Opm::TransportSolverTwophasePolymer Class Reference

Implements a reordering transport solver for incompressible two-phase flow with polymer in the water phase. More...

#include <TransportSolverTwophasePolymer.hpp>

List of all members.

Classes

struct  ResidualC
class  ResidualCGrav
class  ResidualEquation
struct  ResidualS
class  ResidualSGrav

Public Types

enum  SingleCellMethod {
  Bracketing, Newton, Gradient, NewtonSimpleSC,
  NewtonSimpleC
}
enum  GradientMethod { Analytic, FinDif }

Public Member Functions

 TransportSolverTwophasePolymer (const UnstructuredGrid &grid, const IncompPropertiesInterface &props, const PolymerProperties &polyprops, const SingleCellMethod method, const double tol, const int maxit)
 Construct solver.
void setPreferredMethod (SingleCellMethod method)
 Set the preferred method, Bracketing or Newton.
void solve (const double *darcyflux, const double *porevolume, const double *source, const double *polymer_inflow_c, const double dt, std::vector< double > &saturation, std::vector< double > &concentration, std::vector< double > &cmax)
 Solve for saturation, concentration and cmax at next timestep.
void solveGravity (const std::vector< std::vector< int > > &columns, const double *porevolume, const double dt, std::vector< double > &saturation, std::vector< double > &concentration, std::vector< double > &cmax)
 Solve for gravity segregation.
virtual void solveSingleCell (const int cell)
virtual void solveMultiCell (const int num_cells, const int *cells)
void solveSingleCellBracketing (int cell)
void solveSingleCellNewton (int cell)
void solveSingleCellGradient (int cell)
void solveSingleCellNewtonSimple (int cell, bool use_sc)
void initGravity (const double *grav)
void solveSingleCellGravity (const std::vector< int > &cells, const int pos, const double *gravflux)
int solveGravityColumn (const std::vector< int > &cells)
void scToc (const double *x, double *x_c) const

Detailed Description

Implements a reordering transport solver for incompressible two-phase flow with polymer in the water phase.

Include permeability reduction effect.


Constructor & Destructor Documentation

Opm::TransportSolverTwophasePolymer::TransportSolverTwophasePolymer ( const UnstructuredGrid &  grid,
const IncompPropertiesInterface &  props,
const PolymerProperties polyprops,
const SingleCellMethod  method,
const double  tol,
const int  maxit 
)

Construct solver.

Parameters:
[in] grid A 2d or 3d grid.
[in] props Rock and fluid properties.
[in] polyprops Polymer properties.
[in] method Bracketing: solve for c in outer loop, s in inner loop, each solve being bracketed for robustness. Newton: solve simultaneously for c and s with Newton's method. (using gradient variant and bracketing as fallbacks).
[in] tol Tolerance used in the solver.
[in] maxit Maximum number of non-linear iterations used.

Member Function Documentation

void Opm::TransportSolverTwophasePolymer::solve ( const double *  darcyflux,
const double *  porevolume,
const double *  source,
const double *  polymer_inflow_c,
const double  dt,
std::vector< double > &  saturation,
std::vector< double > &  concentration,
std::vector< double > &  cmax 
)

Solve for saturation, concentration and cmax at next timestep.

Using implicit Euler scheme, reordered.

Parameters:
[in] darcyflux Array of signed face fluxes.
[in] porevolume Array of pore volumes.
[in] source Transport source term, to be interpreted by sign: (+) Inflow, value is first phase flow (water) per second, in reservoir volumes. (-) Outflow, value is total flow of all phases per second, in reservoir volumes.
[in] polymer_inflow_c Array of inflow polymer concentrations per cell.
[in] dt Time step.
[in,out] saturation Phase saturations.
[in,out] concentration Polymer concentration.
[in,out] cmax Highest concentration that has occured in a given cell.
void Opm::TransportSolverTwophasePolymer::solveGravity ( const std::vector< std::vector< int > > &  columns,
const double *  porevolume,
const double  dt,
std::vector< double > &  saturation,
std::vector< double > &  concentration,
std::vector< double > &  cmax 
)

Solve for gravity segregation.

This uses a column-wise nonlinear Gauss-Seidel approach. It assumes that the input columns contain cells in a single vertical stack, that do not interact with other columns (for gravity segregation.

Parameters:
[in] columns Vector of cell-columns.
[in] porevolume Array of pore volumes.
[in] dt Time step.
[in,out] saturation Phase saturations.
[in,out] concentration Polymer concentration.
[in,out] cmax Highest concentration that has occured in a given cell.

The documentation for this class was generated from the following files:

Generated on 26 Mar 2018 by  doxygen 1.6.1