
1.
2.

General LIBMSR Use
Before you can use any of the LIBMSR functions, you must call the init functions.

NOTE: finalize msr no longer takes an argument as of 9/4/2015

Initialize LIBMSR
Call init_msr, if it returns -1 there was an error opening the msr_safe or msr kernel modules.
If you are using RAPL, you also need to call the rapl_init function. If this returns -1 then RAPL is probably not supported on your
architecture.

Finalize LIBMSR
Before you return from your main, you will want to call finalize_msr. This will close file descriptors and do other various cleanup tasks. This
function also allows you to restore all MSRs to their state prior to your program's execution by passing a non-zero value to it (see bugs).
This is a good idea if you are using RAPL on the clusters, to ensure the next user is not stuck with your power bounds.

Viewing Available MSRs
There are functions that query available RAPL MSRs and performance counters: print_available_counters() and print_available_rapl().

Accessing Raw MSR Data
If you need the raw data from MSR's there are functions in each domain that you can use. These functions are generally use the format of
"thing_that_i_want_storage". For example, if I want the fixed counters MSR data I would use "fixed_ctr_storage". These functions differ
between domains so be sure to check the header files, there are plans to make these more uniform in the future. Also note that you have to
take care of any initialization before this will work.

Initializing

 struct rapl_data * rd = NULL; // Passing this to rapl_init by reference gives you one way to
access the rapl data

 uint64_t * rapl_flags = NULL; // You can pass this to rapl_init to enable/disable MSRs in
case the auto-detect missed anything.
// These are both optional. See the RAPL section for more details.

 if(init_msr())

 {

 return -1;

 }

 if (rapl_init(&rd, &rapl_flags)) // If you don't need rapl data or custom flags settings, these
can be NULL.

 {

 return -1;

 }

Finalizing
 finalize_msr(); // This will restore MSRs to their prior values

Using Storage Functions

Related articles
General LIBMSR Use

Performance Counters

The Batch Interface

RAPL

// Get fixed counter MSR data
struct ctr_data *c0, *c1, *c2;
fixed_ctr_storage(&c0, &c1, &c2);
int i;
for (i = 0; i < totalThreads; i++)
{
// display the raw data
fprintf(stdout, "%lx", ctr->value);
}

https://lc.llnl.gov/confluence/display/LD/Performance+Counters
https://lc.llnl.gov/confluence/display/LD/The+Batch+Interface
https://lc.llnl.gov/confluence/display/LD/RAPL

	General LIBMSR Use

