
TSDuck
Anatomy of a single-person open-source project

Version 3.30



2
Topics

• Genesis of an open-source project
• Resource constraints
• Coding
• Maintenance
• Tests
• Documentation
• Delivery
• Support
• Infrastructure



3
Genesis of an open-source project
• It all started from a personal need

• advanced research project on transport stream security
• need to increase knowledge in TS structure
• in-depth TS analysis
• real-time transformation of TS using Dektec ASI devices
• => needed flexible manipulations of TS for experimentations

• Then some colleagues used it for different purposes
• unexpected usages
• proved the usefulness of the toolbox

• And finally could be useful to any DTV engineer
• we all receive a lot from open-source tools
• sometimes, it‘s time to give back in return
• => open-source your work



4
TSDuck timeline

• 2005-2006 : V1
• written in C (a mistake!)
• Linux only

• 2007-2011 : V2
• scrapped and re-written in C++
• multi-platform architecture, including Windows native support

• 2012-2015 : hibernation…
• no longer needed to work on transport streams

• 2016-2022 : V3
• moved to open-source
• renamed as TSDuck
• many improvements and new features
• started a community of users



5
Resource constraints

• Personal project
• less linked to my professional activities over time
• on spare time only
• on personal expenses (hardware, web hosting)

• Limited resources
• no fully equipped lab
• reduced time availability, no continuity

• Resource-driven project
• scarce resources is the main driver for the project organization



6
Productization

• An open-source product is still a product
• but many wonderful open-source tools

have zero doc (ffmpeg, openssl)
are a pain to build (dependency issues, poor Windows integration, exotic build tools)

• Essential qualities of a product
• reliability (no bug, no crash…)
• stability (no memory leak…)
• documentation
• packaging and installation
• support (assistance, bug fix)
• communication (web)

• All of this with limited time and resource…
• self-discipline and automation are essential



7
Coding principles

• Efficiency-driven coding
• write code rapidly
• invest time in coding, don’t lose time in debugging
• anticipate instead of debug

full compile-time code checking
use all language features to enforce defensive coding techniques

• Integrated « quality by design »
• explained in a TSDuck coding guidelines document

a generic programming manifesto, not limited to TSDuck
• based on past professional experience

large projects in Ada, Java and C++
stringent software engineering rules and methodologies



8
Coding techniques
• Use proven object design patterns
• Robustness enforcement

• resist to incorrect or malformed input data
• defensive coding, cross-checking, assertions, bug self-detection, etc.

• Avoiding resource leaks is easy
• don’t spend time on new/delete or lock/unlock
• implement « safe pointer » and « guard » classes
• the C++ concept of « destructor » is invaluable !

you can’t even count on it in Java or Python (not to mention C of course)
properly using it saves hours of debug

• Refactoring
• never let the quality of the code degrade, refactor properly
• too many projects accumulate quick & dirty fixes or copy/paste

and finally collapse over time because of an inconsistent code base



9
Coding cadence
• Extreme Agility

• coding on spare time only
no time to enter long coding tunnels

• small iterations
consistent and clean, commit on master branch
successfully compile and pass tests

• avoid divergent branches
merge & rebase takes time, I haven’t any

• Make short term a long term investment
• plan evolutions on the long term
• code step by step on the short term

dormant code for future features
=> if you don’t understand the latest commits, they will make sense later…



10
Code volume

• Source files : 1,800
• Lines

• total : 400,000
• comments : 140,000 (35%)
• actual code : 211,000 (53%)

• C++ : 200,000
• python : 700
• java : 375
• scripts / make : 2,400

• As of version 3.30



11
Maintenance

• Maintain stability
• automated full non-regression tests after each commit
• each build is as stable as a release

• Releases
• the concept of « official release » is purely editorial

same automated QA as any build
=> you may safely use nightly builds

• build of a “release” is fully automated from a macOS host
boot, build and shutdown Linux and Windows virtual machines
remote build on Raspberry PI

• releases are tagged in git, published on GitHub



12
Tests

• Time resource constraints
• no time to debug or come back on earlier developments

=> avoid regressions
• test-driven development

• Low-level unitary tests
• JUnit-like dedicated framework (« TSUnit »)
• when developing low-level features, use it as test & debug environment
• 610+ tests, 28700+ assertions

• High-level test suite
• commands and plugins scenarios in a dedicated git repository
• 100+ test suites, 1600+ tests



13
Tests automation

• Automation
• using « GitHub Actions » continuous integration
• all tests are run on all push and pull requests
• on Linux, Windows and macOS

• Limitations
• limited to fully automatable tests
• no QA team => no manual tests

especially on hardware features (tuners, Dektec and HiDes devices)
• best testing effort within the resource limits of the project



14
Documentation

• Continuous documentation
• code-test-document in each iteration
• require self-discipline

• User’s guide
• maintained using Microsoft Word
• automatically updated using a PowerShell script (versioning, PDF)
• 500+ pages

• Programmer’s guide
• doxygen from code
• automatically generated and published every night on tsduck.io
• 3000+ HTML files



15
Binary deliveries

• Proper binary packaging is essential for user experience
• System-specific delivery

• Windows: executable installer (NSIS)
• Linux: rpm and deb packages

User’s contribution: AUR on Arch
• macOS: Homebrew (now available in official Homebrew core)

User’s contribution: MacPorts

• User-friendly build
• one-liner (« make ») or one-click (« build-installer.ps1 »)

• Full automation
• scripts
• continuous integration using GitHub Actions
• automated production and publication of nightly builds on tsduck.io



16
Support

• Building a community means providing support
• GitHub issue tracker

• mostly used as a discussion forum

• Spend time for users
• … but not too much time
• explain, explain, explain

give investigation clues or suggestions, don’t give solutions
the default answer always remains « RTFM ! »

• Fix bugs quickly
• bugs are annoying for everyone, they ruin the reputation of a project

• Implement suggested new features
• transform user’s requests in generic new features for everyone
• protect the architecture and principles of the project



17

GitHub Actions (CI/CD)

Infrastructure

Home (development)

macOS

NAS

git

gitnative:

FedoraVirtual
Machines git

Raspberry Pi
gitnative:

GitHub

tsduck.io (web hosting)

PHP / HTML

streams repo

nightly bins

docs

git

releases

continuous integration
Ubuntu macOS Windows

nightly builds
Ubuntu Windows Docissues

on push
push

uploaded 
every 
night

on pull 
request

backups

Windows
git

Alpine

Mint

git

git
Gentoo

git

Arch
git

CentOS
git

Ubuntu
git

Debian
git



18
Limited investment

• Limited personal development environment
• basically an iMac and a Synology NAS on the shelf above it

• Full usage of GitHub features
• git repositories

• tsduck, tsduck-test, dektec-dkms, hides-drivers, srt-win-installer, rist-installer
• releases management and publishing
• issue tracker

• used as a discussion forum in practice
• GitHub Actions CI/CD environment

• Web hosting @OVH
• presentation of the project, references, links to standard bodies
• transport streams repository



Thank you
Any question?


