Next Section

3. PHISH Minnows

In PHISH lingo, a "minnow" is a stand-alone application which makes calls to the PHISH library. Minnows are
typically small programs which perform a single task, e.g. they parse a string searcing for keywords and store
statistics about those keywords. But they can also be large programs which perform sophisticated computations
and make only occasional calls to the PHISH library. In which case they should probably be called "sharks" or
"whales" ...

An individual minnow is part of a "school" of one or more duplicate minnows. One or more schools form a
PHISH "net(work)" which compute in a coordinated fashion to perform a calculation. Minnows communicate
with each other to exchange data via calls to the PHISH library.

This doc page covers the following topics:

¢ 3.1 List of minnows

¢ 3.2 Code structure of a minnow
¢ 3.3 Communication via ports

¢ 3.4 Shutting down a minnow

¢ 3.5 Building minnows

3.1 List of minnows

This is a list of minnows in the minnow directory of the PHISH distribution. Each has its own doc page. Some are
written in C++ (*.cpp), some in Python (*.py), some in both. If provided in both languages, their operation is
identical, with any exceptions noted in the minnow doc page:

e count

e file2words
¢ filegen

® print

® slowdown
® sort

These are also 3 special minnows which can wrap stand-alone non-PHISH applications which read from stdin and
write to stdout, so that they can be used as minnows in a PHISH net and communicate with other minnows:

¢ wrapsink
® wrapsource
® wrapss

These are also two simple codes which can be compiled into stand-alone non-PHISH executables. They are
provided as examples of applications that can be wrapped by the "wrap" minnows:

® echo
® reverse

16

http://www.sandia.gov/~sjplimp/phish.html

3.2 Code structure of a minnow

The easiest way to understand how a minnow works with the PHISH library, is to examine a few simple files in
the minnow directory. Here we list the count.py minnow, which is written in Python. There is a also a count.cpp
minnow, written in C++, which does the same thing. The purpose of this minnow is to count occurrences of
strings that it receives as datums:

1 #!/usr/local/bin/python as path to Python if desired
2

3 import sys

4 import phish

5

9 def count (nvalues) :

7 if nvalues != 1: phish.error ("Count processes one-value datums")
8 type, str,tmp = phish.unpack()

9 if type != phish.STRING:

10 phish.error ("Count processes string values")

11 if hash.has_key (str): hashstr = hashstr + 1

12 else: hashstr = 1

13

14 def dump():

16 for key,value in hash.items () :

17 phish.pack_int (value)

18 phish.pack_string(key)

19 phish.send(0)

20

21 args = phish.init (sys.argv)
22 phish.input (0, count, dump, 1)
23 phish.output (0)

24 phish.check ()

25

26 1if len(args) != 0: phish.error ("Count syntax: count")
27

28 hash =

29

30 phish.loop()
31 phish.exit ()

On line 4, the Python minnow imports the phish module, which is provided with the PHISH distribution.
Instructions on how to use this module, which wraps the C-interface to the PHISH library, are given in this
section of the documentation.

The main program begins on line 21. The call to the phish.init is typically the first line of a PHISH minnow.
When the minnow is launched, extra PHISH library command-line arguments are added which describe how the
minnow will communicate with other minnows. These are stripped off by the phish.init function, and the
remaining minnow-specific arguments are returned as "args". The phish.input and phish.output functions setup the
input and output ports used by the minnow. A port is a communication channel by which datums arrive from
other minnows or can be sent to other minnows. The PHISH input script sets up these connections, but from the
minnow's perspective, it simply receives datums on its input port(s) and writes datums to its output port(s). See
the next section for more discussion of ports.

There should be one call to phish.input for each input port the minnow uses. And one call to phish.output for each
output port it uses. The call to the phish.check function on line 24 insures that the minnow as written is
compatible with the way it is used in the PHISH input script, i.e. that the necessary input and output ports have
been defined with valid hook styles.

The phish.input call specifies a callback function that the PHISH library will invoke when a datum arrives on that
input port. In this case, the count minnow defines a count() callback function which stores a received string in a

17

hash table (Python dictionary) with an associated count of the number of times it has been received.

On line 28, an empty hash table is initialized, and then the phish.loop function is called. This gives control to the
PHISH library, which will wait for datums to be received, invoking the appropriate callback function each time
one arrives.

The call to phish.input also defines a callback to the dump() function which is invoked when input port O is
closed. This occurs when upstream minnows send the requisite number of "done" messages to the port. The
dump() function sends the contents of the hash table to output port 0, one datum at a time. Each datum contains a
unique string and its count.

The phish.loop function returns after invoking dump() and when all input ports are closed. The count minnow
then calls the phish.exit function which will close its output port(s), and send "done" messages to downstream
minnows connected to those ports.

This code structure is typical of many minnows:

¢ A beginnning section with a call to phish.init, definitions of input/output ports, and a call to phish.check.
Then a call to phish.loop or phish.probe or phish.recv to receive datums. This is unnecessary if the
minnow only generates datums, i.e. it is a source of data, but not a consumer of data.

¢ One or more callback functions unpack datums via the phish.unpack function, process their content, store
state, and send messsages via phish.pack and phish.send functions.

¢ After phish.loop exits, the minnow shuts down via a call to phish.close or phish.exit and terminates. See
this section for more discussion of shut down procedures.

3.3 Communication via ports

As discussed above, ports are input/output communication channels by which a minnow receives datums from an
upstream minnow or sends datums to a downstream minnow.

The number of ports that can be configured by a minnow varies between PHISH library backends. The ZMQ
version of the library supports an unlimited number of input and output ports, while the MPI version of the library
supports up to MAXPORT number of input ports and MAXPORT number of output ports. MAXPORT is a
hardwired value in src/phish-mpi.cpp which is set to 16. It can be changed if needed, but note that all minnows
which use the MPI version of the library must be re-built since they must all use a consistent value of MAXPORT
when run together in a PHISH net.

Note that a PHISH input script may connect a particular minnow to other minnows in a variety of ways. This
applies to both the styles of hooks that are specified and the number of minnows on the other end of each hook.
Thus it is possible for the user to specify hooks in the input script which the minnow does not support or even
define. Similarly, the input script may cause other minnows to send datums to the minnow which it does not
expect or is unable to interpret. This means a minnow should be coded to follow these rules:

¢ [t should define each input port it receives datums on as "required" or "optional", via the phish.input
function. This will generate erros if the PHISH input script is incompatible with the minnow.

¢ [t should define each output port it sends datums to, via the phish.output function. This will also generate
errors for incompatible PHISH input scripts, though the use of output ports by a script is always optional.

¢ The minnow should check the number of fields and data type of each field it receives, if it expects to
receive datums of a specified structure and data type.

o [f feasible, the minnow should be coded in a general manner to work with different kinds of datums and
data types, so that it can be used in a variety of PHISH input scripts

18

¢ Which port a datum arrived on is the only attribute of a received datum that a minnow can query (other
than the format and content of the datum itself); see the phish.datum function. It cannot query which
minnow sent it via what output port or which connection to the input port it arrived by. This is because
these are really settings determined by the PHISH input script, and the minnow should not depend on
them. If such info is really necessary for the minnow to know, then it can be encoded as a field in the
datum itself, so the minnow can extract it.

Here are other flexible attributes of input and output ports to note, all enabled by the hook command in a PHISH
input script:

¢ A single input port can receive datums from multiple other schools of minnows and multiple output ports.

¢ A single output port can send datums to multiple other schools of minnows and multiple input ports. This
means an individual datum may be sent multiple times to different minnows.

¢ A minnow can send datums via its output port to its own input port.

All of these scenarios can be setup by appropriate use of hook commands in a PHISH input script.

An additional issue to consider is whether a communication channel can be saturated or drop datums. Imagine a
PHISH net where one minnow sends datums at a high rate to a receiving minnow, which cannot process them as
fast as they are sent. Over time, the receiving minnow is effectively a bottleneck in processing a stream of data.
The PHISH library will not lose messages in this scenario, rather the overall processing pipeline naturally throttles
itself to the rate of the bottlenecking minnow. This is handled by the underlying MPI or socket message passing
protocols. ZMQ handles this naturally. In the case of MPI, the sending and receiving processes coordinate data
exchanges. By default this is done via MPI_Send() and MPI_Recv() calls. If you get a run-time MPI error about
dropping messages, then you should use occasionally use the "safe" mode of data exchange which can be enabled
by the set safe command in a PHISH input script or "--set safe" command-line option. This will use MPI_Ssend()
calls which enforce extra handshaking between the sending and receiving processes to avoid dropping messages.

3.4 Shutting down a minnow

PHISH minnows can be designed to process a finite or infinite stream of data. In the infininte case, the PHISH net
of minnows is typically shut down by the user killing one or more of the processes. Note that the current ZMQ
version of PHISH cannot guarantee that all processes will be shut-down cleanly. You may need to kill some of the
procsses manually.

In the finite case, you typically want each minnow in the net to shut down cleanly.

The PHISH library sends special "done" messages when a minnow closes one of its output ports. This is triggered
by a call to the phish_close function, which closes a single port, or the phish_exit function which closes all output
ports. A "done message is sent to each receiving minnow of each input port connected to the corresponding output
port. The receiving minnow counts these messages as they arrive. When it has received one "done" message from
every minnow that connects to one of its input ports, it closes the input port and the library calls back to the
minnow (if a callback function was defined by the phish_input function). When all its input ports have been
closed it makes an additional callback to the minnow (if a callback function was defined by the phish_callback
function).

This mechanism is often sufficient to trigger an orderly shutdown of an entire PHISH net by all its minnows, if
the most upstream minnow initiates the process by closing its output ports via a call to phish_exit. Exceptions are
when a school of minnows exchanges data in a "ring" style of commuication as setup by the hook ring command
in a PHISH input script.

19

In case of the ring, if the first minnow in the ring invokes the phish_exit function, it will no longer be receiving
datums when the last minnow in the ring attempts to send it a "done" message. In this case, the first minnow
should instead invoke phish_close on the output port for the ring, then wait to receive its final "done" message
before calling phish_exit.

Another exception is when minnows send datums to themselves in a looping fashion. In this case, you typically to
include code in callback functions invoked when "done" messages are received to handle the shutdown logic. See
the minnow/tri.py for an example of how this can be done.

3.5 Building minnows

Minnows are stand-alone programs which simply need to be linked with the PHISH library. New single-file
minnows written in C or C++ can be added to the minnow directory of the PHISH distribution and built in the
following manner; minnows written in Python do not need to be built.

The easiest way to build all of PHISH, including the PHISH minnows, is to use the cross-platform CMake build
system. We recommend building PHISH with a separate build directory:

tar xzvf phish.tar.gz -C ~/src
mkdir ~/build/phish

cd ~/build/phish

ccmake ~/src/phish-14sepl?

v r 0

Then, in the CMake curses interface, configure the build, generate makefiles, and build phish:
$ make

Note that if you add a new minnow to the minnow directory, simply re-run ccmake regenerate makefiles, and
build - your minnow will automatically be incorporated into the build.

Alternatively, typing the following from the minnow directory will build all C and C++ minnows:

make machine

where machine is the suffix of one of the provided Makefiles, e.g. linux.mpi or linux.zmq. Type "make" to see a
list of the different files and what compiler and MPI options they support.

The ".mpi" or ".zmq" suffix of the make target and associated Makefile refer to which version of the PHISH
library will be linked against, either the MPI or ZMQ version.

The make command also builds non-PHISH C or C++ programs which are intended to be wrapped with one of the
"wrap" minnows discussed above so they can be used as a minnow. Examples are the echo and reverse programs
in the minnow directory.

If none of the provided Makefiles are a match to your machine, you can use one of them as a template and create
your own. Note that only the top section for compiler/linker settings need be edited. This is where you should
specify your compiler and linker and any switches they use. For the LIB setting, be sure to use the appropriate
version of the PHISH library you are linking to, i.e. libphish-mpi.so or libphish-zmgq.so.

IMPORTANT NOTE: When adding a new minnow that is a single file to the minnow directory, you should

insure the string "MINNOW" appears somewhere in the *.cpp or *.c file. This is how the top-level
minnow/Makefile includes it in the build list. It will then be automatically built with the other minnows.

20

http://www.cmake.org

IMPORTANT NOTE: If you wish to switch the PHISH library used with your minnows (MPI vs ZMQ), you
should type "make clean-all" and then re-compile and re-link all the minnows. You can also type "make clean" to
simply delete all object files.

If your new minnow is complex enough to consist of multiple files, you can add a specific rule for how to build it
to the Makefile.machine you use, e.g. that defines a new target with a list of OBJ files that it depends on. Or you
can build it in a separate directory with your own custom Makefile, so long as you link to the PHISH library,
similar to how the Makefiles in the minnow directory perform the final link step.

Your executable minnow files do not need to be added to the minnow directory. See the --path command-line
switch for the bait.py tool for how to access minnows from other directories when running a PHISH net.

21

Previous Section - PHISH WWW Site - PHISH Documentation - Next Section

4. PHISH Library

This sections documents the API to the PHISH library that PHISH minnows call. In PHISH lingo, a "minnow" is
a stand-alone application which makes calls to the PHISH library.

The API for the MPI and ZMQ (socket) versions of the PHISH library are identical.

A general discussion of how and when minnows call PHISH library functions is given in the Minnows section of
the manual.

The PHISH library has a C-style API, so it is easy to write minnows in any language, e.g. C, C++, Fortran,
Python. A true C++-style API is also provided, which means a C++ program can use either the C or C++ API. A
Python wrapper on the C-style API is also provided, which has a slightly different syntax for some functions. The
doc pages for individual library functions document all 3 APIs. See the section below entitled C vs C++ vs Python
interface for a quick overview.

PHISH minnows communicate with other minnows by sending and receiving datums. Before looking at
individual library calls, it may be helpful to understand how data is stored internally in a datum by the PHISH
library. This topic is discussed below, in the section entitled Format of a datum.

¢ 4.1 List of library functions

¢ 4.2 Building the PHISH library

® 4.3 C vs C++ vs Python interface
¢ 4.4 Format of a datum

4.1 List of library functions

The PHISH library is not large; there are only a handful of calls, that can be grouped into the following
categories. Follow the links to see a doc page for each library call.

1. Library calls for initialization
phish_init()
phish_input()
phish_output()
phish_callback()
phish_check()
2. Library calls for shutdown
phish_exit()
phish_close()
3. Library calls for receiving datums
phish_loop()
phish_probe()
phish_recv()
phish_unpack()
phish_datum()
4. Library calls for sending datums
phish_send()
phish_send_key()

22

http://www.sandia.gov/~sjplimp/phish.html

phish_send_direct()
phish_repack()
phish_pack_raw()
phish_pack_char()
phish_pack_int8()
phish_pack_int16()
phish_pack_int32()
phish_pack_int64()
phish_pack_uint8()
phish_pack_uint16()
phish_pack_uint32()
phish_pack_uint64()
phish_pack_float()
phish_pack_double()
phish_pack_string()
phish_pack_int8_array()
phish_pack_int16_array()
phish_pack_int32_array()
phish_pack_int64_array()
phish_pack_uint8_array()
phish_pack_uint16_array()
phish_pack_uint32_array()
phish_pack_uint64_array()
phish_pack_float_array()
phish_pack_double_array()
phish_pack_pickle()

5. Library calls for queueing datums
phish_queue()
phish_dequeue()
phish_nqueue()

6. Miscellaneous library calls
phish_query()
phish_set()
phish_error()
phish_warn()
phish_abort()
phish_timer()

4.2 Building the PHISH library

There are two different versions of the PHISH library that can be built. One that calls message-passing functions
from the MPI library, and one that calls socket functions from the ZMQ library. In either case, the library should
typically be built as a shared library so it can loaded at run-time by each minnow. This is required if the minnow
is written in Python.

The easiest way to build all of PHISH, including the PHISH libraries, is to use the cross-platform CMake build
system. We recommend building PHISH with a separate build directory:

tar xzvf phish.tar.gz -C ~/src
mkdir ~/build/phish

cd ~/build/phish

ccmake ~/src/phish-14sepl?2

v r i

23

http://www.cmake.org

Then, in the CMake curses interface, configure the build, generate makefiles, and build phish:

$ make

Alternatively, you can build either version from the src directory of the distribution by typing one of these lines:

make —-f Makefile.machine mpi
make —-f Makefile.machine zmg

where "machine" is the name of one of the Makefiles in the directory. These should produce the file
libphish-mpi.so or libphish-zmgq.so.

If none of the provided Makefiles are a match to your machine, then you can use of them as a template for
creating your own, e.g. Makefile.foo. Note that only the top section for compiler/linker settings need be edited.
This is where you should specify your compiler and any switches it uses. The MPI_INC setting is only needed if
you are building the MPI version of the library, and the compiler needs to know where to find the mpi.h file.
Likewise the ZMQ_INC setting is only needed if you are building the ZMQ version of the library, and the
compiler needs to know where to find the zmgq.h file. The MPI_LIB and ZMQ_LIB settings are for the MPI and
ZMQ library themselves and any other auxiliary libraries they require.

If the build is successful, a libphish-mpi.a or libphish-zmg.a file is produced.

You can also type

make —-f Makefile.machine clean

to remove *.0 and lib*.so files from the directory.

4.3 C vs C++ vs Python interface

As noted above, the APIs to the PHISH library for C versus C++ versus Python are very simliar. A C++ program
can use either the C or C++ APL

To use the C interface, a C or C++ program includes the file src/phish.h and makes calls to functions as follows:

#include "phish.h"
phish_error ("My error");

The C++ interface in src/phish.hpp encloses the PHISH API in the namespace "phish", so functions can be
invoked as

#include "phish.hpp"
phish::error ("My error");

or as

#include "phish.hpp"
using namespace phish
error ("My error");

To use the Python interface, see this section of the manual for details. A Python program can invoke a library
function as

24

import phish
phish.error ("My error")

or

from phish import *
error ("My error")

4.4 Format of a datum

The chief function of the PHISH library is to facilitate the exchange of data between minnows. This is done
through datums, which contain one or more fields. Each field is a fundamental data type such as a "32-bit integer"
or a "vector of doubles" or a NULL-terminated character string.

The PHISH library defines a specific explicit type for each fundamental data type it recognizes, such as "int32"
for 32-bit signed integers, or "uint64" for 64-bit unsigned integers, or "double" for a double-precision value. This
is so that the format of the datum, at the byte level, is identical on different machines, and datums can thus be
exchanged between minnows running on machines with different word lengths or between minnows written in
different languages (e.g. C vs Fortran vs Python).

IMPORTANT NOTE: Different endian ordering of fundamental numeric data types on different machines breaks
this model. We may address this at some future point within the PHISH library.

This is the byte-level format of datums that are sent and received by minnows via the PHISH library:

o # of fields in datum (int32_t)

e type of 1Ist field (int32_t)

e size of 1st field (optional int32_t)
e data for 1st field (bytes)

e type of 2nd field (int32_t)

¢ size of 2nd field (optional int32_t)
e data for 2nd field (bytes)

[]

e type of Nth field (int32_t)

¢ size of Nth field (optional int32_t)
e data for Nth field (bytes)

Integer flags are interleaved with the fundamental data types and the flags themselves are all 32-bit signed
integers. This allows minnows that call the phish_pack and phish_unpack functions to use the usual C "int" data
type as function arguments, instead of the int32_t types defined in the function prototypes. The compiler will only
give an error if the native "int" on a machine is not a 32-bit integer. See the doc pages for phish_pack and
phish_unpack for details.

The "type" values are one of these settings, as defined in src/phish.h:

¢ PHISH_CHAR =0
e PHISH_INTS8 =1

e PHISH_INT16 =2

e PHISH_INT32 =3

e PHISH_INT64 =4

e PHISH_UINTS8 =5
¢ PHISH_UINT16 =6

25

e PHISH_UINT32 =7

e PHISH_UINT64 = 8

e PHISH_FLOAT =9

¢ PHISH_DOUBLE =10

e PHISH_RAW =11

e PHISH_STRING =12

e PHISH_INT8_ARRAY =13

e PHISH_INT16_ARRAY = 14

e PHISH_INT32_ARRAY =15

e PHISH_INT64_ARRAY = 16

e PHISH_UINTS8_ARRAY =17
e PHISH_UINT16_ARRAY =18
e PHISH_UINT32_ARRAY =19
e PHISH_UINT64_ARRAY =20
e PHISH_FLOAT_ARRAY =21
e PHISH_DOUBLE_ARRAY =22
e PHISH_PICKLE = 23

PHISH_CHAR, PHISH_INT*, PHISH_UINT*, PHISH_FLOAT, and PHISH_DOUBLE are a single character, a
signed integer (of length 8,16,32,64 bits), an unsigned integer (of length 8,16,32,64 bits), a float (typically 4
bytes), and a double (typically 8 bytes).

PHISH_RAW is a string of raw bytes which minnows can format in any manner, e.g. a C data structure
containing a collection of various C primitive data types. PHISH_STRING is a standard C-style
NULL-terminated C-string. The NULL is included in the field.

The ARRAY types are contiguous sequences of int*, uint*, float, or double values, packed one after the other.

PHISH_PICKLE is an option available when using the Python wrapper on the PHISH library to encode arbitrary
Python objects in pickled form as a string of bytes.

The "size" values are only included for PHISH_RAW (# of bytes), PHISH_STRING (# of bytes including
NULL), the ARRAY types (# of values), and PHISH_PICKLE (# of bytes).

The field data is packed into the datum in a contiguous manner. This means that no attention is paid to alignment
of integer or floating point values.

The maximum allowed size of an entire datum (in bytes) is set to a default value of 1024 bytes or 1 Kbyte. This
can be overridden via the set memory command in a PHISH input script or "--set memory" command-line option.

When a datum is sent to another minnow via the MPI version of the PHISH library, MPI flags the message with
an MPI "tag". This tag encodes the receiving minnow's input port and also a "done" flag. Specifically, if the
datum is not a done message, the tag is the receiver's input port (0 to Nport-1). For a done message a value of
MAXPORT is added to the tag. See the discussion of MAXPORT in this section of the manual.

Similarly, the ZMQ version of the PHISH library prepends a "done" flag and port number to each datum.

See the phish_input doc page for a discussion of ports. See the shutdown section of the Minnows doc page for a
discussion of "done" messages.

26

Previous Section - PHISH WWW Site - PHISH Documentation - Next Section

5. Examples

This is the list of PHISH input scripts provided in the example directory of the distribution. Many of them use
minnows which come in 2 flavors in the minnow directory, written in C++ or Python. The scripts can thus be
edited to use all C++ or all Python minnows or a mixture of the two in the same PHISH net. See the comment
lines at the top of each script for instructions on what variables can be defined via command-line arguements to
the bait.py tool.

¢ in.filelist

¢ in.hook

® in.slow

¢ in.wordcount

® in.wrapsink

® in.wrapsource

¢ in.wrapsourcefile
® in.wrapss

in.filelist
This script simply prints a list of files. It uses the filegen and print minnows.

It can process a large corpus of files by specifying one or more directory names as arguments to the filegen
minnow via the variable "files".

Here is an example of how to run the script with bait.py:

python ../bait/bait.py -v files in.* -p ../minnow <in.filelist

in.hook

This script generates a diagram of the various styles of hook connections that can be made between schools of
minnows via the bait.py hook command. It is not meant to be run as a parallel program, only processed by the
bait.py tool.

Here is an example of how to run the script with bait.py:

python ../bait/bait.py -b graphviz <in.hook

The resulting dot file can be visualized via the GraphViz tools.

in.slow

This script prints words from files while using a slowdown minnow to make it operate more slowly. It uses the
filegen, file2words, slowdown, and print minnows.

See the input script for variables that can be set, including the delay invoked by the slowdown minnow via the
variable "delta".

Here is an example of how to run the script with bait.py:

27

http://www.sandia.gov/~sjplimp/phish.html
http://www.graphviz.org

python ../bait/bait.py -v files in.* -v delta 1.0 -p ../minnow <in.slow

in.wordcount

This script performs a word frequency count across a set of input text files, similar to a MapReduce operation. It
uses the filegen, file2words, count, sort, and print minnows, connected as diagramed in this section of the
Introduction.

See the input script for variables that can be set, including the number of file2words and count minnows for
parallelism. The script can process a large corpus of files by specifying one or more directory names as arguments

to the filegen minnow via the variable "files".

Here is an example of how to run the script with bait.py:

python ../bait/bait.py -v files in.* -p ../minnow <in.wordcount

in.wrapsink
This script demonstrates the use of the wrapsink minnow which is used to wrap a non-PHISH application.
Wrapsink passes string datums it receives to any program thru stdin. The script uses the reverse program in the

minnow dir to reverse the name of each file generated by the filegen minnow.

Here is an example of how to run the script with bait.py:

python ../bait/bait.py -v files in.* —-p ../minnow <in.wrapsink

in.wrapsource

This script demonstrates the use of the wrapsource minnow which is used to wrap a non-PHISH application.
Wrapsource invokes the application and reads its output from stdout, a line at a time. The line is converted to a
string datum which is sent downstream to other minnows. The script uses the shell command "lIs *" as its program
and sends its output to the print minnow. Thus a list of filenames in the directory is generated.

Here is an example of how to run the script with bait.py:

python ../bait/bait.py -p ../minnow <in.wrapsource

in.wrapsourcefile

This script demonstrates the use of the wrapsource minnow with its optional file input, which is used to wrap a
non-PHISH application. Wrapsource takes filenames as received datums, and invokes the application for each
one, then reads its output from stdout, a line at a time. The line is converted to a string datum which is sent
downstream to other minnows. The script uses the shell command "wc %s" as its program, where the "%s"
represents the filename that is substituted for each time the program is invoked. It sends its output to the print
minnow. Thus a list of filename sizes is generated.

See the input script for variables that can be set, including the number of wrapsource minnows for parallelism.
The script can process a large corpus of files by specifying one or more directory names as arguments to the

filegen minnow via the variable "files".

Here is an example of how to run the script with bait.py:

python ../bait/bait.py -p ../minnow -v files in.* <in.wrapsourcefile

28

in.wrapss

This script demonstrates the use of the wrapss minnow which is used to wrap a non-PHISH application. Wrapss
takes string datums and passes them to the stdin as lines of input to a running application. It also polls the
application for output written to stdout, which it reads a line at a time. The line is converted to a string datum
which is sent downstream to other minnows. The script uses the echo or reverse programs in the minnow dir as
the application. Thus a list of filenames is printed, in reverse order if desired.

The script can process a large corpus of files by specifying one or more directory names as arguments to the
filegen minnow via the variable "files".

Here is an example of how to run the script with bait.py:

python ../bait/bait.py -v files in.* -p ../minnow <in.wrapss

29

Previous Section - PHISH WWW Site - PHISH Documentation - Next Section

6. Python Interface to PHISH

A Python wrapper for the PHISH library is included in the distribution. This allows a minnow written in Python
to call the PHISH library. The advantage of using Python is how concise the language is, enabling rapid
development and debugging of PHISH minnows and nets. The disadvantage is speed, since Python is slower than
a compiled language and there is an extra layer of callback functions between C++ and Python, when receipt of a
datum makes a callback to a minnow written in Python.

Before using the PHISH library in a Python script, the Python on your machine must be able to find the PHISH
library and wrapper. This is discussed below.

The Python interface to the PHISH library is very similar to the C interface. See this section of the doc pages for a
brief overview. Individual library function doc pages give examples of how to use the Python interface.

Extending Python with the PHISH library

For a Python minnow to use the PHISH library, it must find two files at run-time that are part of PHISH. The first
is the PHISH wrapper. The second is the PHISH library. It must also be able to find other shared libraries that the
PHISH library depends on, e.g. MPI or ZMQ libraries, which is discussed in the next section.

There are two different ways to enable Python to find the two PHISH files.

(1) Add two lines to your shell start-up script.

For csh or tcsh, add lines like these to your .cshrc file:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/phish/python
setenv LD_LIBRARY_PATH $LD_LIBRARY PATH:/home/sjplimp/phish/src

For bash, add lines like these to your .bashrc file:

export PYTHONPATH $PYTHONPATH:/home/tshead/src/phish/python
export LD_LIBRARY_PATH $LD LIBRARY PATH:/home/tshead/build/phish/src

After editing your shell start-up script, be sure to invoke it, e.g. source .cshrc.

Note: On OSX systems, use DYLD_LIBRARY_PATH instead of LD_LIBRARY_PATH.

(2) Add the Python wrapper to the site-packages directory of your installed Python and the PHISH library to a
directory the system looks in to load shared libraries.

The site-packages dir is typically something like /usr/lib/python/site-packages if you are using the system Python,
or /ust/local/lib/python/site-packages if you installed Python yourself.

Lines like these will copy the needed files:

% cp -r /home/sjplimp/phish/python/phish /usr/local/lib/python/site-packages
% cp /home/sjplimp/phish/src/*.so /usr/local/lib

30

http://www.sandia.gov/~sjplimp/phish.html

The latter command will copy all the PHISH shared libraries you have built, including the bait.py tool backends.
The latter is necessary for using bait.py.

You will need to prefix the lines with "sudo" if you need permission to copy into directories owned by root.

Creating a shared MPI or ZMQ library

To use the MPI or ZMQ version of the PHISH library from a Python minnow, a shared-library version of MPI or
ZMQ must also exist, in a place the system can find it. On Linux this is a library file that ends in ".so0", not ".a".
Such a shared library may not normally not built if you installed MPI or ZMQ yourself, but it is easy to do. Here
is how to do it for MPICH, a popular open-source version of MPI, distributed by Argonne National Labs. From
within the mpich directory, type

./configure —--enable-sharedlib=gcc
make
make install

You may need to prepend "sudo" to the last line. The end result should be the file libmpich.so put into
/usr/local/lib. As an alternative to the final make install, you can add the directory the libmpich.so file is in to your
LD_LIBRARY_PATH environment variable, as illustrated above.

To build ZMQ as a shared library, you may need to specify --enable-shared during the configuration process,
which is the default.

Testing the PHISH library from Python
To test if your Python can find all the files it needs to use the PHISH library, launch python and type:
>>> import phish

If you don't get an error, you're good to go.

31

http://www-unix.mcs.anl.gov/mpi

Previous Section - PHISH WWW Site - PHISH Documentation - Next Section

7. Errors

This section discusses error and warning messages generated by the PHISH library and bait.py and bait.py tools.
It also gives tips on debugging the operation of PHISH nets.

7.1 Debugguing PHISH nets 7.2 Error and warning messages from the PHISH library 7.3 Error messages from
bait.py

Debugguing PHISH nets

A PHISH net can be difficult to debug because it may involve many independent running processes exchanging
datums in a complex pattern, and rapid processing of large volumes of data. Here are some ideas that may be
helpful in finding a bug if something goes wrong:

¢ As with any parallel program, running on as few processors as possible (that still exhibit the bug)
simplifies debugging. For a PHISH net, each minnow is a process, but you may be able to reduce the
minnow count via the school command in the PHISH input script.

¢ In principle, a PHISH net should behave similarly whether it is run entirely on a desktop machine, on a
large parallel machine, or on a distributed network. Running all minnows on a single desktop machine is
almost always the easiest mode to debug in.

¢ One or more slowdown minnows can be inserted in a PHISH net to slow down the rate at which datums
are processed.

¢ The print minnow can receive the output of any minnow and print it to the screen. This is done by using
the hook command in a PHISH input script. The output of a minnow can be connected to a print minnow
in addition to other minnows. Also note that hooking a minnow's output port to another input port is
optional, as discussed in this section. This means that you can often debug a PHISH net in stages by
commenting out downstream minnows and then turning them on one at a time.

¢ Printf() or fprintf() statements can be added to a minnow's source code to print messages to the screen or a
file when datums are received, processed, or sent. Doing this stage by stage, beginning with the first
datums read or generated by the PHISH input script, is an effective way to verify that datums are
formatted correctly, and are being sent and received as expected.

Error and warning messages from the PHISH library

When a minnow makes a call to the PHISH library, various error and warning conditions are checked for. If an
error is encountered, a message in the following format is printed to stderr:

PHISH ERROR: Minnow executable ID school-id # global-id: message

where "executable" is the name of executable minnow file (not the full path, just the filename), "school-id" is the
ID of the minnow as specified in the PHISH input script, "global-id" is the global-ID of the minnow, and message
is the error message. Each minnow has a global ID from 0 to Nglobal-1, where Nglobal is the total number of
minnows in the net specified by the PHISH input script. This supplementary information is helpful in debugging
which minnow generated the error message.

If a warning condition is detected, a similarly-formatted message is printed, with ERROR replaced by
WARNING.

32

http://www.sandia.gov/~sjplimp/phish.html

Note that by default, an error condition will cause an abort, shutting-down the entire PHISH net. However, it is
possible for a minnow to explicitly cancel the abort. In this case, the PHISH library call that triggered the error
will return a non-zero integer error code to indicate that an error occurred. See the documentation for
phish_abort() for more information on how to cancel an abort.

The messages should be self-explanatory. See the doc page for the individual">>PHISH library, or the doc pages
for PHISH library functions for relevant details. If necessary, the library source code in src/phish-common.cpp or
src/phish-mpi.cpp or src/phish-zmq.cpp can be searched for the message text.

Error messages from bait.py

The bait.py tool is used to process PHISH input scripts and optionally run them. Any errors that bait.py
encounters in the input script generate error messages that should be self-explanatory.

See the doc page for the individual">>bait.py tool, or the doc pages for PHISH input script commands for
relevant details. If necessary, the Python source code in bait/bait.py can be searched for the message text.

33

PHISH WWW Site - PHISH Documentation - Bait.py Commands

hook command
Syntax:
hook sendID:outport style recvID:inport

¢ sendID = ID of minnows which will send datums

e outport = output port datums are written to by sending minnows (default = 0)

¢ style = communication pattern between sending and receiving minnows

® minnows = single or paired or hashed or roundrobin or direct or bcast or chain or ring or publish or
subscribe

¢ recvID = ID of minnows which will receive datums

¢ inport = input port datums are read from by receiving minnows (default = 0)

Examples:

hook 1 single 2
hook 2:1 hashed 2:1

Description:

Hook is a command that can be used in a PHISH input script which is recognized by the bait.py setup program. It
determines how the output from a minnow in one school is routed to the input of a minnow in another school
when the PHISH program is run. In PHISH lingo, a "minnow" is a stand-alone application which makes calls to
the PHISH library to exchange data with other PHISH minnows.

The topology of communication patterns between minnows defined by a series of hook commands defines how
multiple schools of minnows are harnessed together to perform a desired computational task. It also defins how
parallelism is exploited by the schools of minnows.

A hook is made between two schools of minnows, one school sends datums, the other set receives them. Each
school may contain one or more minnows, as defined by the school command. Since a datum is typically sent
from a single minnow to a single receiving minnow, the style of the hook determines which minnow in the
sending schoold communicates with which minnow in the receiving school.

Each minnow can send datums through specific output ports. If a minnow defines N output ports, then they are
numbered 0 to N-1. Likewise a minnow can receive data through specific input ports. If a minnow defines M
input ports, then they are numbered 0 to M-1. Ports enable a minnow to have multiple input and output hooks, and
for a PHISH input script to hook a single set of minnows to multiple other sets of minnows with different
communication patterns. For example, a stream of data might be processed by a minnow, reading from its input
port 0, and writing to its output port 0. But the minnow might also look for incoming datums on its input port 1,
that signify some kind of external message from a "control" minnow triggered by the user, e.g. asking the minnow
to print out its current statistics. See the Minnows doc page for more information about how minnows can define
and use ports.

The specified sendID and outport are the minnows which will send datums through their output port outport. If
outport is not specified with a colon following the sendID, then a default output port of 0 is assumed.

The specified recvID and inport are the minnows which will receive the sent datums through their input port
inport. If inport is not specified with a colon following the recvID, then a default input port of O is assumed.

34

http://www.sandia.gov/~sjplimp/phish.html

Both sendID and recvID must be the IDs of minnows previously defined by a minnow command.

Note that there can be multiple hook commands which hook the same sendID and same (or different) outport to
different recvID:inport minnows. Likewise, there can be multiple hook commands which hook the same recvID
and same (or different) inport to different sendID:outport minnows. There can even be multiple hook commands
which hook the same sendID and same (or different) outport to the same recvID:inport minnows.

Also note that for all of the styles (except as noted below), the sendID and recvID can be the same, meaning a set
of minnows will send datums to themselves.

These are the different hook styles supported by the hook command.

The single style hooks N sending minnows to one receiving minnow. N = 1 is allowed. All the sending minnows
send their datums to a single receiving minnow.

The paired style hooks N sending minnows to N receiving minnows. N = 1 is allowed. Each of the N sending
minnows sends it datums to a specific partner receiving minnow.

The hashed style hooks N sending minnows to M receiving minnows. N does not have to equal M, and either or
both of N, M =1 is allowed. When any of the N minnows sends a datum, it must also define a value for the
PHISH library to hash on, which will determine which of the M receiving minnows it is sent to. See the doc page
for the phish_send_hashed() library function for more explanation of how this is done.

The roundrobin style hooks N sending minnows to M receiving minnows. N does not have to equal M, and either
or both of N, M =1 is allowed. Each of the N senders cycles through the list of M receivers each time it sends a
datum, in a roundrobin fashion. a different. If the receivers are numbered 0 to M-1, a sender will send its first
datum to 0, its 2nd to 1, its Mth to M-1, its M+1 datum to O, etc.

The direct style hooks N sending minnows to M receiving minnows. N does not have to equal M, and either or
both of N, M =1 is allowed. When any of the N minnows sends a datum, it must also choosed a specific one of
the M receiving minnows to send to. See the doc page for the phish_send_direct() library function for more
explanation of how this is done.

The bcast style hooks N sending minnows to M receiving minnows. N does not have to equal M, and either or
both of N, M =1 is allowed. When any of the N minnows sends a datum, it sends a copy of it once to each of the
M receiving minnows.

The chain style configures N minnows as a 1-dimensional chain so that each minnow sends datums to the next
minnow in the chain, and likewise each minnow receives datums from the previous minnow in the chain. The first
minnow in the chain cannot receive, and the last minnow in the chain cannot send. N > 1 is required. The sendID
must also be the same as the recvID, since the same set of minnows is sending and receiving.

The ring style is the same as the chain style, except that the N minnows are configured as a 1-dimensional loop.
Each minnow sends datums to the next minnow in the loop, and likewise each minnow receives datums from the
previous minnow in the loop. This includes the first and last minnows. N > 1 is required. The sendID must also be
the same as the recvID, since the same set of minnows is sending and receiving.

The following hook styles will be supported in future versions of PHISH:
The publish and subscribe styles are different in that they do not hook two sets of minnows to each other. Instead

they hook one set of minnows to an external socket, either for writing or reading datums. The external socket will
typically be driven by some external program which is either reading from the socket or writing to it, but the

35

running PHISH program requires no knowledge of that program. It could be another PHISH program or some
completely different program.

The publish style hooks N sending minnows to a socket. N = 1 is allowed. The recvID:inport argument is replaced

with a TCP port #, which is an integer, e.g. 25. When each minnow sends a datum it will "publish” the bytes of
the datum to that TCP port, on the machine the minnow is running on. In socket lingo, "publishing" means that
the sender has no communication with any processes which may be reading from the socket. The sender simply
writes the bytes and continues without blocking. If no process is reading from the socket, the datum is lost.

The subscribe style hooks M receiving minnows to a socket. M = 1 is allowed. The sendID:outport argument is
replaced with a hostname and TCP port #, separated by a colon, e.g. www.foo.com:25. Each minnow receives
datums by "subscribing" to the TCP port on the specified host. In socket lingo, "subscribing" means that the
receiver has no communication with any process which is writing to the socket. The receiver simply checks if a
datum is available and reads it. If a new datum arrives before the receiver is ready to read it, the datum is lost.

Note that multiple processes can publish to the same physical socket, and likewise multiple processes can

subscribe to the same physical socket. In the latter case, each receiving process reads the same published datum.

Restrictions:

The publish and subscribe styles have not been implemented yet by any of the PHISH library versions.
Related commands:

minnow, school

Default: none

36

PHISH WWW Site - PHISH Documentation - Bait.py Commands

minnow command

Syntax:

minnow ID exefile argl arg2 ...
¢ [D = ID of minnow
¢ exefile = executable file name

e argl,arg2 ... = arguments to pass to executable

Examples:

minnow 1 count
minnow 5 filegen ${files}
minnow myapp app 3 fl.txt 4.0

Description:

Minnow is a command that can be used in a PHISH input script which is recognized by the bait.py setup program.
It defines a minnow application and assigns it an ID which can be used elsewhere in the input script. In PHISH
lingo, a "minnow" is a stand-alone application which makes calls to the PHISH library to exchange data with
other PHISH minnows.

The ID of the minnow can only contain alphanumeric characters and underscores.

The exefile is the name of the executable which will be launched when the PHISH program is run. It should reside
in one of the directories specified by the -path command-line argument for bait.py.

The argl, arg2, etc keywords are arguments that will be passed to the exefile program when it is launched.
Restrictions: none
Related commands:

school

37

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

school command

Syntax:

school minnow-ID Np keyword value ...

¢ minnow-ID = ID of minnow
¢ Np = # of instances of this minnow to launch
¢ zero or more keyword/value pairs can be appended

possible keywords = bind
bind values = N1,Cl N2,C2
N1,Cl = node ID, core ID for first minnow
N2,C2 = node ID, core ID for second minnow, etc
see discussion below for wildcard format

Examples:

school 3 10

school countapp 1

school countapp 1 host foo.locallan.gov
school myApp 5 bind *,0

school myApp 2 bind 0,0 3,2

school myApp 5 bind 0*1,* 2,0

Description:

School is a command that can be used in a PHISH input script which is recognized by the bait.py setup program.
It determines how a minnow application will be launched when the PHISH program is run. In PHISH lingo, a
"minnow" is a stand-alone application which makes calls to the PHISH library to exchange data with other
PHISH minnows.

The minnow-ID is the ID of the minnow, as previously defined by a minnow command.

Np is the number of instances of this minnow that will be launched when the PHISH program is run.

The bind keyword allows you to control what machine or what nodes and cores of a multi-core machine that each
instance of a minnow will run on.

There are 3 ways to do this assignment in PHISH; each is discussed below.

¢ via the mpirun command (only possible for the MPI backends of bait.py)

e via the bindorder, pernode, and numnode settings of the bait.py set command or bait.py --set or -s
command-line switches

® via the bind options of the bait.py school command, as illustrated above

The examples below use a PHISH input script with 2 schools of minnows, the first with a school Np setting of 12,
the second with 8, for a total of 20 minnows or processes.

Here is how binding works for the MPI backends to the bait.py command.

38

http://www.sandia.gov/~sjplimp/phish.html

If bindorder is unset (or set to 0) and no bind keywords are used with the school command, then minnows will be
assigned to the nodes by the mpirun command. By default this is typically first by core, then by node. E.g. on a
machine with quad-core nodes, the 12 instances of the first minnow would run on the 12 cores of the first 3 nodes,
and the 8 instances of the second minnow on the 8 cores of the last 2 nodes, since your job will be allocated 5
nodes when mpirun requests 20 processes for the entire PHISH program. The mpirun commands for different
versions of MPI have options that can be used to control the assignment, e.g. to assign first by node, then by core.
See the man pages for mpirun for details.

The other 2 methods of assignment will override any options to the mpirun command.

If bindorder is set to 1 or 2, and no bind keywords are used with the school command, then minnows are assigned
to cores in the following manner, using the pernode and numnode settings of the bait.py set command.

If bindorder is set to 1, then minnows are assigned in a double loop, with the inner loop over cores from O to
pernode-1 and the outer loop over nodes from 0 to numnode-1. E.g. on a machine with quad-core nodes, the 12
instances of the first minnow would run on the 12 cores of the first 3 nodes, and the 8 instances of the second
minnow on the 8 cores of the last 2 nodes, since your job will be allocated 5 nodes when mpirun requests 20
processes for the entire PHISH program. This assumes that you have set pernode to 4 and numnode to 5; the latter
is the default.

If bindorder is set to 2, then minnows are assigned in a double loop, with the inner loop over nodes from O to
numnode-1 and the outer loop over cores from 0 to pernode-1. E.g. on a machine with quad-core nodes, the 12
instances of the first minnow would be spread across all 5 nodes (3 on the first 2, 2 on the last 3), as would the 8
instances of the second minnow (1 on the last 2, 2 on the last 3), since your job will be allocated 5 nodes when
mpirun requests 20 processes for the entire PHISH program. This again assumes that you have set pernode to 4
and numnode 10 5.

But if you were allocated 12 nodes and are only running 20 minnows, you could set numnode to 12 and bindorder
to 2. The 12 instances of the first minnow would be spread across all 12 nodes (1 each), and the 8 instances of the
second minnow would be spread across the first 8 nodes (1 each).

If the bind keyword is used with any school command, it must be used with all of them. If it is used, then each
minnow is assigned explicitly to a specific node and core, so that the methods of assignment just described are
overridden. However if wildcards are used in the explicit assignments, then the bindorder, pernode, and numnode
settings are used, as explained below.

The bind keyword takes one or more node/core ID pairs as values. Node IDs must be from 0 to numnode-1
inclusive. Core IDs must be from O to pernode-1 inclusive. Each node and core ID can represent a range of
consecutive node and core IDs if it is specified using a wildcard. This takes the form "*" or "*n" or "n*" or
"m*n". If N = numnode or pernode for node or core count, then an asterisk with no numeric values means all IDs
from O to N-1 (inclusive). A leading asterisk means all IDs from O to n (inclusive). A trailing asterisk means all
IDs from n to N-1 (inclusive). A middle asterisk means all IDs from m to n (inclusive). Specifying an ID that is <
0 or >= N is an error.

For each bind value an ordered list of explicit node/core IDs is generated, expanding each value with wildcards as
needed. If both the node and core ID have a wildcard then the value is expanded in a double loop. The ordering of
the double loop is controlled by the bindorder setting as explained above: inner/outer = core/node for bindorder 1,
inner/outer = node/core for bindorder 2.

For example, on a machine with 4 cores per node (pernode = 4), and 3 nodes allocated for your PHISH run
(numnode = 3), this command

school myApp 5 bind 1*,* 0,2%

39

would generate the following list of 10 node/core ID pairs:
(1,0, (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (0,2) (0,3)

The minnow instances are assigned to this list in order. L.e. the first minnow instance will run on the 1st node/core
ID, the 2nd instance of the minnow on the 2nd node/core ID, etc.

If the number of instances Ni < the length of the list, then only the first Ni node/core ID pairs are used. If Ni >
length of the list, then the list is looped over until all minnow instances are assigned. Note that this can result in
multiple minnows being assigned to the same core.

Binding for the ZMQ backends to the bait.py command works the same way as for the MPI backends, with 3
differences.

(1) The first method described above, i.e. letting the mpirun command assign minnows to physical processors, is
not an option. One of the other 2 methods must be used.

(2) Once a minnow has been assigned to a node ID and core ID, the core ID is ignored.

(3) The node ID is converted to a machine hostname. The set of possible hostnames is determined by the variable
hostnames command which must be specified either in the input script or as a command-line option to the bait.py
tool. As described on the variable doc page, a hostname can be a machine name (foo.localnet.gov) or a node name
on a parallel machine (rs2001).

The ZMQ backend launches each minnow on a specific hostname. If the host is a multi-core node, then it may
launch multiple minnows on the node, relying on the node operating system to distribute the minnow processes
efficiently across cores.

As described above each node ID is a value N from 0 to numnode-1 inclusive. This value is used to index into the
list of hostnames. If the list length L is smaller than N, then the index = N mod L. E.g. if the node ID N is 10 and
the hostname list is of length 4, then the node maps to the 3rd hostname in the list (index = 2).

Restrictions: none

Related commands:

minnow, set

Default:

If a school command is not specified for a particular minnow, then Np is assumed to be 1, so that one instance of
the minnow is launched when the PHISH program is run.

40

PHISH WWW Site - PHISH Documentation - Bait.py Commands

set command
Syntax:
set keyword value

¢ keyword = memory or self or queue or safe or port or pernode or numnode or bindorder

memory value = N
N = max size of datum in Kbytes
self value = S
S = allow queueing of this many messages to self
queue value = Q
Q = allow queueing of this many previously received messages
safe value = M
M = send a datum "safely" every this many sends
pernode value = Nc
Nc = # of cores per node to use when binding minnows to processors
numnode value = Nn
Nn = # of nodes to use when binding minnows to processors
bindorder value = B
B = 0 = no bind order is imposed
B = 1 = perform binding by looping over cores, then over nodes
B = 2 = perform binding by looping over nodes, then over cores

high-water-mark value = N N = maximum number of outgoing messages to queue to a recipient

Examples:

set memory 1024
set self 20
set safe 10
set bindorder 2

Description:

Set is a command that can be used in a PHISH input script which is recognized by the bait.py setup program. It
resets default values that are used by the bait.py program as it reads and processes commands from the PHISH
input script.

The memory keyword sets the maximum length of datums that are exchanged by minnows when a PHISH
program runs. Send and receive buffers for datums are allocated by the PHISH library. The N setting is in Kbytes,
so that N = 1024 is 1 Mbyte, and N = 1048576 is 1 Gbyte. The default is N = 1, since typical PHISH minnows
send and receive small datums.

The self keyword sets the size of a queue used to buffer datums sent by a minnow to itself. In most PHISH input
scripts sending to self this never happens, but it is allowed. Since messages to self are received with the highest
priority by PHISH library functions such as phish_loop() and phish_probe() that receive messages, it is also
typical that this queue often needs to be no larger than S = 1 message, since $S refers to the maximum number
of outstanding (sent, but not yet received) messages. But it can be set larger if a minnow may perform several
sends (to itself) before receiving a new message.

The queue keyword sets the size of a queue used to buffer previously received datums when a minnow uses the

41

http://www.sandia.gov/~sjplimp/phish.html

phish_queue() and phish_dequeue() library calls, so that it can process a received datum later, after receiving
other datums. The Q setting determines the maximum number of datums that can be queued at one time in this
manner.

These 3 settings determine how much memory PHISH allocates. There are always 2 buffers of size memory =
NS, one for sending, one for receiving. There are at most self = S buffers, each of size N, allocated for self
messages, and likewise at most queue = Q buffers, each of size N, allocated for queued messages. These
buffers for self and queued messages are only allocated if they are needed as the PHISH script runs and messages
are processed. Thus the overall memory footprint of the PHISH library is typically tiny, unless you set these
parameters to large values.

The safe keyword is only relevant for the MPI version of the PHISH library. It causes the library to use a "safe"
MPI_Ssend() call every Mth time it sends a datum, rather than the normal MPI_Send() function. If M = 0, "safe"
sends are never performed.

Safe in this context refers to messages being dropped if the receiving process is backed up. This can happen if a
minnow in a PHISH school of minnows is significantly slower to process datums than all the others, and a large
number of datums are being continually sent to it. When a safe send is done, an extra handshake is performed
between the sender and receiver to insure the receiver is ready for the datum. Doing this often enough should
effectively throttle the incoming messages to a slow minnow, so an overflow does not occur. Note that the extra
handshaking between the MPI processes slows down the rate at which small messages are exchanged, so you
should not normally use this setting unless MPI errors arise, e.g. due to "too many unexpected messages". A good
setting for M depends on how many minnows are sending to the overflowing minnow. Typical MPI
implementations allow tens of thousands of small incoming messages to be queued, so M = 1000 or 10000 is fine
if a single minnow is sending to the minnow. If 10 minnows are sending to the overflowing minnow, then M
should be reduced by a factor of 10.

The self keyword is only relevant for the MPI version of the PHISH. A PHISH net described by an input script
can include hook commands that route datums from a school back to itself, e.g. in some kind of looping fashion.
This means that a procesor can send messages to itself. When this occurs the PHISH library uses a buffered
MPI_Bsend() call. This avoids a possible hang due to a blocking send, which can happen in some MPI
implementations. The value of S determines how big a buffer is reserved for the buffered send operations. It
effectively means how many messsages (of maximum size, as determined by the memory keyword above), can be
sent to self and buffered before they are received. In most cases the small default setting is sufficient, but if a
minnow can send many messages to itself before reading and processing them, you may need to boost this setting
to avoid an MPI error or hang.

The pernode, (numnode, and bindorder keywords are used to tailor the assignment of minnows to physical
processors when the PHISH program is run. See the discussion of the bind option for the bait.py school command
for more details on this topic.

Note that the default setting of numnode is equal to the total number of minnow instances Np in a PHISH input
script, divided by the pernode setting. If Np is not evenly divisible by pernode, then numnode is incremented by
one so that numnode * pernode >= Np.

The high-water-mark keyword only applies to the ZMQ version of PHISH. It sets the maximum number of
outgoing messages that can be queued to a given recipient. Messages are queued when a recipient is receiving
messages more slowly than the sender is sending them. Once the number of queued messages reaches the high
water mark, the sender will block until the queue begins to empty. Note that messages are queued on a
per-recipient rather than a per-port basis, so the memory used for queuing can vary dramatically depending on the
size of the downstream school.

42

Restrictions: none

Related commands:

Any setting can be made either in a PHISH input script or via the --sef command-line argument of the bait.py tool.
Default:

The default settings are memory = 1 (1 Kbyte), self = 8, queue = 8, safe = 0, pernode = 1, numnode = # of
minnows / pernode, and bindorder = 0.

43

PHISH WWW Site - PHISH Documentation - Bait.py Commands

variable command

Syntax:
variable ID strl str2
Examples:

variable files fl.txt f2.txt f3.txt
variable N 100

Description:

Variable is a command that can be used in a PHISH input script which is recognized by the bait.py setup program.
It creates a variable with name /D which contains a list of one or more strings. The variable can be used elsewhere
in the input script. The substitution rules for variables are described by the bait.py doc page.

The ID of the variable can only contain alphanumeric characters and underscores. The strings can contain any
printable character.

A variable can only be defined once, i.e. IDs must be unique. The one exception is for variables defined as
command-line arguments to the bait.py command. In this case, a variable command in the input script is ignored
if the variable was already set in the command line. This allows an input script to set default values for variables
that can be overridden by command-line settings.

There is one variable that must be set when using the ZMQ backend to bait.py. Its ID is "hostnames" and it should
be set to the list of hostnames on which to launch the PHISH job. If you are running on a large parallel machine, it
is typically the names of the nodes assigned to your job by the batch allocator. If you are running on your desktop,
it can be just the hostname of your machine. E.g.

variable hostnames node3 node4 nodell
variable hostnames mybox
variable hostnames mybox otherbox.localnet.gov

This variable is used by the ZMQ backend to determine what host to launch each minnow on. See the bind option
of the bait.py school command for further discussion on how to assign specific minnows to specific hosts.

Restrictions: none
Related commands:

Any variable can be set either in a PHISH input script or via the --variable or -v command-line arguments of the
bait.py tool.

Default: none

44

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

count minnow

Syntax:

count
¢ this minnow takes no arguments

Examples:

count
Description:

Count is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a stand-alone
application which makes calls to the PHISH library to exchange data with other PHISH minnows.

The count minnow counts occurrences of strings it receives. When it shuts down it sends unique words and their
associated counts.

Ports:

The count minnow uses one input port 0 to receive datums and one output port O to send datums.

Operation:

When it starts, the count minnow calls the phish_loop function. Each time a datum is received on input port 0, its
first field must be a string. Unique strings are stored in an internal table, using the string as a "key". This is done
via an STL "map" in the C++ version of count, and via a "dictionary" in the Python version of count. The value
associated with each key is a count of the number of times the string has been received.

The count minnow shuts down when its input port is closed by receiving a sufficient number of "done" messages.
This triggers the count minnow to send a series of datums to its ouput port 0, one for each unique word it has
received. Each datum contains two fields. The first field is the count, the second is the string.

Data:

The count minnow must receive single field datums of type PHISH_STRING. It sends two-field datums of type
(PHISH_INT32, PHISH_STRING).

Restrictions: none
Related minnows:

sort

45

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

echo program
Syntax:
echo
e this program takes no arguments
Examples:

wrapsink "echo"
wrapss "echo"

Description:

Echo is a stand-along non-PHISH program that can be wrapped with a PHISH minnow so it can be used in a
PHISH program. In PHISH lingo, a "minnow" is a stand-alone application which makes calls to the PHISH
library to exchange data with other PHISH minnows.

The echo program simply reads lines from stdin and echoes them to stdout. PHISH minnows that can wrap the
echo program include the wrapsink and wrapss, which convert stdin/stdout into the receiving and sending of
datums.

Ports:

The echo program does not call the PHISH library and thus does not use PHISH ports directly. But if it is
wrapped with the wrapsink or wrapss minnows then they use one input port O to receive datums which are then
read by the echo program via stdin. If it is wrapped with the wrapss minnow then it uses one output port 0 to send
datums that are written to stdout by the echo program.

Operation:

The echo program simply reads a line of input from stdin and writes it to stdout. See the doc pages for the
wrapsink or wrapss minnows for how they convert datums they receive to lines of text that the echo program can
read from stdin, and how they convert lines of text that the echo program writes to stdout to datums they send.
Data:

The echo program does not call the PHISH library and thus does not deal directly with PHISH data types.

Restrictions:

The C++ version of the echo program allocates a buffer of size MAXLINE = 1024 bytes for reading a line from
stdin. This can be changed (by editing minnow/echo.cpp) if longer lines are needed.

Related programs:

reverse

46

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

file2words minnow

Syntax:
file2words
¢ this minnow takes no arguments

Examples:

file2words

Description:

File2words is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a
stand-alone application which makes calls to the PHISH library to exchange data with other PHISH minnows via

its input and output ports.

The file2words minnow open a file, reads its contents, parses it into words separated by whitespace, and outputs
each word.

Ports:

The file2words minnow uses one input port O to receive datums and one output port O to send datums.
Operation:

When it starts, the file2words minnow calls the phish_loop function. Each time a datum is received on input port
0, its first field is treated as a filename. The file is opened and its contents are read a line at a time. Each line is
parsed into words, separated by whitespace. Each word is sent as an individual datum to its output port 0. The file

is closed when it has all been read.

The filewords minnow shuts down when its input port is closed by receiving a sufficient number of "done"
messages.

Data:

The file2words minnow msut receive single field datums of type PHISH_STRING. It also sends single field
datums of type PHISH_STRING.

Restrictions:

The C++ version of the file2words minnow allocates a buffer of size MAXLINE = 1024 bytes for reading a line
from a file. This can be changed (by editing minnow/file2words.cpp) if longer lines are needed.

It also assumes the filenames it receives are for text files, so that "whitespace" as defined in C or Python makes
sense as a separator.

Related minnows:

47

http://www.sandia.gov/~sjplimp/phish.html

filegen

48

PHISH WWW Site - PHISH Documentation - Bait.py Commands

filegen minnow
Syntax:
filegen pathl path2 ...
¢ path1,path2,... = one or more file or directory names

Examples:

filegen al.txt a2.txt
filegen dirl dir2 ... dirl00

Description:
Filegen is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a stand-alone
application which makes calls to the PHISH library to exchange data with other PHISH minnows via its input and

output ports.

The filegen minnow generates a list of filenames from the filenames and directory names given to it as arguments.
Each directory is opened (recursively) and scanned to generate filenames.

Ports:

The filegen minnow uses no input ports. It uses one output port O to send datums.

Operation:

When it starts, the filegen minnow loops over its input arguments. If the argument is a file, it sends the filename
to its output port 0. If the argument is a directory name, it reads all the filenames in the directory and sends each
one to its output port 0. If any entry in the directory is itself a directory, then it recurses and generates sends
additional filenames to its output port 0.

When it has processed all its input arguments, the filegen minnow calls the phish_exit function to shut down.
Data:

Each datum the filegen minnow sends has a single field of type PHISH_STRING.

Restrictions: none

Related minnows:

file2words

49

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_callback() function

C syntax:
void phish_callback(void (*alldonefunc) (), void (*abortfunc) (int¥*))
C examples:

#include "phish.h"
phish_callback (mydone,NULL) ;
phish_callback (NULL, myabort) ;
phish_callback (mydone, myabort) ;

C++ syntax:
void callback (void (*alldonefunc) (), void (*abortfunc) (int*))
C++ examples:

#include "phish.hpp"
phish::callback (mydone, NULL) ;
phish::callback (NULL, myabort) ;
phish::callback (mydone, myabort) ;

Python syntax:
def callback (alldonefunc, abortfunc)
Python examples:

import phish

phish.callback (mydone, None)
phish.callback (None,myabort)
phish.callback (mydone, myabort)

Description:

This is a PHISH library function which can be called from a minnow application. In PHISH lingo, a "minnow" is
a stand-alone application which makes calls to the PHISH library.

This function allows you to define 2 callback functions which the PHISH library will use to call back to the
minnow under specific conditions. If they are not set, which is the NULL default, then the PHISH library does not
make a callback.

The alldonefunc() function is used to specify a callback function invoked by the PHISH library when all the
minnow's input ports have been closed. The callback function should have the following form:

void alldonefunc () { }

or

def alldonefunc ()

50

http://www.sandia.gov/~sjplimp/phish.html

in Python,

where "alldonefunc" is replaced by a function name of your choice. A minnow might use the function to print out
some final statistics before the PHISH library exits. See the phish_close function and shutdown section of the
Minnows doc page, for more discussion of how a school of minnows closes ports and shuts down.

The abortfunc() function is used to specify a callback function that invoked by the PHISH library when
phish_abort is called, either by the minnow, or internally by the PHISH library.

The callback function should have the following form in C or C++:

void abortfunc(int* cancel) { }

or

def abortfunc (cancel)

in Python,

where "abortfunc"” is replaced by a function name of your choice.

As explained on the phish_error doc page, the phish_abort() function may be called by the minnow directly, or
implicitly by a call to phish_error(), and causes the minnow itself and the entire school of PHISH minnows to
exit. If this callback is defined, the PHISH library will call the function before exiting. This can be useful if the
minnow wishes to close files or otherwise clean-up. The function should not make additional calls to the PHISH

library, as it may be in an invalid state, depending on the error condition.

The callback function may optionally set the "cancel" flag to a nonzero value to prevent the PHISH library from
aborting the process.

Restrictions:

This function can be called anytime. It is the only PHISH library function that can be called before phish_init,
which can be useful to perform needed clean-up via abortfunc() if phish_init() encounters an error.

Related commands:

phish_error, phish_abort

51

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_check() function
C syntax:

void phish_check ()
C examples:
phish_check () ;
C++ syntax:

void check ()

C++ examples:
phish::check () ;
Python syntax:

def check ()
Python examples:

import phish
phish.check ()

Description:

This is a PHISH library function which can be called from a minnow application. In PHISH lingo, a "minnow" is
a stand-alone application which makes calls to the PHISH library.

This function is typically the final function called by a minnow during its setup phase, after the minnow has
defined its input and output ports via the phish_input and phish_output functions. It must be called before any
datums are received or sent to other minnows.

The function checks that the input and output ports defined by the minnow are consistent with their usage in the
PHISH input script, as processed by the bait.py tool.

Specifically, it does the following:
¢ checks that required input ports are used by the script

¢ checks that no ports used by the script are undefined by the minnow
® opens all ports used by the script so that data exchanges can begin

Restrictions:

This function must be called after input and output ports have been defined, and before any datums are received
or sent to other minnows.

Related commands:

52

http://www.sandia.gov/~sjplimp/phish.html

phish_input, phish_output

53

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_error() function
phish_warn() function

phish_abort() function

C syntax:

#include "phish.h"

void phish_error (char *str)
void phish_warn (char *str)
void phish_abort ()

C examples:
phish_error("Bad datum received"); phish_warn("May overflow internal buffer"); phish_abort();

C++ syntax:

void phish::error (char *str)
void phish::warn(char *str)
void phish::abort ()

C++ examples:

#include "phish.hpp"

phish::error ("Bad datum received");
phish::warn("May overflow internal buffer");
phish::abort();

Python syntax:

def error(str)
def warn(str)
def abort ()

Python examples:

import phish

phish.error ("Bad datum received")
phish.warn ("May overflow internal buffer")
phish.abort ()

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"
is a stand-alone application which makes calls to the PHISH library.

These functions print error or warning messages. The phish_error() and phish_abort() functions also cause a
PHISH program and all of its minnows to exit.

These functions can be called by a minnow, but are also called internally by the PHISH library when error
conditions are encountered.

54

http://www.sandia.gov/~sjplimp/phish.html

Also note that unlike calling phish_exit, these functions do not close a minnow's input or output ports, or trigger
"done" messages to be sent to downstream minnows. This means that no other minnows are explicitly told about
the failed minnow. However, see the discussion below about the phish_abort() function and its effect on other
minnows.

The phish_error() function prints the specified character string to the screen, then calls phish_abort().

The error message is printed with the following format:
PHISH ERROR: Minnow executable ID school-id # global-id: message

where "executable" is the name of executable minnow file (not the full path, just the filename), "school-id" is the
ID of the minnow as specified in the PHISH input script, "global-id" is the global-ID of the minnow, and message
is the error message. Each minnow has a global ID from 0 to Nglobal-1, where Nglobal is the total number of
minnows in the net specified by the PHISH input script. This supplementary information is helpful in debugging
which minnow generated the error message.

The phish_warn() function prints the specified character string to the screen, in the same format as phish_error(),
execpt ERROR is replaced by WARNING. phish_abort() is not invoked and control is simply returned to the
calling minnow which can continue executing.

The phish_abort() function invokes the user-specified abort callback function defined via phish_callback. If the
callback function does not cancel the abort, the minnow exits.

For the MPI version of the PHISH library, phish_abort() invokes MPI_Abort(), which should force all minnows
in the PHISH school to exit, along with the "mpirun" or "mpiexec" command that launched the net.

For the ZMQ version of the PHISH library, phish_abort() behavior is undefined. We intend that in future versions
of PHISH, all minnows in the net will exit.

Restrictions: none
Related commands:

phish_exit

55

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_query() function

C syntax:

int phish_query (char *keyword, int flagl, int flag2)

void phish_set (char *keyword, int flagl, int flag2)

¢ keywords for query = "idlocal" or "nlocal" or "idglobal" or "nglobal" or "inport/status" or

"inport/nconnect"” or "inport/nminnows" or "outport/status" or "outport/nconnect” or "output/nminnows"

or "outport/direct"

idlocal
flagl,flag2 =
nlocal
flagl,flag2 =
idglobal
flagl, flag2 =
nglobal
flagl, flag2 =
inport/status
flagl = input
flag2 = ignore
inport/nconnect
flagl = input
flag2 = ignore
inport/nminnow
flagl = input

flag2 = connection # on that port (0 to Nconnect-1)

outport/status
flagl = output
flag2 = ignore

outport/nconnect
flagl = output
flag2 = ignore

outport/nminnow
flagl = output

flag2 = connection # on that port

outport/direct
flagl = output

ignored
ignored
ignored
ignored

port # (0 to Maxport-1)
d

port # (0 to Maxport-1)
d

port # (0 to Maxport-1)

port # (0 to Maxport-1)
d

port # (0 to Maxport-1)
d

port # (0 to Maxport-1)

port # (0 to Maxport-1)

flag2 = ignored

¢ keywords for set = "ring/receiver"

ring/receiver
flagl = input

port # (0 to Maxport-1)

flag2 = receiver ID (0 to Nring-1)

C examples:

#include "phish.h"

int nlocal = phish_guery("nlocal",0,0);

int nrecv = phish_query ('
phish_set ("ring/receiver"

C++ syntax:

int query (char *keyword,

'outport/direct",2,0);
', 0,3);

int flagl, int flag2)

(0 to Nconnect-1)

56

http://www.sandia.gov/~sjplimp/phish.html

void set (char *keyword, int flagl, int flag2)
C++ examples:

#include "phish.hpp"

int nlocal = phish::query("nlocal",0,0);

int nrecv = phish::query ("outport/direct",2,0);
phish::set ("ring/receiver",0,3);

Python syntax:

def query(str,flagl, flag2)
def set(str,flagl,flag2)

Python examples:

import phish

nlocal = phish.query("nlocal",0,0)

nrecv = phish.query ("outport/direct",2,0)
phish.set ("ring/receiver", 0, 3)

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"
is a stand-alone application which makes calls to the PHISH library.

These functions are used to query and reset information stored internally in PHISH. New keywords may be added
as usage cases arise.

For phish_query, the "idlocal", "nlocal", "idglobal", and "nglobal" keywords return info about the minnow and its
relation to other minnows running the PHISH program. These keywords ignore the flagl and flag2 values; they
can simply be set to 0.

A PHISH program typically includes one or more sets of minnows, as specified in a PHISH input script. Each
minnow in each set is an individual process. In a local sense, each minnow has a local-ID from 0 to Nlocal-1
within its set, where Nlocal is the number of minnows in the set. Globally, each minnow has a global-ID from 0 to
Nglobal-1, where Nglobal is the total number of minnows. The global-IDs are ordered by set, so that minnows
within each set have consecutive IDs. These IDs enable the PHISH library to orchestrate communication of
datums between minnows in different sets. E.g. when running the MPI version of the PHISH library, the
global-ID corresponsds to the rank ID of an MPI process, used in MPI_Send() and MPI_Recv() function calls.

"non

For phish_query, the "inport/status”, "inport/nconnect", and "inport/nminnows" keywords return info about the
input ports that connect to the minnow by which it receives datums from other minnows. Likewise, the

"outport/status"”, "outport/nconnect”, "output/nminnows", and "output/direct”" keywords return info about the
output ports the minnow connects to by which it sends datums to other minnows.

All of these keywords require the use of flag! to specify the input or output port, which is a number from O to
Maxport-1. Some of them, as noted below, require the use of flag?2 to specify the connection #, which is a number
from O to Nconnect-1.

See this section of the PHISH Minnows doc page for more information about input and output ports.

See the hook command which is processed by the bait.py tool in a PHISH input script, to establish connections
between sets of minnows.

57

The "status" keyword returns the status of the port, which is one of the following values:

e unused =0
e open =1
e closed =2

The "nconnect" keyword returns the number of sets of minnows that are connected to a port.

The "nminnows" keyword returns the number of minnows connected to a port thru a specific connection, as
specified by flag2.

The "outport/direct” keyword returns the number of minnows connected to an output port thru a connection of
style direct. The first such connection found is used to return this value, so if another direct connection is desired,
the "outport/nminnows" keyword should be used.

See the phish_send_direct function for a discussion of how datums are sent via direct style connections, and why
this particular phish_query() keyword can be useful.

For phish_set, the "ring/receiver” keyword changes the minnow that this minnow sends messages to. This
keyword can only be used when the minnow is part of school of minnows that is exchanging datums via a "ring"
connection; see the hook command in PHISH input scripts that defines the ring connection. This keyword can be
used to effectively permute the ordering of the minnows in the ring.

For ring/receiver, flagl is the output port number. Flag2 is the new receiving minnow to send datums to on that
port. It should be a value from O to Nring-1 inclusive, where Nring = the # of minnows in the ring.

Restrictions: none
Related commands:

phish_init

58

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_init() function

C syntax:

int phish_init (int *argc, char ***argv)
C examples:

phish_init (&argc, &argv) ;

C++ syntax:

void init (int& argc, char*s& argv)
C++ examples:

phish::init (argc, argv);

Python syntax:

def init (argv)

Python examples:

import phish
argv = phish.init (sys.argv)

Description:

This is a PHISH library function which can be called from a minnow application. In PHISH lingo, a "minnow" is
a stand-alone application which makes calls to the PHISH library.

A PHISH program typically includes one or more schools of minnows, as specified in a PHISH input script. Each
minnow in each school is an individual process. Locally, each minnow has a local-ID from 0 to Nlocal-1 within
its school, where Nlocal is the number of minnows in the school. Globally, each minnow has a global-ID from 0
to Nglobal-1, where Nglobal is the total number of minnows in the net. The global-IDs are ordered by school, so
that minnows within each school have consecutive IDs. These IDs enable the PHISH library to orchestrate
communication of datums between minnows in different schools. E.g. when running the MPI version of the
PHISH library, the global-ID corresponsds to the rank ID of an MPI process, used in MPI_Send() and
MPI_Recv() function calls.

See the phish_query function for how a minnow can find out these values from the PHISH library.

The phish_init() function must be the first call to the PHISH library made by a minnow. Since it alters the
command-line arguments passed to the minnow, it is typically the first executable line of a minnow program.

It's purpose is to initialize the library using special command-line arguments passed to the minnow when it was
launched, typically by the the bait.py tool that parses a PHISH input script.

The two arguments to phish_init() are pointers to the number of command-line arguments, and a pointer to the
arguments themselves as an array of strings. These are passed as pointers, because the PHISH library reads and

59

http://www.sandia.gov/~sjplimp/phish.html

removes the PHISH-specific arguments. It then returns the remaining minnow-specific arguments, which the
minnow can read and process. As is standard with C programs, the returned value of argv includes argv[0] which
is the name of the minnow executable.

Note that in the Python version of phish.init(), the full argument list is passed as an argument, and the truncated
argument list is returned.

Following are some sample switches and arguments that the MPI version of the PHISH library looks for and
processes. These are generated automatically by the bait.py tool when it processes a PHISH input script so you
don't need to think about these arguments, but it may be helpful in understanding how PHISH works. Note that
these arguments are normally invisible to the user; their format and number may be changed in future versions of
PHISH.

¢ ——phish-backend mpi

¢ ——phish-minnow ID Nlocal Nprev

¢ ——phish-memory N

¢ ——phish-in sprocs sfirst sport style rprocs rfirst rport
¢ ——phish-out sprocs sfirst sport style rprocs rfirst rport

The --phish-backend switch appears once, and is followed by the version of the PHISH library specified by
bait.py. This allows the PHISH library to detect incompatible runtime environments, e.g. mixing minnows linked
against the socket version of the PHISH library with minnows using the MPI version.

The --phish-minnow switch appears once. ID is the school ID in the PHISH input script. The Nlocal argument was
explained above. Nprev is the total number of minnows in sets of minnows previous to this one. It is used to infer
the local-ID value discussed above.

The --phish-memory switch changes a default setting within the PHISH library. There is a similar command for
each keyword supported by the bait.py set command.

The --phish-memory value N sets the maximum size of the buffers used to send and receive datums. See the set
command of the bait.py tool for more information on the settings of this switch.

The --phish-in switch appears once for every connection the minnow has with other minnows, where it is a
receiver of datums. See the hook command in PHISH input scripts processed by the bait.py tool, for more
information.

Sprocs, sfirst, and sport refer to the set of minnows sending to this minnow. They are respectively, the number of
minnows in the set, the global ID of the first minnow in the set, and the output port used by those minnows.
Rprocs, rfirst, and rport refer to the set of minnows receivng the datums, i.e. the set of minnows this minnow
belongs to. They are respectively, the number of minnows in the set, the global ID of the first minnow in the set,
and the input port used by those minnows. Style is the connection style, as specified by the hook command in the
PHISH input script processed by the bait.py tool. E.g. style is a word like "single" or "hashed". If it is "subscribe",
then extra info about the external host and its TCP port is appended to the style, e.g.
"subscribe/www.foo.com:25".

The --phish-out switch appears once for every connection the minnow has with other minnows, where it is a
sender of datums. See the hook command in PHISH input scripts processed by the bait.py tool, for more

information.

Sprocs, sfirst, and sport refer to the set of minnows sending datums, i.e. the set of minnows this minnow belongs
to. They are respectively, the number of minnows in the set, the global ID of the first minnow in the set, and the

60

output port used by those minnows. Rprocs, rfirst, and rport refer to the set of minnows receivng the datums.
They are respectively, the number of minnows in the set, the global ID of the first minnow in the set, and the input
port used by those minnows. Style is the connection style, as specified by the hook command in the PHISH input
script processed by the bait.py tool. E.g. style is a word like "single" or "hashed". If it is "publish", then extra info
about the TCP port is appended to the style, e.g. "publish/25".

The PHISH library ignores any remaining arguments, returning them to to the minnow caller, including the name
of the minnow executable in argv[0].

The phish_init() function also flags each specified input port and output port with a CLOSED status, instead of
UNUSED. See the hook command for the bait.py tool for more info about communication ports. See the
phish_input and phish_output functions for more info about port status.

The "C" binding to phish_init() returns a nonzero value if there were errors, otherwise zero. The "C++" binding to
phish::init() throws an exception if there were errors.

Restrictions: none
Related commands:

phish_query

61

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_repack
phish_pack_raw
phish_pack_char
phish_pack_int8
phish_pack_int16
phish_pack_int32
phish_pack_int64
phish_pack_uint8
phish_pack_uint16
phish_pack_uint32
phish_pack_uint64
phish_pack_float
phish_pack_double
phish_pack_string
phish_pack_int8_array
phish_pack_int16_array
phish_pack_int32_array
phish_pack_int64_array
phish_pack_uint8_array
phish_pack_uint16_array
phish_pack_uint32_array

62

http://www.sandia.gov/~sjplimp/phish.html

phish_pack_uint64_array

phish_pack_float_array

phish_pack_double_array

phish_pack_pickle

C syntax:

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

phish_repack();

phish_pack_raw (char *buf, int32_t n);

phish_pack_char (char value);
phish_pack_int8 (int8_t wvalue);
phish_pack_intl6 (intl6_t value);
phish_pack_int32 (int32_t value);
phish_pack_int64 (int64_t value)
phish_pack_uint8 (uint8_t wvalue);
phish_pack_uintl6 (uintl6_t wvalue);
phish_pack_uint32 (uint32_t wvalue);
phish_pack_uint64 (uint64_t wvalue);
phish_pack_float (float value);
phish_pack_double (double value);
phish_pack_string(char *str);

’

phish_pack_int8_array (int8_t *vec, int32_t n);

phish_pack_intl6_array(intleée_t *vec,
phish_pack_int32_array (int32_t *vec,
phish_pack_int64_array(int64_t *vec,

int32_t n);
int32_t n);
int32_t n);

phish_pack_int8_array (int8_t *vec, int32_t n);

phish_pack_intl6_array(intlée_t *vec,
phish_pack_int32_array (int32_t *vec,
phish_pack_int64_array(int64_t *vec,

int32_t n);
int32_t n);
int32_t n);

phish_pack_float_array(float *vec, int32_t n);

phish_pack_double_array (double *vec,

int32_t n);

phish_pack_pickle (char *buf, int32_t n);

C examples:

#include "phish.h"

int n;

uint64_t nlarge;

phish_repack();

phish_pack_char('a');
phish_pack_int32 (n);
phish_pack_uint64 (nlarge);
phish_pack_string("this is my data");
phish_pack_double_array (vec,n);

C++ syntax:

void
void
void
void
void
void
void
void
void

repack () ;

pack (const char *buf, int32_t n);

pack (char value);

pack (int8_t wvalue);

pack (intl6_t wvalue)

pack (int32_t value);

pack (int64_t value);
)
e

’

pack (uint8_t wvalue
pack (uintl6_t wvalu

)i

63

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

pack (uint32_t wvalue);

pack (uint64_t wvalue);

pack (float value);

pack (double value);

pack (const char *str);

pack (const std::stringé& str
pack (int8_t *vec, int32_t n
pack (intl6_t *vec, int32_t
pack (int32_t *vec, int32_t

) 14
)
n
n
pack (int64_t *vec, int32_t n
)
n
n

’

pack (int8_t *vec, int32_t n
pack (intl6_t *vec, int32_t
pack (int32_t *vec, int32_t
pack (int64_t *vec, int32_t n
pack (float *vec, int32_t n);
pack (double *vec, int32_t n);

)i
)i
).

’

C++ examples:

#incl
int n
uinté

phish:
phish:
phish:
phish:
phish:
phish:

ude "phish.hpp"

7

4_t nlarge;

crepack () ;

tpack('a');

:pack(n);

:pack (nlarge);

:pack ("this is my data");
:pack (vec,n);

Python syntax:

def r
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p
def p

epack ()
ack_raw (buf, n)
ack_char (value)
ack_int8 (value)
ack_intl6 (value
ack_int32 (value
ack_int64 (value
ack_uint8 (value
ack_uintl6 (value)
ack_uint32 (value)
ack_uinto64 (value)
ack_float (value)
ack_double (value)
ack_string(str)
ack_int8_array (vec)
ack_intl6_array (vec)
ack_int32_array (vec)
ack_int64_array (vec)
ack_int8_array (vec)
ack_intl6_array (vec)
ack_int32_array (vec)
ack_int64_array (vec)
)
c

)
)
)
)

ack_float_array (vec
ack_double_array (ve
ack_pickle (ob3j)

)

Python examples:

impor
phish
phish

t phish
.repack ()
.pack_char('a'")

phish.pack_int32 (n)
phish.pack_uint64 (nlarge)
phish.pack_string("this is my data")
phish.pack_double_array (vec)
phish.pack_int32_array(1,10,20,4)
phish.pack_pickle (59899.984)
phish.pack_pickle(1,10,20,4)

fool =1,2,3,"flag",7.0,10.0
phish.pack_pickle (fool)

foo2 = "keyl" : "valuel", "dog" : "cat"
phish.pack_pickle (foo02)

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"
is a stand-alone application which makes calls to the PHISH library.

These functions are used to pack individual values into a datum as fields before sending the datum to another
minnow.

As discussed in this section of the PHISH Library doc page, datums sent and recived by the PHISH library
contain one or more fields. A field is a fundamental data type, such as a "32-bit integer” or "vector of doubles" or
a NULL-terminated character string. Except for phish_repack, these pack functions add a single field to a datum
by packing the data into a buffer, using integer flags to indicate what type and length of data comes next. Unpack
functions allow the minnow to extract data from the datum, one field at a time.

Once data has been packed, the minnow may re-use the variables that store the data; the pack functions copy the
data into an internal send buffer inside the PHISH library.

The repack() function packs all the fields of the most recently received datum for sending. This is a mechanism
for sending an entire dataum as-is to another minnow.

The repack() function can be used in conjunction with other pack functions. E.g. pack functions can be used
before or after the repack() function to prepend or append additional fields to a received datum.

The various pack functions correspond one-to-one with the kinds of fundamental data that can be packed into a
PHISH datum:

e phish_pack_raw() = pack a string of raw bytes of length n

e phish_pack_char() = pack a single character

e phish_pack_int*() = pack a single int of various sizes (8,16,32,64 bits)

e phish_pack_uint*() = pack a single unsigned int of various sizes (8,16,32,64 bits)
e phish_pack_float() = pack a single double

e phish_pack_double() = pack a single double

e phish_pack_string() = pack a C-style NULL-terminated string of bytes, including the NULL
® phish_pack_int*_array() = pack » int values from vec

® phish_pack_uint*_array() = pack n uint64 values from vec

e phish_pack_float_array() = pack n float values from vec

e phish_pack_double_array() = pack n double values from vec

Note that for the array functions, 7 is typed as an int32_t which is a 32-bit integer. In C or C++, the minnow can

simply declare # to be an "int" and any needed casting will be performed automatically. The only case where this
will fail (with a compile-time error) is if the native "int" on a machine is a 64-bit int.

65

Phish_pack_raw() can be used with whatever string of raw bytes the minnow puts into its own buffer, pointed to
by the buf argument, e.g. a C data structure containing a collection of various C primitive data types. The "int*"
data type refers to signed integers of various lengths. The "uint*" data type refers to unsigned integers of various
lengths. Phish_pack_string() will pack a standard C-style NULL-terminated string of bytes and include the
NULL. The array pack functions expect a vec pointer to point to a contiguous vector of "int*" or "uint*" or
floating point values.

Note that the Python interface to the pack functions is slightly different than the C or C++ interface.

The array pack functions do not take a length argument #n. This is because Python can query the length of the
vector itself.

The pack_pickle() function is unique to Python, it should not normally called from C or C++. It will take any
Python object as an argument, a fundamental data type like an integer or floating-point value or sting, or a more
complex Python object like a list, or dictionary, or list of arbitrary objects. Python converts the object into a string
of bytes via its "pickling" capability, before it is packed into the PHISH library send buffer. When that field in the
datum is unpacked, via a call to the phish_unpack function, the bytes are "unpickled" and the Python object is
recreated with its internal structure intact. Thus minnows written in Python can exchange Python objects
transparenlty.

Restrictions: none
Related commands:

phish_send, phish_unpack

66

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_input() function
phish_output() function

C syntax:

void phish_input (int iport, void (*datumfunc) (int), wvoid (*donefunc) (), reqgflag)
void phish_output (int iport)

C examples:

#include "phish.h"
phish_input (0, count,NULL, 1) ;
phish_input (1, count,mydone, 0) ;
phish_output (0);

C++ syntax:

void input (int port, void (*datumfunc) (int), void (*donefunc) (), bool required=true)
void output (int port)

C++ examples:

#include "phish.h.pp"

phish: :input (0, count,NULL, true) ;
phish: :input (1, count,mydone, false) ;
phish: :output (0);

Python syntax:

def input (iport,datumfunc,donefunc, reqgflaqg)
def output (iport)

Python examples:

import phish
phish.input (0, count,None, 1)
phish.input (1, count,mydone, 0)
phish.output (0)

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"
is a stand-alone application which makes calls to the PHISH library.

The phish_input() and phish_output() functions define input and output ports for the minnow. An input port is
where datums are sent by other minnows, so they can be read by this minnow. An output port is where the
minnow sends datums to route them to the input ports of other minnows. These inter-minnow connections are
setup by the hook command in a PHISH input script, as discussed on the bait.py doc page.

A minnnow can define and use multiple input and output ports, to send and receive datums of different kinds to

different sets of minnows. Both input and output ports are numbered from O to Pmax-1, where Pmax = the
maximum allowed ports, which is a hard-coded value for MAXPORT in src/phish.cpp. It is currently set to 16;

67

http://www.sandia.gov/~sjplimp/phish.html

most minnows use 1 or 2. Note that a single port can be used to send or receive datums to many other minnows
(processors), depending on the connection style. See the hook command for details.

The minnow should make one call to phish_input() for each input port it uses, whether or not a particular PHISH
input script actually connects to the port. Specify regflag = 1 if a PHISH input script must specify a connection to
the input port in order to use the minnow; specify regflag = 0 if it is optional. The phish_check function will
check for compatibility between the PHISH input script and the minnow ports.

Two callback function pointers are passed as arguments to phish_input(). Either or both can be specied as NULL,
or None in the Python version, if the minnow does not require a callback. Note that multiple input ports can use

the same callback functions.

The first callback is datumfunc, and is called by the PHISH library each time a datum is received on that input
port.

The datumfunc function should have the following form:

void datumfunc (int nfields) { }

or

def datumfunc (nfields)

in Python,

where "datumfunc" is replaced by a function name of your choice. The function is passed "nfields" = the # of
fields in the received datum. See the phish_unpack and phish_datum doc pages for info on how the received
datum can be further processed.

The second callback is donefunc, and is a called by the PHISH library when the input port is closed.

The donefunc function should have the following form:

void donefunc() { }

or

def donefunc ()

in Python,

where "donefunc" is replaced by a function name of your choice. A minnow might use the function to print out
some statistics about data received thru that input port, or its closure might trigger further data to be sent

downstream to other minnows. See the phish_close function and shutdown section of the Minnows doc page, for
more discussion of how a school of minnows closes ports and shuts down.

The minnow should make one call to phish_output() for each output port it uses, whether or not a particular
PHISH input script actually connects to the port. Usage of an output port by an input script is always optional.
This makes it easy to develop and debug a sequence of pipelined operations, one minnow at a time, without
requiring a minnow's output to be used by an input script.

Restrictions:

68

These functions cannot be called after phish_check has been called.
Related commands:

phish_check, phish_close

69

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_queue() function
phish_dequeue() function

phish_nqueue() function

C syntax:

int phish_queue ()

int phish_dequeue (int n)
int phish_nqueue ()

C examples:

ng = phish_queue();
nvalues = phish_dequeue (0);
ng = phish_nqueue () ;

Python syntax:
def queue ()

def degueue (n)
def nqueue ()
Python examples:

import phish

ng = phish.queue ()

nvalues = phish.dequeue (0)
ng = phish.nqueue ()

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"
is a stand-alone application which makes calls to the PHISH library.

These functions are used to store and retrieve datums in an internal queue maintained by the PHISH library. This
can be useful if a minnow receives a datum but wishes to process it later.

The phish_queue() function stores the most recently received datum in the internal queue. It returns the number of
datums in the queue, which includes the one just stored.

The phish_queue() function does not conflict with phish_unpack or phish_datum functions. They can be called
before or after a phish_queue() call.

The phish_dequeue() function retrieves a stored datum from the internal queue and copies it into the receive
buffer, as if it had just been received. The datum is deleted from the queue, though it can be requeued via a

70

http://www.sandia.gov/~sjplimp/phish.html

subsequent call to phish_queue.

After a call to phish_dequeue, the datum can be unpacked or its attributes queried via the phish_unpack or
phish_datum functions, as if it just been received.

The input parameter "n" for phish_dequeue is the index of the datum to retrieve. N can be any value from 0 to
Nqueue-1 inclusive, where Nqueue is the number of datums in the queue. Thus you can easily retrieve the oldest
or newest datum in the queue.

The phish_nqueue() function returns the number of datums currently held in the internal queue.

Restrictions: none
Related commands:

phish_recv, phish_datum

71

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_loop() function
phish_probe() function

phish_recv() function

C syntax:

void phish_loop ()
void phish_probe (void (*probefunc) ())
int phish_recv ()

C examples:

#include "phish.h"
phish_loop();
phish_probe (count) ;
int n = phish_recv();

C++ syntax:

void loop ()
void probe (void (*probefunc) ())
int recv ()

C++ examples:

#include "phish.hpp"
phish::1loop();

phish: :probe (count) ;
int n = phish::recv();

Python syntax:

def loop()
def probe (probefunc)
def recv ()

Python examples:
import phish
phish.loop ()

phish.probe (count)
n = phish.recv ()

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"

is a stand-alone application which makes calls to the PHISH library.

These functions are used to receive datums sent by other minnows.

72

http://www.sandia.gov/~sjplimp/phish.html

All received datums arrive on input ports the minnow defines and which the PHISH input script uses to route
datums from one set of minnows to another set.

The functions documented on this page receive the next datum, whichever input port it arrives on. It is up to the
minnow to take the appropriate port-specific action if necessary. This can be done by defining a port-specific
callback function via the phish_input function. Or by querying what port the datum was received on via the
phish_datum function.

Note that datums sent by a minnow to itself are always processed first by all of these functions. For datums sent
from another minnow, they are processed in the order they are received, i.e. first-come, first-served.

The phish_loop() function turns control over to the PHISH library. It will wait for the next datum to arrive on any
input port. When it does one of three things happen:

(1) For a regular datum, phish_loop() will make a callback to the minnow, to the datum callback function
assigned to the input port the datum was received on. See the phish_input function for how this callback function
is assigned. When the callback function returns, control is returned to phish_loop().

(2) For a datum that signals the closure of an input port, phish_loop() will make a callback to the minnow, to the
done callback function assigned to the input port the datum was received on. See the phish_input function for how
this callback function is assigned. When the callback function returns, control is returned to phish_loop().

(3) For a datum that closes the last open input port, step (2) is performed, and then an additional callback to the
minnow is made, to the alldone callback function (optionally) assigned by the phish_callback function. When the
callback function returns, control is returned to phish_loop().

After option (3) has occurred, phish_loop() returns, giving control back to the minnow. Typically, the minnow
will then clean up and call phish_exit, since all its input ports are closed and no more datums can be received.

The phish_probe() function is identical to phish_loop(), except that instead of waiting for the next datum to arrive,
phish_probe() checks if a datum has arrived. If not, then it immediately calls the specified probefunc callback
function. This allows the minnow to do useful work while waiting for the next datum to arrive.

The probefunc function should have the following form:

void probefunc() { }

or

def probefunc ()

in Python,

where "probefunc" is replaced by a function name of your choice. When the probefunc callback function returns,
control is returned to phish_probe().

Note that just like phish_loop(), phish_probe() will not return control to the minnow, until option (3) above has
occured, i.e. all input ports have been closed.

The phish_recv() function allows the minnow to request datums explicitly, rather than be handing control to
phish_loop() or phish_probe() and being called back to by those functions.

73

The phish_recv() function checks if a datum has arrived and returns regardless. It returns a value of 0 if no datum
is available. It returns a value N > 0 if a datum has arrived, with N = the number of fields in the datum. See the
phish_unpack and phish_datum doc pages for info on how the received datum can be further processed.

If a datum is received that signals the closure of an input port, then phish_recv() will perform the same options (2)
and (3) listed above, making callbacks to the done callback function and alldone callback function as appopriate,
and then return with a value of -1.

Restrictions:
These functions can only be called after phish_check has been called.
Related commands:

phish_input, phish_done

74

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_send() function
phish_send_key() function

phish_send_direct() function

C syntax:

void phish_send (int iport)
void phish_send_key (int iport, char *key, int nbytes)
void phish_send_direct (int iport, int receiver)

C examples:

#include "phish.h"
phish_send(0);
phish_send_key (1l,id, strlen(id));
phish_send_direct (0, 3);

C++ syntax:

void send(int iport)
void send_key (int iport, char *key, int nbytes)
void send_direct (int iport, int receiver)

C++ examples:

#include "phish.hpp"
phish::send (0);
phish::send_key(1l,id,strlen(id));
phish::send_direct (0, 3);

Python syntax:

def send(iport)
def send_key (iport, key)
def send_direct (iport, receiver)

Python examples:

import phish
phish.send (0)
phish.send_key (1,id)
phish.send_direct (0, 3)

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"
is a stand-alone application which makes calls to the PHISH library.

These functions are used to send datums to other minnows. Before a datum can be sent, it must be packed into a
buffer. See the doc page for the phish_pack functions to see how this is done.

75

http://www.sandia.gov/~sjplimp/phish.html

All datums are sent via output ports the minnow defines and which the PHISH input script uses to route datums
from one set of minnows to another set. Thus these send functions all take an iport argument to specify which
output port to send thru.

The specific minnow(s) that the datum will be sent to is determined by the connection style(s) defined for the
output port. See the PHISH input script hook command, as discussed on the bait.py tool doc page, for details.
Some connection styles require additional information from the minnow to route the datum to the desired
minnow. This is the reason for the phish_send_key() and phish_send_direct() variants of phish_send().

The phish_send() function sends a datum to the specified iport output port.
This generic form of a send can be used for all connection styles except the hashed and direct styles. See the
PHISH input script hook command for details. Note that multiple sets of receiving minnows, each with their own

connection style, can be connected to the same output port.

If phish_send() is used with a hashed or direct connection style, an error will result.

The phish_send_key() function sends a datum to the specified iport output port and allows specification of a byte
string or key of length nbytes, which will be hashed by the PHISH library and converted into an index for
choosing a specific receiving processor to send the datum to.

This form of sending must be used for a hashed connection style. See the PHISH input script hook command for
details. If a connection style to a specific output port is not a hashed style, then the key and nbytes arguments are
ignored, and the generic phish_send() form is used to send the datum.

The phish_send_direct() function sends a datum to the specified iport output port and allows a specific receiving
minnow to be selected via the receiver argument. The receiver is an integer offset into the set of receiving
minnows connected to this output port. If there are M minnows in the receiving set, then 0 <= receiver < M is
required. The phish_query function can be used to query information about the receiving set of minnows. For
example this phish_query() call would return M, assuming the receiving processors are connected to output port
0.

int m = phish_query ("outport/direct",0,0);

This form of sending must be used for a direct connection style. See the PHISH input script hook command for
details. If one or more of the connection styles connected to the output port is not a direct style, then the reciever
argument is ignored, and the generic phish_send() form is used to send the datum.

Restrictions: none
Related commands:

phish_pack

76

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_exit() function

phish_close() function

C syntax:

void phish_exit ()
void phish_close (int iport)

C examples:

#include "phish.h"
phish_exit ();
phish_close (0);

C++ syntax:

volid exit ()
void close (int iport)

C++ examples:

#include "phish.hpp"
phish::exit ();
phish::close (0);

Python syntax:

def exit ()
def close (iport)

Python examples:

import phish
phish.exit () ;
phish.close (0);

Description:

1

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow'
is a stand-alone application which makes calls to the PHISH library.

These functions serve to shutdown a running minnow, either entirely or a portion of its output capabilities. They
trigger the closing of a minnow's output port(s) which notifies downstream minnows, so they also can clean-up

and exit.

See this section of the Minnows doc page for a discussion of shutdown options for PHISH programs.

The phish_exit() function is the most commonly used mechanism for performing an orderly shutdown of a PHISH
program. Once called, no further calls to the PHISH library can be made by a minnow, so it is often the final line
of a minnow program.

77

http://www.sandia.gov/~sjplimp/phish.html

When phish_exit() is called it performs the following operations:

® print stats about the # of datums received and sent by the minnow
¢ warn if any input port is not closed

¢ close all output ports

¢ free internal memory allocated by the PHISH library

¢ shutdown communication protocols to other minnows

The stats message is printed with the same supplementary information as the phish_error function, to identify the
minnow that printed it.

Closing a minnow's output port involves sending a "done" message to each minnow (in each set of minnows)
connected as a receiver to that port, so that they know to expect no more datums from this minnow.

When all the minnows in a set have invoked phish_exit() to close an output port, each downstream minnow that
receives output from this port will have received a series of "done" messages on its corresponding input port.
Each minnow keeps a count of the total # of minnows that send to that port, so it will know when the requisite
number of done messages have been received to close the input port.

In the MPI version of the library, the final step is to invoke MPI_Finalize(), which means no further MPI calls can
be made by the minnow.

In the ZMQ version of the library, the final step is to close any open ZMQ context(s), so no further ZMQ calls can
be made by the minnow.

Note that this function is often called directly by the most upstream minnow(s) in a PHISH school, when they are
done with their task (e.g. reading data from a file).

Other downstream minnows often call phish_exit() after the phish_loop or phish_probe function returns control to
the minnow, since that only occurs when all the minnow's input ports have been closed. In this manner, the
shutdown procedure cascades from minnow to minnow.

The phish_close() function is used less often than the phish_exit() function. It can be useful when some minnow
in the middle of a data processing pipeline needs to trigger an orderly shutdown of the PHISH program.

Phish_close() closes the specified iport output port of a minnow. This procedure involves sending a "done"
message to each minnow (in each set of minnows) connected as a receiver to that port, so that they know to
expect no more datums from this minnow.

When all the minnows in a set have invoked phish_close() on an output port, each downstream minnow that
receives output from this port will have received a series of "done" messages on its corresponding input port.
Each minnow keeps a count of the total # of minnows that send to that port, so it will know when the requisite
number of done messages have been received to close the input port. As input ports are closed, this typically
triggers the minnow to invoke phish_exit() or phish_close(). In this manner, the shutdown procedure cascades
from minnow to minnow.

This function does nothing if the specified output port is already closed.

Restrictions: none

Related commands:

78

phish_loop, phish_probe

79

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_timer() function

C syntax:
double phish_timer ()
C examples:

#include "phish.h"
double tl1 = phish_timer();

double t2 = phish_timer();
printf ("Elapsed time = %$g\n",t2-tl);

C++ syntax:
double timer ()
C++ examples:

#include "phish.hpp"
double tl = phish::timer();

double t2 = phish::timer();
printf ("Elapsed time = %$g\n",t2-tl);

Python syntax:
def timer ()
Python examples:

import phish
tl = phish.timer();

t2 = phish.timer();
print "Elapsed time =",t2-tl

Description:

This is a PHISH library function which can be called from a minnow application. In PHISH lingo, a "minnow" is
a stand-alone application which makes calls to the PHISH library.

This function provides a portable means to time operations within a minnow. The function returns the current
wallclock time as a timestamp measured in seconds. To calculate an elapsed time, you need to bracket a section of
code with 2 calls to phish_timer() and compute the difference between the 2 returned times, as in the example
above.

Restrictions: none

Related commands: none

80

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

phish_unpack() function

phish_datum() function

C syntax:

int phish_unpack (char **buf, int32_t *len)
int phish_datum(int flag)

C examples:

#include "phish.h"

char *buf;

int len;

int type = phish_unpack (&buf, &len);
int iport = phish_datum(1l);

C++ syntax:

int unpack (char **buf, int32_t *len)
int datum(int flag)

C++ examples:

#include "phish.hpp"

char *buf;

int len;

int type = phish::unpack (&buf, &len);
int iport = phish::datum(1l);

Python syntax:

def unpack ()
def datum(flag)

Python examples:

import phish
type,value, len = phish.unpack()
iport = phish.datum(1)

Description:

These are PHISH library functions which can be called from a minnow application. In PHISH lingo, a "minnow"
is a stand-alone application which makes calls to the PHISH library.

These functions are used to unpack a datum after it has been received from another minnow or query other info
about the datum.

As discussed in this section of the PHISH Library doc page, datums sent and recived by the PHISH library
contain one or more fields. A field is a fundamental data type, such as an "32-bit integer" or "vector of doubles" or
a NULL-terminated character string. These fields are packed into a contiguous byte string when then are sent,
using integer flags to indicate what type and length of data comes next. These unpack functions allow the minnow

81

http://www.sandia.gov/~sjplimp/phish.html

to extract data from the datum, one field at a time.

Note that these functions return pointers to the internal buffer holding the datum within the PHISH library. The
buffer will be overwritten when the minnow returns control to the PHISH library and the next datum is received.
Typically this occurs when a callback function in the minnow returns. This means that if you want the data to
persist within the minnow, you must make a copy. It is OK to unpack several fields from the same datum before
making copies of the fields. It is also OK to pack one or more received fields for sending and wait to send it until
after another datum is received. This is because calls to "phish_pack" functions copy data into a separate send
buffer.

The phish_unpack() function returns the next field and its length, from the most recently received datum. Note
that len is typed as a pointer to int32_t which is a 32-bit integer. In C or C++, the minnow can simply declare len
to be a pointer to "int" and the function will work as expected. The only case where this will fail (with a
compile-time error) is if the native "int" on a machine is not a 32-bit int.

Phish_unpack returns an integer flag set to one of these values (defined in src/phish.h):

¢ PHISH_CHAR =0

e PHISH_INTS8 =1

e PHISH_INT16 =2

e PHISH_INT32 =3

e PHISH_INT64 =4

e PHISH_UINTS8 =5

¢ PHISH_UINT16 =6

e PHISH_UINT32 =7

e PHISH_UINT64 = 8

e PHISH_FLOAT =9

e PHISH_DOUBLE = 10

e PHISH_RAW =11

e PHISH_STRING =12

e PHISH_INTS8_ARRAY =13

e PHISH_INT16_ARRAY = 14

e PHISH_INT32_ARRAY =15

e PHISH_INT64_ARRAY =16

e PHISH_UINTS8_ARRAY =17
e PHISH_UINT16_ARRAY =18
e PHISH_UINT32_ARRAY =19
e PHISH_UINT64_ARRAY =20
e PHISH_FLOAT_ARRAY =21
e PHISH_DOUBLE_ARRAY =22
e PHISH_PICKLE = 23

PHISH_CHAR, PHISH_INT*, PHISH_UINT*, PHISH_FLOAT, and PHISH_DOUBLE are a single character, a
signed integer (of length 8,16,32,64 bits), an unsigned integer (of length 8,16,32,64 bits), a float (typically 4
bytes), and a double (typically 8 bytes).

PHISH_RAW is a string of raw bytes which can store whatever the sending minnow put into its send buffer, e.g. a
C data structure containing a collection of various C primitive data types.

PHISH_RAW is a string of raw bytes which minnows can format in any manner, e.g. a C data structure

containing a collection of various C primitive data types. PHISH_STRING is a standard C-style
NULL-terminated C-string. The NULL is included in the field.

82

The ARRAY types are contiguous sequences of int*, uint*, float, or double values, packed one after the other.

PHISH_PICKLE is an option available when using the Python wrapper on the PHISH library to encode arbitrary

Python objects in pickled form as a string of bytes. It should not normally be used in a minnow written in C or

C++.

Phish_unpack also returns buf and len. Buf is a char pointer to where the field starts. You will need to cast this to
the appropriate data type before accessing the data if it is not a character string. Len is the length of the field, with

the following meanings:

e PHISH _CHAR:len=1

e PHISH_INT*: len=1

e PHISH_UINT*: len=1

e PHISH_FLOAT: len=1

e PHISH_DOUBLE: len =1

e PHISH_RAW: len = # of bytes

¢ PHISH_STRING: len = # of bytes, including the trailing NULL

e PHISH_INT*_ARRAY: len = # of int8 or int16 or int32 or int64 values
e PHISH_UINT*_ARRAY: len = # of uint8 or uint16 or uint32 or uint64 values
e PHISH _FLOAT_ARRAY: len = # of float values

e PHISH_DOUBLE_ARRAY: len = # of double values

e PHISH_PICKLE = len = # of bytes

The phish_datum() function returns information about the most recently received datum.

If flag is set to 0, phish_datum returns the number of fields in the datum. This value is also passed as an argument

to the callback function invovked by the phish_loop and phish_probe functions, so a minnow typically does not

need to use phish_datum to retrieve this info.

If flag is set to 1, phish_datum returns the input port the datum was received on. See the phish_port functions for a

discussion of ports.

The phish_datum() function does not conflict with the phish_unpack() function. Phish_datum() can be called
before or after or in between a series of phish_unpack() calls.

Restrictions: none
Related commands:

phish_recv, phish_pack

83

PHISH WWW Site - PHISH Documentation - Bait.py Commands

print minnow
Syntax:
print —-f filename

e -f = optional switch for writing to a file
¢ filename = name of file to write to

Examples:

print
print —-f outfile

Description:

Print is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a stand-alone
application which makes calls to the PHISH library to exchange data with other PHISH minnows.

The print minnow prints the datums it receives to stdout or to a file.

Ports:

The print minnow uses one input port 0 to receive datums. It does not use any output ports.

Operation:

When it starts, the print minnow opens outfile if it has been specified. It then calls the phish_loop function. Each
time a datum is received on input port 0, its fields are looped over. Each field is written in the appropriate format
with a trailing space, either to the screen or to outfile. A trailing newline is written after all the fields have been

written.

The print minnow shuts down when its input port is closed by receiving a sufficient number of "done" messages.
Before shutting down it closes outfile if it was specified.

Data:

The print minnow can receive datums with any number of fields. Any type of field can be printed, except for a
field of type PHISH_RAW, which is ignored. Array-type fields are printed one value at a time, with trailing
spaces.

Restrictions: none

Related minnows: none

84

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

reverse program
Syntax:
reverse
e this program takes no arguments
Examples:

wrapsink "reverse"
wrapss "reverse"

Description:

Reverse is a stand-along non-PHISH program that can be wrapped with a PHISH minnow so it can be used in a
PHISH program. In PHISH lingo, a "minnow" is a stand-alone application which makes calls to the PHISH
library to exchange data with other PHISH minnows.

The reverse program simply reads lines from stdin, reverses the order of the characters, and writes the resulting
string to stdout. PHISH minnows that can wrap the reverse program include the wrapsink and wrapss, which
convert stdin/stdout into the receiving and sending of datums.

Ports:

The reverse program does not call the PHISH library and thus does not use PHISH ports directly. But if it is
wrapped with the wrapsink or wrapss minnows then they use one input port O to receive datums which are then
read by the reverse program via stdin. If it is wrapped with the wrapss minnow then it uses one output port O to
send datums that are written to stdout by the reverse program.

Operation:

The reverse program simply reads a line of input from stdin, stores it as a string, reverse the order of characters in
the string, and writes it to stdout. See the doc pages for the wrapsink or wrapss minnows for how they convert
datums they receive to lines of text that the reverse program can read from stdin, and how they convert lines of
text that the reverse program writes to stdout to datums they send.

Data:

The reverse program does not call the PHISH library and thus does not deal directly with PHISH data types.

Restrictions:

The C++ version of the reverse program allocates a buffer of size MAXLINE = 1024 bytes for reading a line from
stdin. This can be changed (by editing minnow/reverse.cpp) if longer lines are needed.

Related programs:

echo

85

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

slowdown minnow

Syntax:

slowdown delta
e delta = delay in seconds

Examples:

slowdown 0.1
slowdown 1.0

Description:

Slowdown is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a
stand-alone application which makes calls to the PHISH library to exchange data with other PHISH minnows.

The slowdown minnow sends datums as it receives them, but insures successive datums are sent no more often
than every delta seconds. This can be useful for debugging PHISH nets that process data quickly.

Ports:

The shutdown minnow uses one input port O to receive datums and one output port 0 to send datums.

Operation:

When it starts, the shutdown minnow calls the phish_loop function. Each time a datum is received on input port 0,
the phish_timer function is called and the elapsed time since the last datum was sent is calculated. If it is less than
delta seconds, the minnow "sleeps" until delta seconds have passed. It then sends the datum to its output port 0
and records the time at which the send occurred.

The count minnow shuts down when its input port is closed by receiving a sufficient number of "done" messages.
Data:

The shutdown minnow can receive any kind of datums; it simply re-sends them as-is.

Restrictions: none

Related minnows: none

86

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

sort minnow

Syntax:

sort N
® N = keep top N sorted values

Examples:

sort 20
Description:

Sort is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a stand-alone
application which makes calls to the PHISH library to exchange data with other PHISH minnows.

The sort minnow receives counts of strings which it stores in a list. When it shuts down it sorts the list by count,
and sends the top N counts and their associated strings.

Ports:

The sort minnow uses one input port 0 to receive datums and one output port O to send datums.

Operation:

When it starts, the sort minnow calls the phish_loop function. Each time a datum is received on input port 0, its
first field is a count and its 2nd a string. The count/string pairts are stored in an internal table. This is done via an
STL "vector" in the C++ version of sort, and via a "list" in the Python version of sort.

The sort minnow shuts down when its input port is closed by receiving a sufficient number of "done" messages.
This triggers the sort minnow to sort the list of count/string pairs it has received. It then sends the top N results as
datums to its ouput port 0. Each datum contains two fields. The first field is the count, the second is the string.

Data:

The sort minnow must receive two-field datums of type (PHSIH_INT32, PHISH_STRING). It also send two-field
datums of type (PHISH_INT32, PHISH_STRING).

Restrictions: none
Related minnows:

count

87

http://www.sandia.gov/~sjplimp/phish.html

PHISH WWW Site - PHISH Documentation - Bait.py Commands

wrapsink minnow
Syntax:
wrapsink "program"
¢ program = shell command for launching executable program
Examples:

wrapsink "myexe"
wrapsource "myexe -n 3 -o outfile <in.script"
wrapsink "ls *"

Description:

Wrapsink is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a
stand-alone application which makes calls to the PHISH library to exchange data with other PHISH minnows.

The wrapsink minnow is used to wrap a non-PHISH application so that datums can be sent to it from other
PHISH minnows as lines it reads from stdin. It is a mechanism for using non-PHISH applications as minnows in a
PHISH net.

Ports:

The wrapsink minnow uses one input port 0 and no output ports.

Operation:

When the wrapsink minnow starts, the program argument is treated as a string that is executed as a command by
the shell. As in the examples above program can be an executable program name or a shell command. It can
include flags or redirection operators. If the string contains spaces, it should be enclosed in quotes in the PHISH
input script so that it is treated as a single argument when the script is read by the bait.py tool.

After the wrapsink minnow launches the program command, it calls the phish_loop function. Each time an input
datum is received, its single string field is written to the running program with a trailing newline, so that the
program reads it as a line of input from stdin. The program may write to the screen or a file as often as it chooses,
but its output is not captured by the wrapsink minnow.

The wrapsource minnow shuts down when its input port is closed by receiving a sufficient number of "done"
messages. When this occurs, it closes the stdin pipe the running program is reading from, which should cause it to
exit.

Data:

The wrapsink minnow must receive single field datums of type PHISH_STRING.

Restrictions:

The C++ version of the wrapsink minnow allocates a buffer of size MAXLINE = 1024 bytes for converting the
PHISH_STRING fields of received datums into lines of input read from stdin by the wrapped program. This can

88

http://www.sandia.gov/~sjplimp/phish.html

be changed (by editing minnow/wrapsink.cpp) if longer lines are needed.
Related minnows:

wrapsource, wrapss

89

PHISH WWW Site - PHISH Documentation - Bait.py Commands

wrapsource minnow

Syntax:
wrapsource —f "program"

e -f = optional flag for substituting input datums into "program"
¢ program = shell command for launching executable program

Examples:

wrapsource "myexe"

wrapsource "myexe -n 3 -o outfile <in.script"
wrapsource "ls *"

wrapsource —-f "wc %s"

wrapsource -f "myexe -n 3 -o outfile <%s"

Description:

Wrapsource is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a
stand-alone application which makes calls to the PHISH library to exchange data with other PHISH minnows.

The wrapsource minnow is used to wrap a non-PHISH application so that the lines it writes to stdout can be sent
as datums to other PHISH minnows. It is a mechanism for using non-PHISH applications as minnows in a PHISH
net.

Ports:

The wrapsource minnow uses one input port O if the -f flag is specified, otherwise it uses no input ports. It uses
one output port 0 to send datums.

Operation:

The wrapsource minnow has two modes of operation, depending on whether the -f flag is specified. In either case,
the program argument is treated as a string that is executed as a command by the shell.

As in the examples above program can be an executable program name or a shell command. It can include flags
or redirection operators. If the string contains spaces, it should be enclosed in quotes in the PHISH input script so
that it is treated as a single argument when the script is read by the bait.py tool.

If no -f flag is specified, the wrapsouce minnow launches a single instance of the program command and reads
the output it writes to stdout a line at a time.

If the -f flag is specified, the wrapsouce minnow calls the phish_loop function. Each time an input datum is
received, its single string field is inserted in the program string, as a replacement for a "%s" that it is presumed to
contain. This can be used, for example, to substitute a filename into the program string. The wrapsource minnow
then launches the modified program command and reads the output it generates. When the program exits, control
returns to phish_loop, and a new datum can be received. Thus over time, the wrapsource minnow may launch
many instances of program.

90

http://www.sandia.gov/~sjplimp/phish.html

Each time a line of output is read from the running program the wrapsource minnow sends it as a string (without
the trailing newline) to its output port 0.

If no -f flag is specified, the wrapsource minnow calls phish_exit after the launched program exits. If -f is
specified, the wrapsource minnow shuts down when its input port is closed by receiving a sufficient number of
"done" messages.

Data:

If the -f flag is specified, the count minnow must receive single field datums of type PHISH_STRING. It sends
single-field datums of type PHISH_STRING.

Restrictions:

The C++ version of the wrapsouce minnow allocates a buffer of size MAXLINE = 1024 bytes for reading lines of
output written to stdout by the wrapped program. This can be changed (by editing minnow/wrapsource.cpp) if
longer lines are needed.

Related minnows:

wrapsink, wrapss

91

PHISH WWW Site - PHISH Documentation - Bait.py Commands

wrapss minnow
Syntax:
wrapss —f "program"
¢ program = shell command for launching executable program

Examples:

wrapsource "myexe"
wrapsource "myexe -n 3 -o outfile <in.script"
wrapsource "echo"

Description:

Wrapss is a PHISH minnow that can be used in a PHISH program. In PHISH lingo, a "minnow" is a stand-alone
application which makes calls to the PHISH library to exchange data with other PHISH minnows.

The wrapss minnow is used to wrap a non-PHISH application so that datums can be sent to it from other PHISH
minnows as lines it reads from stdin, and lines it writes to stdout can be sent as datums to other minnows. It is a
mechanism for using non-PHISH applications as minnows in a PHISH net.

Ports:
The wrapss minnow uses one input port 0 to receive datums and one output port O to send datums.
Operation:

When the wrapss minnow starts, the program argument is treated as a string that is executed as a command by the
shell. As in the examples above program can be an executable program name or a shell command. It can include
flags or redirection operators. If the string contains spaces, it should be enclosed in quotes in the PHISH input
script so that it is treated as a single argument when the script is read by the bait.py tool.

After the wrapss minnow launches the program command, it calls the phish_probe function. Each time an input
datum is received, its single string field is written to the running program with a trailing newline, so that the
program reads it as a line of input from stdin. When no input datum is available, "phish_probe" returns control to
the wrapss minnow which checks if there is any output that the running program has written to stdout. If there is,
the wrapss minnow sends it as a string (without the trailing newline) to its output port 0.

Note that there is no requirement that the running program produce a line of output for every line of input it reads.
It may for example, read all of its input, compute for a while, then produce all of its output. Or it may produce
output as bursts of lines, after reading multiple input lines.

The wrapss minnow shuts down when its input port is closed by receiving a sufficient number of "done"
messages. When this occurs, it closes the stdin pipe the running program is reading from, which should cause it to
exit. The wrapss minnow reads all the final output produced by the running program until it exits and converts it

into datums that it sends to its output port 0. It then calls phish_exit.

Data:

92

http://www.sandia.gov/~sjplimp/phish.html

The wrapss minnow must receive single field datums of type PHISH_STRING. It also sends single-field datums
of type PHISH_STRING.

Restrictions:

The C++ version of the wrapss minnow allocates a buffer of size MAXLINE = 1024 bytes for both converting the
PHISH_STRING fields of received datums into lines of input read from stdin by the wrapped program, and for
reading lines of output written to stdout by the wrapped program. This can be changed (by editing
minnow/wrapss.cpp) if longer lines are needed.

Related minnows:

wrapsink, wrapsource

	Table of Contents
	
	PHISH Tales
	(documentation for the PHISH library)
	Version info:
	1. Introduction
	1.1 Motivation
	1.2 PHISH lingo
	1.3 PHISH pheatures
	1.4 Steps to create and run a PHISH net
	1.5 Simple example
	1.6 Acknowledgments and citations

	2. Bait.py Tool
	2.1 Input script commands
	2.2 Building and running bait.py
	2.3 Command-line arguments
	2.4 Input script syntax and parsing
	2.5 Simple example

	3. PHISH Minnows
	3.1 List of minnows
	3.2 Code structure of a minnow
	3.3 Communication via ports
	3.4 Shutting down a minnow
	3.5 Building minnows

	4. PHISH Library
	4.1 List of library functions
	4.2 Building the PHISH library
	4.3 C vs C++ vs Python interface
	4.4 Format of a datum

	5. Examples
	in.filelist
	in.hook
	in.slow
	in.wordcount
	in.wrapsink
	in.wrapsource
	in.wrapsourcefile
	in.wrapss

	6. Python Interface to PHISH
	7. Errors
	Debugguing PHISH nets
	Error and warning messages from the PHISH library
	Error messages from bait.py

	hook command
	minnow command
	school command
	set command
	variable command
	count minnow
	echo program
	file2words minnow
	filegen minnow
	phish_callback() function
	phish_check() function
	phish_error() function
	phish_warn() function
	phish_abort() function
	phish_query() function
	phish_init() function
	phish_repack
	phish_pack_raw
	phish_pack_char
	phish_pack_int8
	phish_pack_int16
	phish_pack_int32
	phish_pack_int64
	phish_pack_uint8
	phish_pack_uint16
	phish_pack_uint32
	phish_pack_uint64
	phish_pack_float
	phish_pack_double
	phish_pack_string
	phish_pack_int8_array
	phish_pack_int16_array
	phish_pack_int32_array
	phish_pack_int64_array
	phish_pack_uint8_array
	phish_pack_uint16_array
	phish_pack_uint32_array
	phish_pack_uint64_array
	phish_pack_float_array
	phish_pack_double_array
	phish_pack_pickle
	phish_input() function
	phish_output() function
	phish_queue() function
	phish_dequeue() function
	phish_nqueue() function
	phish_loop() function
	phish_probe() function
	phish_recv() function
	phish_send() function
	phish_send_key() function
	phish_send_direct() function
	phish_exit() function
	phish_close() function
	phish_timer() function
	phish_unpack() function
	phish_datum() function
	print minnow
	reverse program
	slowdown minnow
	sort minnow
	wrapsink minnow
	wrapsource minnow
	wrapss minnow

