TSDuck

Anatomy of a single-person open-source project

Version 3.30



* Genesis of an open-source project
* Resource constraints

* Coding

* Maintenance

* Tests

* Documentation

* Delivery

* Support

* Infrastructure Q




Genesis of an open-source project

* It all started from a personal need

 advanced research project on transport stream security

* need to increase knowledge in TS structure

* in-depth TS analysis

* real-time transformation of TS using Dektec ASI devices

« => needed flexible manipulations of TS for experimentations

* Then some colleagues used it for different purposes
* unexpected usages
 proved the usefulness of the toolbox

* And finally could be useful to any DTV engineer
» we all receive a lot from open-source tools
» sometimes, it's time to give back in return
* => open-source your work




TSDuck timeline

2005-2006 : V1

» written in C (a mistake!)
* Linux only

2007-2011:V2

 scrapped and re-written in C++

« multi-platform architecture, including Windows native support

2012-2015 : hibernation...

* no longer needed to work on transport streams

2016-2022 : V3

* moved to open-source

* renamed as TSDuck
* many improvements and new features

« started a community of users Q




Resource constraints

* Personal project
* less linked to my professional activities over time
* on spare time only
 on personal expenses (hardware, web hosting)

* Limited resources
* no fully equipped lab
* reduced time availability, no continuity

* Resource-driven project
* scarce resources is the main driver for the project organization




Productization

* An open-source product is still a product

* but many wonderful open-source tools
have zero doc (ffmpeg, openssl)
are a pain to build (dependency issues, poor Windows integration, exotic build tools)

* Essential qualities of a product
* reliability (no bug, no crash...)
* stability (no memory leak...)
* documentation
 packaging and installation
* support (assistance, bug fix)
¢ communication (web)

* All of this with limited time and resource...
* self-discipline and automation are essential Q




Coding principles

- Efficiency-driven coding

* write code rapidly
* invest time in coding, don't lose time in debugging
* anticipate instead of debug

full compile-time code checking
use all language features to enforce defensive coding techniques

* Integrated « quality by design »
* explained in a TSDuck coding guidelines document
a generic programming manifesto, not limited to TSDuck
* based on past professional experience

large projects in Ada, Java and C++
stringent software engineering rules and methodologies Q




Coding techniques

Use proven object design patterns

Robustness enforcement

* resist to incorrect or malformed input data
- defensive coding, cross-checking, assertions, bug self-detection, etc.

Avoiding resource leaks is easy
» don't spend time on new/delete or lock/unlock
« implement « safe pointer » and « guard » classes

« the C++ concept of « destructor » is invaluable !

you can’t even count on it in Java or Python (not to mention C of course)
properly using it saves hours of debug

Refactoring
* never let the quality of the code degrade, refactor properly

» too many projects accumulate quick & dirty fixes or copy/paste
and finally collapse over time because of an inconsistent code base Q




Coding cadence

 Extreme Agility
* coding on spare time only
no time to enter long coding tunnels

* small iterations
consistent and clean, commit on master branch
successfully compile and pass tests

- avoid divergent branches
merge & rebase takes time, | haven't any

* Make short term a long term investment
* plan evolutions on the long term

* code step by step on the short term
dormant code for future features
=> if you don't understand the latest commits, they will make sense later...

9



Code volume

* Source files : 1,800
* Lines

* total : 400,000

* comments : 140,000

* actual code: 211,000

e C++: 200,000

* python: 700

* java: 375

* scripts / make : 2,400
* As of version 3.30

(35%)
(53%)




Maintenance

* Maintain stability
 automated full non-regression tests after each commit
* each build is as stable as a release

» Releases

* the concept of « official release » is purely editorial
same automated QA as any build
=> you may safely use nightly builds

* build of a “release” is fully automated from a macOS host
boot, build and shutdown Linux and Windows virtual machines
remote build on Raspberry PI

* releases are tagged in git, published on GitHub




* Time resource constraints
* no time to debug or come back on earlier developments

=> avoid regressions

* test-driven development

* Low-level unitary tests

 JUnit-like dedicated framework (« TSUnit »)
- when developing low-level features, use it as test & debug environment
* 610+ tests, 28700+ assertions

* High-level test suite

« commands and plugins scenarios in a dedicated git repository
* 100+ test suites, 1600+ tests Q



Tests automation

» Automation
» using « GitHub Actions » continuous integration
* all tests are run on all push and pull requests
* on Linux, Windows and macOS

* Limitations
* limited to fully automatable tests

* no QA team => no manual tests
especially on hardware features (tuners, Dektec and HiDes devices)

* best testing effort within the resource limits of the project




Documentation

* Continuous documentation

» code-test-document in each iteration
* require self-discipline

 User’s quide
* maintained using Microsoft Word
* automatically updated using a PowerShell script (versioning, PDF)
« 500+ pages
* Programmer’s guide
+ doxygen from code

* automatically generated and published every night on tsduck.io
* 3000+ HTML files




Binary deliveries

Proper binary packaging is essential for user experience

System-specific delivery
* Windows: executable installer (NSIS)

* Linux: rpm and deb packages
User’s contribution: AUR on Arch

* macOS: Homebrew (now available in official Homebrew core)
User's contribution: MacPorts

User-friendly build

« one-liner (« make ») or one-click (« build-installer.ps1 »)

Full automation
* scripts
* continuous integration using GitHub Actions
 automated production and publication of nightly builds on tsduck.io Q




Building a community means providing support

GitHub issue tracker
» mostly used as a discussion forum

Spend time for users
* ... but not too much time
* explain, explain, explain
give investigation clues or suggestions, don't give solutions
the default answer always remains « RTFM ! »

Fix bugs quickly

* bugs are annoying for everyone, they ruin the reputation of a project

Implement suggested new features
* transform user’s requests in generic new features for everyone
» protect the architecture and principles of the project Q




Infrastructure

/

Home (development)

macOS

native:

Windows Ubuntu
Fedora

Alpine

Raspberry Pi

Debian

CentOS

Gentoo

native:

-~

_~T -
~—Tm==4

~~o E——
= -

on pull
request

. J

p
GitHub Actions (CI/CD)

continuous integration

Ubuntu macOS Windows

nightly builds

Ubuntu Windows

tsduck.io (web hosting)

/ 1
/ /
! ,/ uploaded /
¢ /. every
4 . 7
night .
4




Limited investment

* Limited personal development environment
* basically an iMac and a Synology NAS on the shelf above it

* Full usage of GitHub features
* git repositories
* tsduck, tsduck-test, dektec-dkms, hides-drivers, srt-win-installer, rist-installer
* releases management and publishing

* issue tracker
* used as a discussion forum in practice

* GitHub Actions CI/CD environment
* Web hosting @OVH

* presentation of the project, references, links to standard bodies
* transport streams repository Q



Thank you

Any question?



