ezdxf Documentation
Release 1.2.0

Manfred Moitzi

Mar 04, 2024

Included Extensions

Website

Documentation

Knowledge Graph

Release Notes

Changelog

Source Code & Feedback

Questions and Answers

Contents

9.1 Introduction
9.1.1
9.1.2 What ezdxf can’t do
9.1.3 Supported Python Versions
9.1.4 Supported Operating Systems
9.1.5 Supported DXF Versions
9.1.6
9.1.7

9.2 Setup & Dependencies
9.2.1
9.2.2 Installation with Extras
9.2.3
9.2.4
9.2.5 Disable C-Extensions
9.2.6 Installation from GitHub
9.2.7 Build and Install from Source
9.2.8 Install Optional Packages
9.2.9
9.2.10 Build Documentation
9.2.11 Python from Source

9.3 Usage for Beginners
9.3.1 Loading DXF Files
9.3.2 Layouts and Blocks
9.33

Embedded DXF Information of 3rd Party Applications
License

PySide6 Issue

Binary Wheels

Runthe Tests

Query DXF Entities

Whatisezdxf

Basic Installation

CONTENTS

11
13
15

17

....................... 28

9.4

9.5

9.3.4 Examine DXFEntities e 29
935 CreateaNewDXFFile e 29
9.3.6 Create New DXF Entities it e 30
9.3.77 SavingDXFFiles e 30
9.3.8 Create New Blocks e 31
9.3.9 Create Block References 31
9.3.10 Create New Layers o o i i 0 i e e e e e e e e e 31
9.3.11 Delete Entities o e e e e e e e 32
9.3.12 Further Information e 32
BasicConcepts e e 32
9.4.1 WhatisDXF? o e 32
9.4.2 DXFEntitiesand Objects o i e e e e e e e e e 34
9.4.3 AutoCAD Color Index (ACI) o e e e e e 36
944 TrueColor. e 37
9.4.5 Transparency i it e e e e e e e e e e e e e 39
9.4.6 Layers e e 39
9.4.7 LINELYPES . . o v v i e e e e e e e e e e 41
9.4.8 Lineweights e e e e e 43
9.49 Coordinate SYStEMS v v v vt e e e e e e e e e e e e e e e e e e 45
9.4.10 Object Coordinate System (OCS) 46
9411 DXFUNItS o o e e e e 48
9.4.12 Modelspace e e e 52
0.4.13 Paperspace o i e 52
9.4.14 Blocks 52
9.4.15 LayoutExtentsand Limits. L e 53
9.4.16 FontResources i i e e 56
Tutorials e e e e e e e e e e e e e e 56
9.5.1 Tutorial for Getting Datafrom DXFFiles. 56
9.5.2 Tutorial for Creating DXF Drawings o vt i ittt e 60
9.5.3 Tutorial for Common Graphical Attributes 61
9.5.4 Tutorial for Layers. L e 65
9.5.5 Tutorial for Creating Linetype Pattern 68
9.5.6 Tutorial for Creating Complex Linetype Pattern 69
9.5.7 Tutorial for Simple DXF Entities e 71
9.5.8 Tutorial for Blocks 73
9.5.9 Tutorial for LWPolyline 77
9.5.10 Tutorial for Text e 80
9.5.11 Tutorial for MText and MTextEditor 83
9.5.12 Tutorial for Spline L e e e e e e 97
9.5.13 Tutorial for Polyface e 105
9.5.14 Tutorial for Mesh L e 107
9.5.15 Tutorial for Hatch e 110
9.5.16 Tutorial for Hatch Pattern Definition 119
9.5.17 Tutorial for Image and ImageDef oo 123
9.5.18 Tutorial for Underlay and UnderlayDefinition 124
9.5.19 Tutorial for MultiLeader 125
9.5.20 Tutorial for Viewports in Paperspace oo 0oL 145
9.5.21 Tutorial for OCS/UCS Usage o v v it ittt et e e e e e e e 150
9.5.22 Tutorial for UCS Based Transformations 164
9.5.23 Tutorial for Linear Dimensionso e 175
9.5.24 Tutorial for Radius Dimensions o 195
9.5.25 Tutorial for Diameter Dimensions L L e 202
9.5.26 Tutorial for Angular Dimensions o o 209
9.5.27 Tutorial for Arc DImensions e e e e e e 224

9.6

9.7

9.8

9.9

9.10

9.5.28 Tutorial for Ordinate DImensions v v v vt i e e e e e e e 230

9.5.29 Tutorial forthe Geo Add-on. e 234
9.5.30 Storing Custom Datain DXFFiles 240
9.5.31 Tutorial for External References 250
9.5.32 Tutorial for Image Export 260
External References (XREF) e e 273
9.6.1 DXFFilesas Attached XREFs 273
9.6.2 XREF Structures i i it e e e e e 273
9.6.3 Supported Entities e 274
9.6.4 Importing Data and Resources o oo 274
9.6.5 HighLevel Functions e 274
9.6.6 ConflictPolicy e e e e e e e 277
9.6.7 Low Level Loading Interface e 278
Howto o e e 280
9.7.1 General Document e e e e e e e e e e e e e 280
072 DXFVIEWET o o o i e 284
9.73 DXFContent i v it e e e e 286
9.7.4 Fonts e e e e e 291
9.7.5 Drawing Add-on. e e e e e e 292
FAQ . . o 304
9.8.1 What is the Relationship between ezdxf, dxfwrite and dxfgrabber? 304
9.8.2 Imported ezdxf package has no content. (readfile,new) 304
9.8.3 How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE? 304
9.8.4 Are OLE/OLE2 entities supported? v v v v v v e i e e e e 305
9.8.5 Rendering SHX fonts e 305
9.8.6 Drawing Add-on L e 305
9.8.7 Isthe AutoCAD command XYZ available? 305
Reference e 305
9.9.1 DXFDocument e e e e e e e 306
9.9.2 DXFSHUCIUIES . . « . v v v v v e 324
9.9.3 DXFEntity Creation e e e 535
994 Enums e e e e e e e e e e e e e 539
9.9.5 Colors e e e e e e e e 545
9.9.6 DataQUEry v i e e e e e e e e e e e 548
9.9.7 Math. 557
9.9.8 ConStruction it e e e e e e e e e e e e 622
9.9.9 CustomData e e e e e e e e e e e 649
9.9.10 Fonts i i e e e e e e e e e e e e e e e 655
9.9.11 TOOIS . . . o o e e e 662
9.9.12 Global OptionS v v v e e e e e e e e e e e e e e e e e e 690
99.13 LowlLevel Tools e e e e 696
Launcher e e e e e e e e 697
9.10.1 System e 698
9.10.2 Pretty Printer e e e e e e e e e e e e e e e 698
9.103 Audit e e 700
9.10.4 Draw L. e e e 700
9.10.5 VIeW o L e 702
9.10.6 BIrOWSe . . . v v v e e e e e e e e e e e e e e e e e 704
9.10.7 Browse-ACIS e e e e e e 707
9.10.8 Strip o e e e 708
9.109 Config e 708
9.10.10 Info 709
9.10.11 Show Version & Configuration o 711
9.10.12 HPGL/2 Viewer/CONVEIter v v v v v v e e e e e e e e e e e e e e e e e e e 711

O0.11 Rendering o v v it e e e e e e e e e e e e e e e e e 713

Q111 Spline o o e e e e e e e 713
O.11.2 RI2Spline o o e e e e e 715
0113 Bezier o i i e e e e e e e 716
9.11.4 EulerSpiral 717
9.11.5 RandomPaths e e e 717
9.11.6 Forms e e e e 718
9.11.7 MeshBuilder e e e e 726
9.11.8 MeshTransformer e e 730
9.11.9 MeshVertexMerger e 732
9.11.10 MeshAverageVerteXIMerger o v v v v v v vttt e e e e e e e 732
9.11.11 MeshBuilder Helper Classes o v v i i it e e e e e e e e e e 733
Q1112 Trace . . . o v v et e e e e e e e e e e 736
9.11.13 Point Rendering e 738
9.11.14 MultiLeaderBuilder e e e e e 739
Q1115 ATTOWS .« o v v o e 744
9.11.16 Hatching o e e e e e e e e e 748

0.12 Add-omnS L e 752
9.12.1 Drawing/Export Add-on e 752
9.12.2 Geolnterface L e e e 775
9.12.3 Importer e 781
9.12.4 dxf2code e e e e e e 785
9.12.5 dterdxfo e e 787
9.12.6 ODA File Converter SUPPOIt o v v v it e e e e e e e e e e e e 790
9.12.7 RI2ZEXPOrt o e e e e e e e 793
0.12.8 TI2WIIter o e e e e e e e e e e e e e e e e e e e 795
9.12.9 text2path e 801
9.12.10 MTextExplode o e e e e e e e e 804
9.12.11 HPGL/2 Converter Add-on e 806
9.12.12 PyCSG . . . o e e e 813
9.12.13 Plot Style Files (CTB/STB) e e i e e e 820
9.12.14 Showcase Forms e e e e e 829
9.12.15 Bin-Packing Add-on 836
9.12.16 MeshExchange e e e e e 843
9.12.17 OpenSCAD o e 846
9.12.18 TablePainter o e e e e e e 851
9.12.19 MTextSurrogate for DXFRI2 o 858
9.12.20 ASTM-D6673-10 EXporter o v v v ittt e e e e e e e 859

90.13 DXFlInternals. e e e 860
9.13.1 Basic DXF Structures o o ot e e e e e e 860
9.13.2 DXF SHUCIUIES . .« o v v o o e 878
9.13.3 Management Structureso e e e 953
9.13.4 Miscellaneous e e e e e e e e e e e e e e 966

9.14 Developer GUIAES v v v v it e 967
9.14.1 Source Code Formatting i i e e e 967
9.142 Type Annotations L e e e e e e e 968
9.143 Design e e e 968
9.14.4 Internal Data Structures L e e e e e e e e e e 972
9.14.5 Documentation Guide L. e e e e e e e 985

0.15 GIOSSATY . . v o e e e e e e e e e e e e e e e e e e e 987
9.16 Knowledge Graph. L e e e e e e e 988
9.17 Indicesand tables L e e e e e e e e 988
Python Module Index 989

Index 991

Vi

ezdxf Documentation, Release 1.2.0

ezdxf

Welcome! This is the documentation for ezdxf release 1.2.0, last updated Mar 04, 2024.

ezdxf is a Python package to create new DXF documents and read/modify/write existing DXF documents
MIT-License

the intended audience are programmers

requires at least Python 3.9

OS independent

tested with CPython and pypy3

has type annotations and passes mypy —-ignore-missing-imports -p ezdxf successful
additional required packages for the core package without add-ons: typing_extensions, pyparsing, numpy, fontTools
read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018
additional read-only support for DXF versions R13/R14 (upgraded to R2000)

additional read-only support for older DXF versions than R12 (upgraded to R12)

read/write support for ASCII DXF and Binary DXF

retains third-party DXF content

optional C-extensions for CPython are included in the binary wheels, available on PyPI for Windows, Linux and
macOS

CONTENTS 1

https://pypi.org/project/typing-extensions/
https://pypi.org/project/pyparsing/
https://pypi.org/project/numpy/
https://pypi.org/project/fonttools
https://pypi.org/project/ezdxf/

ezdxf Documentation, Release 1.2.0

2 CONTENTS

CHAPTER
ONE

INCLUDED EXTENSIONS

Additional packages required for these add-ons are not automatically installed during the basic setup, for more information
about the setup & dependencies visit the documentation.

drawing add-on to visualise and convert DXF files to images which can be saved as PNG, PDF or SVG files
ri12writer add-on to write basic DXF entities direct and fast into a DXF R12 file or stream

iterdxf add-on to iterate over DXF entities from the modelspace of huge DXF files (> 5GB) which do not fit
into memory

importer add-on to import entities, blocks and table entries from another DXF document

dxf2code add-on to generate Python code for DXF structures loaded from DXF documents as starting point for
parametric DXF entity creation

acadctb add-on to read/write Plot Style Files (CTB/STB)

pycsg add-on for Constructive Solid Geometry (CSG) modeling technique
MTextExplode add-on for exploding MTEXT entities into single-line TEXT entities
textZpath add-on to convert text into outline paths

geo add-on to support the __geo_interface__

me shex add-on for exchanging meshes with other tools as STL, OFF or OBJ files
openscad add-on, an interface to OpenSCAD

oda fc add-on, an interface to the ODA File Converter to read and write DWG files
hpgl2 add-on for converting HPGL/2 plot files to DXF, SVG and PDF

https://ezdxf.mozman.at/docs/setup.html
https://gist.github.com/sgillies/2217756
https://openscad.org
https://www.opendesign.com/guestfiles/oda_file_converter
https://en.wikipedia.org/wiki/HP-GL

ezdxf Documentation, Release 1.2.0

4 Chapter 1. Included Extensions

CHAPTER
TWO

WEBSITE

https://ezdxf.mozman.at/

https://ezdxf.mozman.at/

ezdxf Documentation, Release 1.2.0

6 Chapter 2. Website

CHAPTER
THREE

DOCUMENTATION

Documentation of development version at https://ezdxf.mozman.at/docs

Documentation of latest release at http://ezdxf.readthedocs.io/

https://ezdxf.mozman.at/docs
http://ezdxf.readthedocs.io/

ezdxf Documentation, Release 1.2.0

8 Chapter 3. Documentation

CHAPTER
FOUR

KNOWLEDGE GRAPH

The Knowledge Graph contains additional information beyond the documentation and is managed by logseq. The source
data is included in the repository in the folder ezdxf/notes. There is also a HTML export on the website which gets
regular updates.

https://logseq.com/
https://ezdxf.mozman.at/notes/#/page/ezdxf

ezdxf Documentation, Release 1.2.0

10 Chapter 4. Knowledge Graph

CHAPTER
FIVE

RELEASE NOTES

The release notes are included in the Knowledge Graph.

11

https://ezdxf.mozman.at/notes/#/page/release%20notes

ezdxf Documentation, Release 1.2.0

12 Chapter 5. Release Notes

CHAPTER
SIX

CHANGELOG

The changelog is included in the Knowledge Graph.

13

https://ezdxf.mozman.at/notes/#/page/changelog

ezdxf Documentation, Release 1.2.0

14 Chapter 6. Changelog

CHAPTER
SEVEN

SOURCE CODE & FEEDBACK

Source Code: http://github.com/mozman/ezdxf.git
Issue Tracker: http://github.com/mozman/ezdxf/issues

Forum: https://github.com/mozman/ezdxf/discussions

15

http://github.com/mozman/ezdxf.git
http://github.com/mozman/ezdxf/issues
https://github.com/mozman/ezdxf/discussions

ezdxf Documentation, Release 1.2.0

16 Chapter 7. Source Code & Feedback

CHAPTER
EIGHT

QUESTIONS AND ANSWERS

Please post questions at the forum or stack overflow to make answers available to other users as well.

17

https://github.com/mozman/ezdxf/discussions
https://stackoverflow.com/

ezdxf Documentation, Release 1.2.0

18 Chapter 8. Questions and Answers

CHAPTER
NINE

CONTENTS

9.1 Introduction

9.1.1 What is ezdxf

Ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, ezdxf allows developers
to read and modify existing DXF documents or create new DXF documents.

The main objective in the development of ezdxf was to hide complex DXF details from the programmer but still sup-
port most capabilities of the DXF format. Nevertheless, a basic understanding of the DXF format is required, also to
understand which tasks and goals are possible to accomplish by using the DXF format.

Not all DXF features are supported yet, but additional features will be added in the future gradually.

Ezdxf is also a replacement for the outdated dxfwrite and dxfgrabber packages but with different APIs, for more infor-
mation see also: What is the Relationship between ezdxf, dxfwrite and dxfgrabber?

9.1.2 What ezdxf can’t do

* ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking for an
appropriate application, try the free ODAFileConverter from the Open Design Alliance, which converts between
different DXF version and also between the DXF and the DWG file format.

* ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to other CAD formats such as DWG

¢ ezdxf is not a CAD kernel and does not provide high level functionality for construction work, it is just an interface
to the DXF file format. If you are looking for a CAD kernel with Python scripting support, look at FreeCAD.

9.1.3 Supported Python Versions

Ezdxf requires at least Python 3.9 (determined by numpy) and will be tested with the latest stable CPython version and
the latest stable release of pypy3 during development.

Ezdxf is written in pure Python with optional Cython implementations of some low level math classes and requires pypars-
ing, numpy, fontTools and typing_extensions as additional library beside the Python Standard Library. Pytest is required
to run the unit and integration tests. Data to run the stress and audit test can not be provided, because I don’t have the
rights for publishing these DXF files.

19

http://www.python.org
http://usa.autodesk.com/
https://pypi.org/project/dxfwrite/
https://pypi.org/project/dxfgrabber/
https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/
http://www.python.org
https://www.freecadweb.org/

ezdxf Documentation, Release 1.2.0

9.1.4 Supported Operating Systems

Ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter (>=3.9).

9.1.5 Supported DXF Versions

Version AutoCAD Release

AC1009 AutoCAD R12

AC1012 AutoCAD R13 -> R2000
AC1014 AutoCAD R14 -> R2000
ACI1015 AutoCAD R2000
ACI1018 AutoCAD R2004
AC1021 AutoCAD R2007
AC1024 AutoCAD R2010
AC1027 AutoCAD R2013
AC1032 AutoCAD R2018

Ezdxf also reads older DXF versions but saves it as DXF R12.

9.1.6 Embedded DXF Information of 3rd Party Applications

The DXF format allows third-party applications to embed application-specific information. Ezdxf manages DXF data
in a structure-preserving form, but for the price of large memory requirement. Because of this, processing of DXF
information of third-party applications is possible and will retained on rewriting.

9.1.7 License

Ezdxf is licensed under the very liberal MIT-License.

9.2 Setup & Dependencies

The primary goal is to keep the dependencies of the core package as small as possible. The add-ons are not part of the
core package and can therefore use as many packages as needed. The only requirement for these packages is an easy way
to install them on Windows, Linux and macOS, preferably as:

pip3 install ezdxf

The packages pyparsing, numpy, fontTools and typing_extensions are the hard dependency and will be installed automat-
ically by pip3!

The minimal required Python version is determined by the latest release version of numpy.

20 Chapter 9. Contents

http://opensource.org/licenses/mit-license.php
https://pypi.org/project/pyparsing/
https://pypi.org/project/numpy/
https://pypi.org/project/fonttools/
https://pypi.org/project/typing_extensions/
https://pypi.org/project/numpy/

ezdxf Documentation, Release 1.2.0

9.2.1 Basic Installation

The most common case is the installation by pip3 including the optional C-extensions from PyPI as binary wheels:

pip3 install ezdxf

9.2.2 Installation with Extras

To use all features of the drawing add-on, add the [draw] tag:

pip3 install ezdxf[draw]

Tag Additional Installed Packages
[draw] Matplotlib, PySide6, PyMuPDF, Pillow
[dev] [draw] + setuptools, wheel, Cython, pytest (full development setup)

If PySide6 is not available on your system, use PyQt5 by this options:

Tag Additional Installed Packages
[draw5] Matplotlib, PyQtS, PyMuPDF, Pillow
[dev5] [draw5] + setuptools, wheel, Cython, pytest (full development setup)

9.2.3 PySide6 Issue

Maybe PySide6 won’t launch on Debian based distributions and shows this error message:

gt.gpa.plugin: Could not load the Ot platform plugin "xcb" in "" even though it was.
—found.

This may fix the issue:

sudo apt-get install libxcb-cursor0

9.2.4 Binary Wheels

Ezdxf includes some C-extensions, which will be deployed automatically at each release to PyPI as binary wheels to PyPI:
* Windows: only amd64 packages
* Linux: manylinux and musllinux packages for x86_64 & aarch64
e macOS: x86_64, arm64 and universal packages

The wheels are created by the continuous integration (CI) service provided by GitHub and the build container cibuildwheel
provided by PyPA the Python Packaging Authority. The workflows are kept short and simple, so my future me will
understand what’s going on and they are maybe also helpful for other developers which do not touch CI services every
day.

The C-extensions are disabled for pypy3, because the JIT compiled code of pypy is much faster than the compiled C-
extensions.

9.2. Setup & Dependencies 21

https://pypi.org/project/ezdxf
https://matplotlib.org
https://pypi.org/project/PySide6/
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/Pillow/
https://pypi.org/project/PySide6/
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/Pillow/
https://pypi.org/project/PySide6/
https://pypi.org/project/ezdxf
https://github.com
https://github.com/pypa/cibuildwheel
https://www.pypa.io/en/latest/
https://github.com/mozman/ezdxf/tree/master/.github/workflows
https://www.pypy.org

ezdxf Documentation, Release 1.2.0

9.2.5 Disable C-Extensions

It is possible to disable the C-Extensions by setting the environment variable EZDXF_DISABLE_C_EXT to 1 or true:

set EZDXF_DISABLE_C_EXT=1

or on Linux:

export EZDXF_DISABLE_C_EXT=1

This is has to be done before anything from ezdxf is imported! If you are working in an interactive environment, you
have to restart the interpreter.

9.2.6 Installation from GitHub

Install the latest development version by pip3 from GitHub:

pip3 install git+https://github.com/mozman/ezdxf.git@master

9.2.7 Build and Install from Source
This is only required if you want the compiled C-extensions, the ezdxf installation by pip from the source code package

works without the C-extension but is slower. There are binary wheels available on PyPi which included the compiled
C-extensions.

Windows

Make a build directory and a virtual environment:

mkdir build

cd build

Py —m venv .venv
.venv/Scripts/activate.bat

A working C++ compiler setup is required to compile the C-extensions from source code. Windows users need the build
tools from Microsoft: https://visualstudio.microsoft.com/de/downloads/

Download and install the required Visual Studio Installer of the community edition and choose the option: Visual Studio
Build Tools 20..

Install required packages to build and install ezdxf with C-extensions:

pip3 install setuptools wheel cython

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install .

Check if the installation was successful:

22 Chapter 9. Contents

https://github.com
https://pypi.org/project/ezdxf
https://visualstudio.microsoft.com/de/downloads/
https://github.com

ezdxf Documentation, Release 1.2.0

python3 —-m ezdxf -V

The ezdxf command should run without a preceding python3 -m, but calling the launcher through the interpreter guarantees
to call the version which was installed in the venv if there exist a global installation of ezdxf like in my development
environment.

The output should look like this:

ezdxf 0.17.2b4 from D:\Source\build\.venv\lib\site-packages\ezdxf

Python version: 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64_
—bit (AMDG64)]

using C-extensions: yes

using Matplotlib: no

To install optional packages go to section: Install Optional Packages

To run the included tests go to section: Run the Tests

WSL & Ubuntu

I use sometimes the Windows Subsystem for Linux (WSL) with Ubuntu 20.04 LTS for some tests (how to install WSL).

By doing as fresh install on WSL & Ubuntu, I encountered an additional requirement, the build-essential package adds the
required C++ support and the python3.10-dev package the required headers, change 3.10 to the Python version you are
using:

sudo apt install build-essential python3.10-dev

The system Python 3 interpreter has the version 3.8 (in 2021), but I will show in a later section how to install an additional
newer Python version from the source code:

cd ~

mkdir build

cd build

python3 -m venv .venv
source .venv/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

pip3 install cython wheel

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install

Check if the installation was successful:

python3 —-m ezdxf -V

The output should look like this:

9.2. Setup & Dependencies 23

https://docs.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com
https://docs.microsoft.com/en-us/windows/wsl/install
https://github.com

ezdxf Documentation, Release 1.2.0

ezdxf 0.17.2b4 from /home/mozman/src/.venv/lib/python3.8/site-packages/ezdxf
Python version: 3.8.10 (default, Nov 26 2021, 20:14:08)

[GCC 9.3.0]

using C-extensions: yes

using Matplotlib: no

To install optional packages go to section: Install Optional Packages

To run the included tests go to section: Run the Tests

Raspberry Pi OS

Testing platform is a Raspberry Pi 400 and the OS is the Raspberry Pi OS which runs on 64bit hardware but is a 32bit
OS. The system Python 3 interpreter comes in version 3.7 (in 2021), but I will show in a later section how to install an
additional newer Python version from the source code.

Install the build requirements, Matplotlib and the PyQt5 bindings from the distribution repository:

sudo apt install python3-pip python3-matplotlib python3-pygt5

Installing Matplotlib and the PyQt5 bindings by pip from piwheels in the venv worked, but the packages showed errors at
import, seems to be an packaging error in the required numpy package. PySide6 is the preferred Qt binding but wasn’t
available on Raspberry Pi OS at the time of writing this - PyQt5 is supported as fallback.

Create the venv with access to the system site-packages for using Matplotlib and the Qt bindings from the system instal-
lation:

cd ~

mkdir build

cd build

python3 -m venv --system-site-packages .venv
source .venv/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

pip3 install cython wheel

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install

Check if the installation was successful:

python3 -m ezdxf -V

The output should look like this:

ezdxf 0.17.2b4 from /home/pi/src/.venv/lib/python3.7/site-packages/ezdxf
Python version: 3.7.3 (default, Jan 22 2021, 20:04:44)

[GCC 8.3.0]

using C-extensions: yes

using Matplotlib: yes

24 Chapter 9. Contents

https://www.raspberrypi.com
https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org
https://pypi.org/project/numpy/
https://pypi.org/project/PySide6/
https://www.raspberrypi.com
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://github.com

ezdxf Documentation, Release 1.2.0

To run the included tests go to section: Run the Tests

Manjaro on Raspberry Pi

Because the (very well working) Raspberry Pi OS is only a 32bit OS, I searched for a 64bit alternative like Ubuntu,
which just switched to version 21.10 and always freezes at the installation process! So I tried Manjaro as rolling release,
which I used prior in a virtual machine and wasn’t really happy, because there is always something to update. Anyway the
distribution looks really nice and has Python 3.9.9 installed.

Install build requirements and optional packages by the system packager pacman:

sudo pacman -S python-pip python-matplotlib python-pygth

Create and activate the venv:

@fel &

mkdir build

cd build

python3 -m venv --system-site-packages .venv
source .venv/bin/activate

The rest is the same procedure as for the Raspberry Pi OS:

pip3 install cython wheel

git clone https://github.com/mozman/ezdxf.git
cd ezdxf

pip3 install

python3 -m ezdxf -V

To run the included tests go to section: Run the Tests

Ubuntu Server 21.10 on Raspberry Pi

I gave the Ubuntu Server 21.10 a chance after the desktop version failed to install by a nasty bug and it worked well. The
distribution comes with Python 3.9.4 and after installing some requirements:

sudo apt install build-essential python3-pip python3.9-venv

The remaining process is like on WSL & Ubuntu except for the newer Python version. Installing Matplotlib by pip works
as expected and is maybe useful even on a headless server OS to create SVG and PNG from DXEF files. PySide6 is not
available by pip and the installation of PyQt5 starts from the source code package which I stopped because this already
didn’t finished on Manjaro, but the installation of the PyQt5 bindings by apt works:

sudo apt install python3-pygt5b

Use the ——system-site-packages option for creating the venv to get access to the PyQt5 package.

9.2. Setup & Dependencies 25

https://www.raspberrypi.com
https://ubuntu.com
https://www.manjaro.org
https://ubuntu.com
https://matplotlib.org
https://pypi.org/project/PySide6/
https://pypi.org/project/PyQt5/
https://www.manjaro.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/

ezdxf Documentation, Release 1.2.0

9.2.8 Install Optional Packages

Install the optional dependencies by pip only for Windows and WSL & Ubuntu, for Raspberry Pi OS and Manjaro on
Raspberry Pi install these packages by the system packager:

pip3 install matplotlib PySide6

9.2.9 Run the Tests

This is the same procedure for all systems, assuming you are still in the build directory build/ezdxf and ezdxf is now
installed in the venv.

Install the test dependencies and run the tests:

pip3 install pytest
python3 -m pytest tests integration_tests

9.2.10 Build Documentation

Assuming you are still in the build directory build/ezdxf of the previous section.

Install Sphinx:

pip3 install Sphinx sphinx-rtd-theme

Build the HTML documentation:

cd docs
make html

The output is located in build/ezdxf/docs/build/html.

9.2.11 Python from Source

Debian based systems have often very outdated software installed and sometimes there is no easy way to install a newer
Python version. This is a brief summery how I installed Python 3.9.9 on the Raspberry Pi OS, for more information go
to the source of the recipe: Real Python

Install build requirements:

sudo apt-get update
sudo apt-get upgrade

sudo apt-get install -y make build-essential libssl-dev zliblg-dev \
libbz2-dev libreadline-dev libsglite3-dev wget curl 1llvm \
libncurses5-dev libncurseswb-dev xz-utils tk-dev

Make a build directory:

cd ~
mkdir build
cd build

Download and unpack the source code from Python.org, replace 3.9.9 by your desired version:

26 Chapter 9. Contents

https://www.raspberrypi.com
https://realpython.com/installing-python/#how-to-build-python-from-source-code
https://www.python.org

ezdxf Documentation, Release 1.2.0

wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz
tar -xvzf Python-3.9.9.tgz
cd Python-3.9.9/

Configure the build process, use a prefix to the directory where the interpreter should be installed:

./configure —--prefix=/opt/python3.9.9 --enable-optimizations

Build & install the Python interpreter. The -j option simply tells make to split the building into parallel steps to speed up
the compilation, my Raspberry Pi 400 has 4 cores so 4 seems to be a good choice:

make —-3j 4
sudo make install

The building time was ~25min and the new Python 3.9.9 interpreter is now installed as /opt/python3.9.9/bin/python3.

At the time there were no system packages for Matplotlib and PyQt5 for this new Python version available, so there is no
benefit of using the option ——system-site-packages for building the venv:

cd ~/build
/opt/python3.9.9/bin/python3 —m venv py39
source py39/bin/activate

I have not tried to build Matplotlib and PyQt5 by myself and the installation by pip from piwheels did not work, in this
case the drawing add-on will not work.

Proceed with the ezdxf installation from source as shown for the Raspberry Pi OS.

9.3 Usage for Beginners

This section shows the intended usage of the ezdxf package. This is just a brief overview for new ezdxf users, follow the
provided links for more detailed information.

First import the package:

import ezdxf

9.3.1 Loading DXF Files

ezdxf supports loading ASCII and binary DXF documents from a file:

doc = ezdxf.readfile(filename)

or from a zip-file:

doc = ezdxf.readzip(zipfilename[, filename])

Which loads the DXF document filename from the zip-file zipfilename or the first DXF file in the zip-file if filename is
absent.

It is also possible to read a DXF document from a stream by the ezdx 7. read () function, but this is a more advanced
feature, because this requires detection of the file encoding in advance.

This works well with DXF documents from trusted sources like AutoCAD or BricsCAD. For loading DXF documents
with minor or major flaws use the ezdx . recover module.

9.3. Usage for Beginners 27

https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org

ezdxf Documentation, Release 1.2.0

See also:

Documentation for ezdxf . readfile (), ezdxf.readzip () and ezdxf. read (), for more information about
file management go to the Document Management section. For loading DXF documents with structural errors look at the
ezdxf.recover module.

9.3.2 Layouts and Blocks

Layouts are containers for DXF entities like LINE or CIRCLE. The most important layout is the modelspace labeled as
“Model” in CAD applications which represents the “world” work space. Paperspace layouts represents plottable sheets
which contains often the framing and the tile block of a drawing and VIEWPORT entities as scaled and clipped “windows”
into the modelspace.

The modelspace is always present and can not be deleted. The active paperspace is also always present in a new DXF
document but can be deleted, in that case another paperspace layout gets the new active paperspace, but you can not delete
the last paperspace layout.

Getting the modelspace of a DXF document:

msp = doc.modelspace ()

Getting a paperspace layout by the name as shown in the tab of a CAD application:

psp = doc.paperspace ("Layoutl")

A block is just another kind of entity space, which can be inserted multiple times into other layouts and blocks by the
INSERT entity also called block references, this is a very powerful and an important concept of the DXF format.

Getting a block layout by the block name:

blk = doc.blocks.get ("NAME")

All these layouts have factory functions to create graphical DXF entities for their entity space, for more information about
creating entities see section: Create new DXF Entities

9.3.3 Query DXF Entities

As said in the Layouts and Blocks section, all graphical DXF entities are stored in layouts, all these layouts can be iterated
and do support the index operator e.g. layout [—1] returns the last entity.

The main difference between iteration and index access is, that iteration filters destroyed entities, but the index operator
returns also destroyed entities until these entities are purged by layout .purge (), more about this topic in section:
Delete Entities.

There are two advanced query methods: query () and groupby ().

Get all lines of layer "MyLayer":

lines = msp.query ('LINE[layer=="MyLayer"]")

This returns an Ent i t yOQuery container, which also provides the same query () and groupby () methods.

Get all lines categorized by a DXF attribute like color:

all _lines_by_color = msp.query ("LINE") .groupby ("color")
lines_with_color_1 = all_lines_by_color.get (1, [1])

28 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

The groupby () method returns a regular Python dict with colors as key and a regular Python 1ist of entities as
values (not an Ent it yQuery container).

See also:

For more information go to the Tutorial for Getting Data from DXF Files

9.3.4 Examine DXF Entities

Each DXF entity has a dxf namespace attribute, which stores the named DXF attributes, some entity attributes and
assets are only available from Python properties or methods outside the dxf namespace like the vertices of the LW-
POLYLINE entity. More information about the DXF attributes of each entity can found in the documentation of the
ezdxf.entities module.

Get some basic DXF attributes:

layer = entity.dxf.layer # default is "O0"
color = entity.dxf.color # default is 256 = BYLAYER

Most DXF attributes have a default value, which will be returned if the DXF attribute is not present, for DXF attributes
without a default value you can check if the attribute really exist:

entity.dxf.hasattr ("true_color™)

or use the get () method and provide a default value:

entity.dxf.get ("true_color", 0)

See also:
e Common graphical DXF attributes

e Helper class ezdxf.gfxattribs.GfxAttribs for building DXF attribute dictionaries.

9.3.5 Create a New DXF File

Create new document for the latest supported DXF version:

’ doc = ezdxf.new()

Create a new DXF document for a specific DXF version, e.g. for DXF R12:

’doc = ezdxf.new ("R12")

The ezdxf.new () function can create some standard resources, such as linetypes and text styles, by setting the argu-
ment sefup to True:

doc = ezdxf.new (setup=True)

See also:
* Tutorial for Creating DXF Drawings

¢ Documentation for ezdx . new (), for more information about file management go to the Document Management
section.

9.3. Usage for Beginners 29

ezdxf Documentation, Release 1.2.0

9.3.6 Create New DXF Entities

The factory methods for creating new graphical DXF entities are located in the BaseLayout class and these factory
methods are available for all entity containers:

* Modelspace
* Paperspace
e BlockLayout

The usage is simple:

msp = doc.modelspace ()
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer"})

A few important/required DXF attributes are explicit method arguments, most additional DXF attributes are gives as a
regular Python dict object by the keyword only argument dxfattribs. The supported DXF attributes can be found
in the documentation of the ezdxf.entities module.

Warning: Do not instantiate DXF entities by yourself and add them to layouts, always use the provided factory
methods to create new graphical entities, this is the intended way to use ezdxf.

See also:
* Thematic Index of Layout Factory Methods
* Tutorial for Creating DXF Drawings
* Tutorial for Simple DXF Entities
e Tutorial for LWPolyline
* Tutorial for Text
* Tutorial for MText and MTextEditor

e Tutorial for Hatch

9.3.7 Saving DXF Files

Save the DXF document with a new name:

doc.saveas ("new_name.dxf")

or with the same name as loaded:

doc.save ()

See also:

Documentation for ezdxf . document .Drawing. save () and ezdxf.document .Drawing. saveas (), for
more information about file management go to the Document Management section.

30 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.3.8 Create New Blocks

The block definitions of a DXF document are managed by the B1ocksSect ion object:

my_block = doc.blocks.new ("MyBlock™)

See also:

Tutorial for Blocks

9.3.9 Create Block References

A block reference is just another DXF entity called INSERT. The Insert entity is created by the factory method:
add_blockref ():

msp.add_blockref ("MyBlock", (0, 0))

See also:

See Tutorial for Blocks for more advanced features like using At t rib entities.

9.3.10 Create New Layers

A layer is not an entity container, a layer is just another DXF attribute stored in the entity and the entity can inherit
some properties from this Layer object. Layer objects are stored in the layer table which is available as attribute doc .
layers.

You can create your own layers:

my_layer = doc.layers.add("MyLayer")

The layer object also controls the visibility of entities which references this layer, the on/off state of the layer is unfortu-
nately stored as positive or negative color value which make the raw DXF attribute of layers useless, to change the color
of a layer use the property Layer.color

my_layer.color = 1

To change the state of a layer use the provided methods of the Layer object, like on (), off (), freeze () or
thaw():

my_layer.off ()

See also:

Layers

9.3. Usage for Beginners 31

ezdxf Documentation, Release 1.2.0

9.3.11 Delete Entities

The safest way to delete entities is to delete the entity from the layout containing that entity:

line = msp.add_line((0, 0), (1, 0))
msp.delete_entity (line)

This removes the entity immediately from the layout and destroys the entity. The property is_alive returns False
for a destroyed entity and all Python attributes are deleted, so 1line.dxf.color will raise an AttributeError
exception, because 1ine does not have a dx 1 attribute anymore.

Ezdxf also supports manually destruction of entities by calling the method destroy ():

line.destroy ()

Manually destroyed entities are not removed immediately from entities containers like Mode 1 space orEntityQuery,
but iterating such a container will filter destroyed entities automatically, soa for e in msp: ... loop will never
yield destroyed entities. The index operator and the 1en () function do not filter deleted entities, to avoid getting deleted
entities call the purge () method of the container manually to remove deleted entities.

9.3.12 Further Information

¢ Reference

9.4 Basic Concepts

The Basic Concepts section teach the intended meaning of DXF attributes and structures without teaching the application
of this information or the specific implementation by ezdxf, if you are looking for more information about the ezdxf
internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section and for the
solution of specific problems go to the Howto section.

9.4.1 What is DXF?

The common assumption is also the cite of Wikipedia:

AutoCAD DXF (Drawing eXchange Format) is a CAD data file format developed by Autodesk for enabling
data interoperability between AutoCAD and other applications.

DXEF was originally introduced in December 1982 as part of AutoCAD 1.0, and was intended to provide an
exact representation of the data in the AutoCAD native file format, DWG (Drawing). For many years Au-
todesk did not publish specifications making correct imports of DXF files difficult. Autodesk now publishes
the DXF specifications online.

The more precise cite from the DXF reference itself:

The DXF™ format is a tagged data representation of all the information contained in an AutoCAD® drawing
file. Tagged data means that each data element in the file is preceded by an integer number that is called a
group code. A group code’s value indicates what type of data element follows. This value also indicates the
meaning of a data element for a given object (or record) type. Virtually all user-specified information in a
drawing file can be represented in DXF format.

No mention of interoperability between AutoCAD and other applications.

32 Chapter 9. Contents

https://en.wikipedia.org/wiki/AutoCAD_DXF
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 1.2.0

In reality the DXF format was designed to ensure AutoCAD cross-platform compatibility in the early days when different
hardware platforms with different binary data formats were used. The name DXF (Drawing eXchange Format) may
suggest an universal exchange format, but it is not. It is based on the infrastructure installed by Autodesk products (fonts)
and the implementation details of AutoCAD (MTEXT) or on licensed third party technologies (embedded ACIS entities).

For more information about the AutoCAD history see the document: The Autodesk File - Bits of History, Words of
Experience by John Walker, founder of Autodesk, Inc. and co-author of AutoCAD.

DXF Reference Quality

The DXF reference is by far no specification nor a standard like the W3C standard for SVG or the ISO standard for PDF.

The reference describes many but not all DXF entities and some basic concepts like the tag structure or the arbitrary axis
algorithm. But the existing documentation (reference) is incomplete and partly misleading or wrong. Also missing from
the reference are some important parts like the complex relationship between the entities to create higher order structures
like block definitions, layouts (model space & paper space) or dynamic blocks to name a few.

Reliable CAD Applications

Because of the suboptimal quality of the DXF reference not all DXF viewers, creators or processors are of equal quality.
I consider a CAD application as a reliable CAD application when the application creates valid DXF documents in the
meaning and interpretation of Autodesk and a reliable DXF viewer when the result matches in most parts the result of
the free Trueview viewer provided by Autodesk.

These are some applications which do fit the criteria of a reliable CAD application:
e AutoCAD and Trueview

¢ CAD applications based on the OpenDesignAlliance (ODA) SDK, see also ODA on wikipedia, even Autodesk is
a corporate member, see their blog post from 22 Sep 2020 at adsknews but only to use the ODA IFC tools and not
to improve the DWG/DXF compatibility

¢ BricsCAD (ODA based)
¢ GstarCAD (ODA based)
e ZWCAD (ODA based)

Unfortunately, I cannot recommend any open source applications because everyone I know has serious shortcomings, at
least as a DXF viewer, and I don’t trust them as a DXF creator either. To be clear, not even ezdxf (which is not a CAD
application) is a reliable library in this sense - it just keeps getting better, but is far from reliable.

Hint: Please do not submit bug reports based on the use of LibreCAD or QCAD, these applications are in no way
reliable regarding the DXF format and I will not waste my time on them.

9.4. Basic Concepts 33

https://www.fourmilab.ch/autofile/
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://www.w3.org/Graphics/SVG/
https://en.wikipedia.org/wiki/PDF
https://www.autodesk.com/
https://www.autodesk.com/viewers
https://www.autodesk.com/
https://www.autodesk.com/products/autocad/overview
https://www.autodesk.com/viewers
https://www.opendesign.com/
https://en.wikipedia.org/wiki/Open_Design_Alliance
https://www.autodesk.com/
https://adsknews.autodesk.com/news/open-design-alliance-membership
https://adsknews.autodesk.com/
https://www.bricsys.com/en-intl/
https://www.gstarcad.net/
https://www.zwsoft.com/product/zwcad
https://librecad.org/
https://qcad.org/en/

ezdxf Documentation, Release 1.2.0

9.4.2 DXF Entities and Objects

DXEF entities are objects that make up the design data stored in a DXF file.

Graphical Entities
Graphical entities are visible objects stored in blocks, modelspace- or paperspace layouts. They represent the various
shapes, lines, and other elements that make up a 2D or 3D design.
Some common types of DXF entities include:
e LINE and POLYLINE: These are the basic building blocks of a DXF file. They represent straight and curved lines.
¢ CIRCLE and ARC: These entities represent circles and portions of circles, respectively.

e TEXT and MTEXT: DXF files can also contain text entities, which can be used to label parts of the design or
provide other information.

¢ HATCH: DXF files can also include hatch patterns, which are used to fill in areas with a specific pattern or texture.

* DIMENSION: DXF files can also contain dimension entities, which provide precise measurements of the various
elements in a design.

* INSERT: A block is a group of entities that can be inserted into a design multiple times by the INSERT entity,
making it a useful way to reuse elements of a design.

These entities are defined using specific codes and values in the DXF file format, and they can be created and manipulated
by ezdxf.

Objects

DXEF objects are non-graphical entities and have no visual representation, they store administrative data, paperspace layout
definitions, style definitions for multiple entity types, custom data and objects. The OBJECTS section in DXF files serves
as a container for these non-graphical objects.

Some common DXF types of DXF objects include:

* DICTIONARY: A dictionary object consists of a series of name-value pairs, where the name is a string that iden-
tifies a specific object within the dictionary, and the value is a reference to that object. The objects themselves can
be any type of DXF entity or custom object defined in the DXF file.

¢ XRECORD entities are used to store custom application data in a DXF file.

e the LAYOUT entity is a DXF entity that represents a single paper space layout in a DXF file. Paper space is the
area in a CAD drawing that represents the sheet of paper or other physical media on which the design will be plotted
or printed.

* MATERIAL, MLINESTYLE, MLEADERSTYLE definitions stored in certain DICTIONARY objects.

¢ A GROUP entity contains a list of handles that refer to other DXF entities in the drawing. The entities in the group
can be of any type, including entities from the model space or paper space layouts.

34 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

TagStorage

The ezdxf package supports many but not all entity types, all these unsupported types are stored as TagStorage in-
stances to preserve their data when exporting the edited DXF content by ezdxf.

Access Entity Attributes

All DXF attributes are stored in the entity namespace attribute dx f.

print (entity.dxf.layer)

Some attributes are mandatory others are optional in most cases a reasonable values will be returned as default value if
the attribute is missing.

See also:

Tutorial for Getting Data from DXF Files

Where to Look for Entities

The DXF document has an entity database where all entities which have a handle are stored in a (key, value) storage. The
query () method is often the easiest way to request data:

for text in doc.entitydb.query ("TEXT") :
print (text.dxf.text)

See also:
e ezdxf.query module
e ezdxf.entitydb module
Graphical entities are stored in blocks, the modelspace or paperspace layouts.
e The doc.modelspace () function returns the Mode 1 space instance
e The doc.paperspace () returns a Paperspace instance
e The doc.blocks attribute provides access to the BlocksSection

The query () method of the Drawing class which represents the DXF document, runs the query on all layouts and
block definitions.

Non-graphical entities are stored in the OBJECTS section:
e The doc.objects attribute provides access to the ObjectsSection.
Resource definitions like Layer, Linet ype or Textstyle are stored in resource tables:
e doc.layers: the LayerTable
e doc.linetypes: the LinetypeTable
e doc.styles: the TextstyleTable

e doc.dimstyles:the DimStyleTable

Important: A layer assignment is just an attribute of a DXF entity, it’s not an entity container!

See also:

9.4. Basic Concepts 35

ezdxf Documentation, Release 1.2.0

* Basic concept of the Modelspace
* Basic concept of Paperspace layouts
* Basic concept of Blocks

 Tutorial for Getting Data from DXF Files

How to Create Entities

The recommended way to create new DXF entities is to use the factory methods of layouts and blocks to create entities
and add them to the entity space automatically.

See also:
» Thematic Index of Layout Factory Methods
e Reference of the BaselLayout class

e Tutorial for Simple DXF Entities

9.4.3 AutoCAD Color Index (ACI)

The color attribute represents an ACI (AutoCAD Color Index). AutoCAD and many other CAD application provides a
default color table, but pen table would be the more correct term. Each ACI entry defines the color value, the line weight
and some other attributes to use for the pen. This pen table can be edited by the user or loaded from an C7B or STB file.
Ezdxf provides functions to create (new ()) or modify (ezdxf.acadctb.load ()) plot styles files.

DXF R12 and prior do not preserve the layout of a drawing very well, because of the lack of a standard color table and
missing DXF structures to define these color tables in the DXF file. If a CAD user redefines an ACI color entry in a CAD
application and does not provide this C7B or STB file, you can not know what color or lineweight was used intentionally.
This got better in later DXF versions by supporting additional DXF attributes like ! ineweight and true_color
which can define these attributes by distinct values.

21X

25X
|
24X
I -0
5 I B s
°c . .
7
s | I

18X 19x 20X

36 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

See also:
* Plot Style Files (CTB/STB)
* ezdxf.colors
o Tutorial for Common Graphical Attributes
¢ Autodesk Knowledge Network: About Setting the Color of Objects
* BricsCAD Help Center: Entity Color

9.4.4 True Color

The support for true color was added to the DXF file format in revision R2004. The true color value has three components
red, green and blue in the range from O to 255 and is stored as a 24-bit value in the DXF namespace as t rue_color
attribute and looks like this 0OxRRGGBB as hex value. For a more easy usage all graphical entities support the rgb
property to get and set the true color as (r, g, b) tuples where the components must be in the range from 0 to 255.

import ezdxf

doc ezdxf.new ()

msp = doc.modelspace ()

line = msp.add_line((0, 0), (10, 0))
line.rgb = (255, 128, 32)

The true color value has higher precedence than the AutoCAD Color Index (ACI) value, if the attributes color and the
true_color are present the entity will be rendered with the true color value.

The true color value has the advantage that it defines the color absolutely and unambiguously, no unexpected overwriting
is possible. The representation of the color is fixed and only depends on the calibration of the output medium:

9.4. Basic Concepts 37

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-14BC039D-238D-4D9E-921B-F4015F96CB54-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitycolor/V22/EN_US?id=165079136935

ezdxf Documentation, Release 1.2.0

See also:
* ezdxf.colors
* Tutorial for Common Graphical Attributes
* Autodesk Knowledge Network: About Setting the Color of Objects
* BricsCAD Help Center: Entity Color

38 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-14BC039D-238D-4D9E-921B-F4015F96CB54-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitycolor/V22/EN_US?id=165079136935

ezdxf Documentation, Release 1.2.0

9.4.5 Transparency

The support for transparency was added to the DXF file format in revision R2004. The raw transparency value stored as 32
bit value in the DXF namespace as t ransparency attribute, has a range from 0 to 255 where 0 is fully transparent and
255 if opaque and has the top byte set to 0x02. For a more easy usage all graphical entities support the t ransparency
property to get and set the transparency as float value in the range frem 0.0 to 1.0 where 0.0 is opaque and 1.0 is fully
transparent. The transparency value can be set explicit in the entity, by layer or by block.

import ezdxf

doc = ezdxf.new/()

msp = doc.modelspace ()

line = msp.add_line((0, 0), (10, 0))
line.transparency = 0.5

See also:
* ezdxf.colors
e Tutorial for Common Graphical Attributes
* Autodesk Knowledge Network: About Making Objects Transparent
* BricsCAD Help Center: Entity Transparency

9.4.6 Layers

Every object has a layer as one of its properties. You may be familiar with layers - independent drawing spaces that stack
on top of each other to create an overall image - from using drawing programs. Most CAD programs use layers as the
primary organizing principle for all the objects that you draw. You use layers to organize objects into logical groups of
things that belong together; for example, walls, furniture, and text notes usually belong on three separate layers, for a
couple of reasons:

» Layers give you a way to turn groups of objects on and off - both on the screen and on the plot.
¢ Layers provide the most efficient way of controlling object color and linetype

Create a layer table entry Layer by Drawing. layers.add (), assign the layer properties such as color and linetype.
Then assign those layers to other DXF entities by setting the DXF attribute 1ayer to the layer name as string.

The DXF format do not require a layer table entry for a layer. A layer without a layer table entry has the default linetype
'Continuous "', adefault color of 7 and a lineweight of —3 which represents the default lineweight of 0.25mm in most
circumstances.

Layer Properties

The advantage of assigning properties to a layer is that entities can inherit this properties from the layer by using the string
"BYLAYER' as linetype string, 256 as color or —1 as lineweight, all these values are the default values for new entities.
DXEF version R2004 and later also support inheriting true_color and transparency attributes from a layer.

9.4. Basic Concepts 39

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-E6EB9CA5-B039-4262-BE17-1AD3E7230EF7-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_transparency/V22/EN_US?id=165079137340

ezdxf Documentation, Release 1.2.0

Layer Status

The layer status is important for the visibility and the ability to select and edit DXF entities on that layer in CAD applica-
tions. Ezdxf does not care about the visual representation and works at the level of entity spaces and the entity database
and therefore all the layer states documented below are ignored by ezdxf. This means if you iterate an entity space like
the modelspace or the entity database you will get all entities from that entity space regardless the layer status.

¢ ON: the layer is visible, entities on that layer are visible, selectable and editable
* OFF: the layer is not visible, entities on that layer are not visible, not selectable and not editable

¢ FROZEN: the layer is not visible, entities on that layer are not visible, not selectable and not editable, very similar
to the OFF status but layers can be frozen individually in VIEWPORTS and freezing layers may speed up some
commands in CAD applications like ZOOM, PAN or REGEN.

» LOCKED: the layer is visible, entities on that layer are visible but not selectable and not editable

Deleting Layers

Deleting a layer is not as simple as it might seem, especially if you are used to use a CAD application like AutoCAD. There
is no directory of locations where layers can be used and references to layers can occur even in third-party data. Deleting
the layer table entry removes only the default attributes of that layer and does not delete any layer references automatically.
And because a layer can exist without a layer table entry, the layer exist as long as at least one layer reference to the layer
exist.

Renaming Layers

Renaming a layer is also problematic because the DXF format stores the layer references in most cases as text strings, so
renaming the layer table entry just creates a new layer and all entities which still have a reference to the old layer now
inherit their attributes from an undefined layer table entry with default settings.

Viewport Overrides

Most of the layer properties can be overriden for each Viewport entity individually and this overrides are stored in
layer table entry referenced by the handle of the VIEWPORT entity. In contrast the frozen status of layers is store in the
VIEWPORT entity.

See also:
» Tutorial for Layers
* Tutorial for Viewports in Paperspace
* Autodesk Knowledge Network: About Layers
¢ BricsCAD Help Center: Working with Layers

40 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-6B3E3B5D-3AE2-4162-A5FE-CFE42AB0743B-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_workingwithlayers/V22/EN_US?id=165079137441

ezdxf Documentation, Release 1.2.0

9.4.7 Linetypes

The Iinetype defines the rendering pattern of linear graphical entities like LINE, ARC, CIRCLE and so on. The
linetype of an entity can be specified by the DXF attribute 1inetype, this can be an explicit named linetype or the
entity can inherit its linetype from the assigned layer by setting 1inetype to 'BYLAYER', which is also the default
value. CONTINUOUS is the default linetype for layers with an unspecified linetype.

Ezdxf creates several standard linetypes, if the argument sefup is True when calling new (), this simple linetypes are
supported by all DXF versions:

doc = ezdxf.new('R2007', setup=True)

9.4. Basic Concepts a1

ezdxf Documentation, Release 1.2.0

CONTINUQUS

CENTER

CENTERXZ

CENTER2

DASHED

DASHEDKZ

DASHED2

PHANTOM
PHANTOMX2

PHANTOM2

DASHDOT

DASHDOTH2

DIVIDE

DIVIDEXZ

42

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

In DXF R13 Autodesk introduced complex linetypes which can contain text or shapes.
See also:

* Tutorial for Common Graphical Attributes

» Tutorial for Creating Linetype Pattern

* Autodesk Knowledge Network: About Linetypes

* BricsCAD Help Center: Entity Linetype

Linetype Scaling
Global linetype scaling can be changed by setting the header variable doc.header ['SLTSCALE'] = 2, which
stretches the line pattern by factor 2.

The linetype scaling for a single entity can be set by the DXF attribute 1t scale, which is supported since DXF R2000.

9.4.8 Lineweights

The 1ineweight attribute represents the lineweight as integer value in millimeters * 100, e.g. 0.25mm = 25, indepen-
dently from the unit system used in the DXF document. The 1ineweight attribute is supported by DXF R2000 and
newer.

Only certain values are valid, they are stored in ezdxf.11dxf.const .VALID_DXF_LINEWEIGHTS:0,5,9, 13,
15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211.

Values < 0 have a special meaning and can be imported as constants from ezdxf.11dxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT_DEFAULT

The validator function: ezdxf.lldxf.validator.is_valid_lineweight () returns True for valid
lineweight values otherwise False.

Sample script which shows all valid lineweights: valid_lineweights.dxf

You have to enable the option to show lineweights in your CAD application or viewer to see the effect on screen, which
is disabled by default, the same has to be done in the page setup options for plotting lineweights.

Setting the HEADER variable SLWDISPLAY to 1, activates support for displaying lineweights on screen:

activate on screen lineweight display
doc.header["SLWDISPLAY"] = 1

9.4. Basic Concepts 43

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-20B4D4B3-1220-426A-847B-5BBE36EC6FDF-htm.html#GUID-20B4D4B3-1220-426A-847B-5BBE36EC6FDF__SECTION_C298CAFE7CDF42A1AF937862BDA04F1C
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitylinetype/V22/EN_US?id=165079137037
https://raw.githubusercontent.com/mozman/ezdxf/master/examples_dxf/valid_lineweights.dxf

ezdxf Documentation, Release 1.2.0

Lineweight: 211

Lineweight: 2.00

Lineweight: .58

Linewelght; 1,40

Linewelght: 1.20

Linewelight: 1.0&

Lineweight: 1.00

Lineweight: D.90

Lineweight: D.BO

Lineweight: 0,70

Lineweight: 060

Lineweight: 053

Linewelght: 0,50

Linewelght: 0.40

Lineweight: 0.35

Lineweight: 0.30

Lineweight: D.25

Lineweight: 0.20

Lineweight: 018

Lineweight: 015

Linewelght: 013

Linewelght; 010

Linewelght: 0.09

Lineweight: 0.05

Lineweight: 0.00

44

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

The lineweight value can be overridden by C7B or STB files.
See also:

* Autodesk Knowledge Network: About Lineweights

* BricsCAD Help Center: Entity Lineweight

9.4.9 Coordinate Systems

AutoLISP Reference to Coordinate Systems provided by Autodesk.

To brush up you knowledge about vectors, watch the YouTube tutorials of 3BluelBrown about Linear Algebra.

WCS

World coordinate system - the reference coordinate system. All other coordinate systems are defined relative to the WCS,
which never changes. Values measured relative to the WCS are stable across changes to other coordinate systems.

uUcCs

User coordinate system - the working coordinate system defined by the user to make drawing tasks easier. All points
passed to AutoCAD commands, including those returned from AutoLISP routines and external functions, are points in
the current UCS. As far as I know, all coordinates stored in DXF files are always WCS or OCS never UCS.

User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a converter class UCS
to translate coordinates from UCS into WCS and vice versa, but always remember: store only WCS or OCS coordinates
in DXF files, because there is no method to determine which UCS was active or used to create UCS coordinates.

See also:
 Table entry UCS

e ezdxf.math.UCS - converter between WCS and UCS

OCs

Object coordinate system are coordinates relative to the object itself. The main goal of OCS is to place 2D elements in
3D space and the OCS is defined by the extrusion vector of the entity. As long the extrusion vector is (0, 0, 1) (the WCS
z-axis) the OCS is coincident to the WCS, which means the OCS coordinates are equal to the WCS coordinates, most of
the time this is true for 2D entities.

OCS entities: ARC, CIRCLE, TEXT, LWPOLYLINE, HATCH, SOLID, TRACE, INSERT, IMAGE

Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the domain of the
user/application. These lines convert the center of a 3D circle from OCS to WCS:

ocs = circle.ocs ()
wcs_center = ocs.to_wcs(circle.dxf.center)
See also:

* Object Coordinate System (OCS) - deeper insights into OCS

e ezdxf.math.OCS - converter between WCS and OCS

9.4. Basic Concepts 45

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-4B33ACD3-F6DD-4CB5-8C55-D6D0D7130905-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_lineweight/V22/EN_US?id=165079137239
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0F0B833D-78ED-4491-9918-9481793ED10B
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

ezdxf Documentation, Release 1.2.0

DCS

Display coordinate system - the coordinate system into which objects are transformed before they are displayed. The
origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its z-axis is the viewing direction.
In other words, a viewport is always a plan view of its DCS. These coordinates can be used to determine where something
will be displayed to the AutoCAD user. Ezdxf does not use or support DCS in any way.

9.4.10 Object Coordinate System (OCS)

* DXF Reference for OCS provided by Autodesk.

The points associated with each entity are expressed in terms of the entity’s own object coordinate system (OCS). The
OCS was referred to as ECS in previous releases of AutoCAD.

With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D vector describing
the z-axis of the OCS (often referenced as extrusion vector), and the elevation value, which is the distance of the entity
xy-plane to the WCS/OCS origin.

For a given z-axis (extrusion) direction, there are an infinite number of coordinate systems, defined by translating the
origin in 3D space and by rotating the x- and y-axis around the z-axis. However, for the same z-axis direction, there is
only one OCS. It has the following properties:

* Its origin coincides with the WCS origin.

¢ The orientation of the x- and y-axis within the xy-plane are calculated in an arbitrary but consistent manner. Au-
toCAD performs this calculation using the arbitrary axis algorithm (see below).

* Because of the Arbitrary Axis Algorithm the OCS can only represent a right-handed coordinate system!

The following entities do not lie in a particular plane. All points are expressed in world coordinates. Of these entities,
only lines and points can be extruded. Their extrusion direction can differ from the world z-axis.

e Line

e Point

* 3DFace

e Polyline (3D)
e Vertex (3D)

* Polymesh

e Polyface

* Viewport

These entities are planar in nature. All points are expressed in object coordinates. All of these entities can be extruded.
Their extrusion direction can differ from the world z-axis.

e Circle
e Arc

e Solid
e Trace
e Text

e Attrib

e Attdef

46 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D99F1509-E4E4-47A3-8691-92EA07DC88F5

ezdxf Documentation, Release 1.2.0

* Shape

e Insert

e Polyline (2D)
e Vertex (2D)

* LWwPolyline

* Hatch

e Image

Some of a Dimension’s points are expressed in WCS and some in OCS.

Elevation

Elevation group code 38:

Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each of the entity’s
defining points.

Arbitrary Axis Algorithm

¢ DXF Reference for Arbitrary Axis Algorithm provided by Autodesk.

The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent generation of object
coordinate systems for all entities that use object coordinates.

Given a unit-length vector to be used as the z-axis of a coordinate system, the arbitrary axis algorithm generates a corre-
sponding x-axis for the coordinate system. The y-axis follows by application of the right-hand rule.

We are looking for the arbitrary x- and y-axis to go with the normal Az (the arbitrary z-axis). They will be called Ax and
Ay (using Vec3):

Az = Vec3(entity.dxf.extrusion) .normalize () # normal (extrusion) vector
if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.):

Ax = Vec3(0, 1, 0).cross(Az) .normalize () # the cross-product operator
else:

Ax = Vec3(0, 0, 1).cross(Az).normalize () # the cross-product operator
Ay = Az.cross (Ax) .normalize ()
WCS to OCS

def wcs_to_ocs (point) :
PxX, pY, pz = Vec3(point) # point in WCS
X = px * Ax.Xx + py * Ax.y + pz * Ax.z
y = px * Ay.x + py * Ay.y + pz * Ay.z
z = px * Az.x + py * Az.y + pz * Az.z
return Vec3(x, vy, z)

9.4. Basic Concepts a7

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E19E5B42-0CC7-4EBA-B29F-5E1D595149EE

ezdxf Documentation, Release 1.2.0

OCS to WCS

Wx = wcs_to_ocs((1, 0, 0))
Wy = wcs_to_ocs((0, 1, 0))
Wz = wcs_to_ocs((0, 0, 1))

def ocs_to_wcs (point) :
PX, Py, pz = Vec3(point) # point in OCS
X = px * Wx.x + py * Wx.y + pz * Wx.z
y = px * Wy.x + py * Wy.y + pz * Wy.z
z = px * Wz.x + py * Wz.y + pz * Wz.z
return Vec3(x, vy, z)

9.4.11 DXF Units

The DXF reference has no explicit information how to handle units in DXF, any information in this section is based
on experiments with BricsCAD and may differ in other CAD applications, BricsCAD tries to be as compatible with
AutoCAD as possible. Therefore, this information should also apply to AutoCAD.

Please open an issue on github if you have any corrections or additional information about this topic.

Length Units

Any length or coordinate value in DXF is unitless in the first place, there is no unit information attached to the value. The
unit information comes from the context where a DXF entity is used. The document/modelspace get the unit information
from the header variable SINSUNITS, paperspace and block layouts get their unit information from the attribute units.
The modelspace object has also a units property, but this value do not represent the modelspace units, this value is
always set to 0 “unitless”.

Get and set document/modelspace units as enum by the Drawing property units:

import ezdxf
from ezdxf import units

doc = ezdxf.new/()
Set centimeter as document/modelspace units

doc.units = units.CM

which is a shortcut (including validation) for
doc.header['SINSUNITS'] = units.CM

Block Units

As said each block definition can have independent units, but there is no implicit unit conversion applied, not in CAD
applications and not in ezdxf.

When inserting a block reference (INSERT) into the modelspace or another block layout with different units, the scal-
ing factor between these units must be applied explicit as DXF attributes (xscale, ...) of the Insert entity, e.g.
modelspace in meters and block in centimeters, x-, y- and z-scaling has to be 0.01:

doc.units = units.M
my_block = doc.blocks.new('MYBLOCK")
my_block.units = units.CM
block_ref = msp.add_block_ref ('"MYBLOCK')
(continues on next page)

48 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://github.com/mozman/ezdxf/issues

ezdxf Documentation, Release 1.2.0

(continued from previous page)

Set uniform scaling for x-, y- and z-axis
block_ref.set_scale(0.01)

Use helper function conversion_rfactor () to calculate the scaling factor between units:

factor = units.conversion_factor (doc.units, my_block.units)
factor = 100 for Im is 100cm
scaling factor = 1 / factor

block_ref.set_scale(l1.0/factor)

Hint: It is never a good idea to use different measurement system in one project, ask the NASA about their Mars Climate
Orbiter from 1999. The same applies for units of the same measurement system, just use one unit like meters or inches.

Angle Units

Angles are always in degrees (360 deg = full circle) in counter-clockwise orientation, unless stated explicit otherwise.

Display Format

How values are shown in the CAD GUI is controlled by the header variables SLUNITS and $AUNITS, but this has no
meaning for values stored in DXF files.

$SINSUNITS

The most important setting is the header variable SINSUNITS, this variable defines the drawing units for the modelspace
and therefore for the DXF document if no further settings are applied.

The modelspace LAYOUT entity has a property unit s as any layout like object, but it seem to have no meaning for the
modelspace, BricsCAD set this property always to 0, which means unitless.

The most common units are 6 for meters and 1 for inches.

doc.header['$SINSUNITS'] = 6

9.4. Basic Concepts 49

ezdxf Documentation, Release 1.2.0

0 Unitless

1 Inches, units.IN

2 Feet, units.FT

3 Miles, units .MI

4 Millimeters, units .MM
5 Centimeters, units.CM
6 Meters, units.M

7 Kilometers, units.KM
8 Microinches

9 Mils

10 Yards, units.YD

11 Angstroms

12 Nanometers

13 Microns

14 Decimeters, units.DM
15 Decameters

16 Hectometers

17 Gigameters

18 Astronomical units

19 Light years

20 Parsecs

21 US Survey Feet

22 US Survey Inch

23 US Survey Yard

24 US Survey Mile

See also enumeration ezdxf.enums. InsertUnits.

SMEASUREMENT

The header variable SMEASUREMENT controls whether the current drawing uses imperial or metric hatch pattern and
linetype files:

This setting is independent from $INSUNITS, it is possible to set the drawing units to inch and use metric linetypes and
hatch pattern.

In BricsCAD the base scaling of linetypes and hatch pattern is defined by the SMEASUREMENT value, the value of
$INSUNITS is ignored.

doc.header['$SMEASUREMENT'] = 1

0 English
1 Metric

See also enumeration ezdxf.enums.Measurement

50 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

SLUNITS

The header variable $LUNITS defines how CAD applications display linear values in the GUI and has no meaning for
ezdxf:

doc.header['SLUNITS'] = 2

1 Scientific

2 Decimal (default)
3 Engineering

4 Architectural

5 Fractional

See also enumeration ezdxf.enums. LengthUnits

$AUNITS

The header variable $AUNITS defines how CAD applications display angular values in the GUI and has no meaning for
ezdxf, DXF angles are always stored as degrees in counter-clockwise orientation, unless stated explicit otherwise:

doc.header['$SAUNITS'] = 0

0 Decimal degrees

1 Degrees/minutes/seconds
2 Grad

3 Radians

See also enumeration ezdxf.enums.AnqularUnits

Helper Tools

ezdxf.units.conversion_factor (source_units: InsertUnits, target_units: InsertUnits) — float

Returns the conversion factor to represent source_units in target_units.
E.g. millimeter in centimeter conversion_factor (MM, CM) returns 0.1, because] mm = 0.1 cm

ezdxf.units.unit_name (enum: int) — str

Returns the name of the unit enum.

ezdxf.units.angle_unit_name (enum: int) — str

Returns the name of the angle unit enum.

9.4. Basic Concepts 51

ezdxf Documentation, Release 1.2.0

9.4.12 Modelspace

The modelspace contains the “real” world representation of the drawing subjects in real world units and is displayed in
the tab called “Model” in CAD applications. The modelspace is always present and can’t be deleted.

The modelspace object is acquired by the method modelspace () of the Drawing class and new entities should be
added to the modelspace by factory methods: Thematic Index of Layout Factory Methods.

This is a common idiom for creating a new document and acquiring the modelspace:

import ezdxf

ezdxf.new ()
doc.modelspace ()

doc
msp

The modelspace can have one or more rectangular areas called modelspace viewports. The modelspace viewports can be
used for displaying different views of the modelspace from different locations of the modelspace or viewing directions. It
is important to know that modelspace viewports (VPort) are not the same as paperspace viewport entities (Viewport).

See also:
¢ Reference of class Modelspace
e Thematic Index of Layout Factory Methods

« Example for usage of modelspace viewports: tiled_window_setup.py

9.4.13 Paperspace
A paperspace layout is where the modelspace drawing content is assembled and organized for 2D output, such as printing
on a sheet of paper, or as a digital document, such as a PDF file.

Each DXF document can have one or more paperspace layouts but the DXF version R12 supports only one paperspace
layout and it is not recommended to rely on paperspace layouts in DXF version R12.

Graphical entities can be added to the paperspace by factory methods: Thematic Index of Layout Factory Methods. Views
or “windows” to the modelspace are added as Viewport entities, each viewport displays a region of the modelspace and
can have an individual scaling factor, rotation angle, clipping path, view direction or overridden layer attributes.

See also:
¢ Reference of class Paperspace
e Thematic Index of Layout Factory Methods

» Example for usage of paperspace viewports: viewports_in_paperspace.py

9.4.14 Blocks

Blocks are collections of DXF entities which can be placed multiple times as block references in different layouts and
other block definitions. The block reference (Insert) can be rotated, scaled, placed in 3D space by OCS and arranged
in a grid like manner, each Tnsert entity can have individual attributes (At t rib) attached.

52 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/tiled_window_setup.py
https://github.com/mozman/ezdxf/blob/master/examples/viewports_in_paperspace.py

ezdxf Documentation, Release 1.2.0

Block Attributes

A block attribute (At t rib) is a text annotation attached to a block reference with an associated tag. Attributes are often
used to add information to block references which can be evaluated and exported by CAD applications.

Extended Block Features

Autodesk added many new features to BLOCKS (dynamic blocks, constraints) as undocumented DXF entities, many of
these features are not fully supported by other CAD application and ezdxf also has no support or these features beyond
the preservation of these undocumented DXF entities.

See also:
e Blocks Section

e Tutorial for Blocks

9.4.15 Layout Extents and Limits
The extents and limits of an layout represents borders which can be referenced by the ZOOM command or read from

some header variables from the HeaderSection, if the creator application maintains these values — ezdxf does this
not automatically.

Extents

The extents of an layout are determined by the maximum extents of all DXF entities that are in this layout. The command:

Z00M extents

sets the current viewport to the extents of the currently selected layout.

A paperspace layout in an arbitrary zoom state:

9.4. Basic Concepts 53

ezdxf Documentation, Release 1.2.0

o
=
(]

l: 99,0404, NZ0NTT, 0 Stendard Standand Draftng SHAS GAID CATHO POLA BEHAP STRMK LwT Pdaeveutl DUCS 07 CRMAD BT AR LOOWT Mene - o

The same layout after the ZOOM extents command:

T

Wl

1454208, 241074, 0 Standard Stanclard Draftng SHAS GAID CATHO POLA BSHAP STRASK LWT Pdaveutl DUCS O CRMAD BT AR LOOWT Mene - ¥l

54 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Limits

Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking or entering
point locations. The default limits for paperspace layouts is defined by the paper size.

The layout from above after the ZOOM all command:

I AL RSN 0 Senderd Standled Drafong D05 GRID CRTHO POLA: ESMAP ETRACK (0T Pdavoutl DUCE DM QRMD BT MO LOCAUT More -

See also:

The AutoCAD online reference for the ZOOM and the LIMITS command.

Read Stored Values

The extents of the modelspace (the tab called “Model”) are stored in the header variable SEXTMIN and SEXTMAX. The
default values of SEXTMIN is (+1e20, +1e20, +1e20) and SEXTMAX is (-1e20, -1e20, -1e20), which do not describe
real borders. These values are copies of the extents attributes of the Layout object as Layout .dxf.extmin and
Layout.dxf.extmax.

The limits of the modelspace are stored in the header variables SLIMMIN and $LIMMAX and have default values of
(0, 0) and (420, 297), the default paper size of ezdxf in drawing units. These are copies of the Layout attributes
Layout .dxf.extmin and Layout .dxf.extmax.

The extents and the limits of the actual paperspace layout, which is the last activated paperspace layout tab, are stored in
the header variable SPEXTMIN, SPEXTMAX, SPLIMMIN and $PLIMMAX.

Each paperspace layout has its own values stored in the Layout attributes Layout .dxf.extmin, Layout .dxf.
extmax, Layout .dxf.limmin and Layout .dxf.limmax.

9.4. Basic Concepts 55

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-66E7DB72-B2A7-4166-9970-9E19CC06F739-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html?us_oa=akn-us&us_si=e9cbb4f4-03c5-4af9-aa76-b58263233f35&us_st=LIMITS%20(Command)

ezdxf Documentation, Release 1.2.0

Setting Extents and Limits

Since v0.16 ezdxf it is sufficient to define the attributes for extents and limits (Layout .dxf .extmax, Layout .dxf.
limmin and Layout .dxf.limmax) of Layout object. The header variables are synchronized when the document
is saved.

The extents of a layout are not calculated automatically by ezdxf, as this can take a long time for large documents and
correct values are not required to create a valid DXF document.

See also:

How to: Calculate Extents for the Modelspace

9.4.16 Font Resources

DXEF relies on the infrastructure installed by AutoCAD like the included SHX files or True Type fonts. There is no simple
way to store additional information about a used fonts beside the plain file system name like "arial.ttf". The CAD
application or viewer which opens the DXF file has to have access to the specified fonts used in your DXF document or
it has to use an appropriate replacement font, which is not that easy in the age of unicode. Later DXF versions can store
font family names in the XDATA of the STYLE entity but not all CAD application use this information.

9.5 Tutorials

9.5.1 Tutorial for Getting Data from DXF Files

This tutorial shows how to get data from an existing DXF document. If you are a new user of ezdxf, read also the tutorial
Usage for Beginners.

Loading the DXF file:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_ file.dxf")
except IOError:
print (f"Not a DXF file or a generic I/O error.")
sys.exit (1)
except ezdxf.DXFStructureError:
print (f"Invalid or corrupted DXF file.")
sys.exit (2)

This works well for DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or
major flaws look at the ezdx . recover module.

See also:
e Document Management

» Usage for Beginners

56 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Layouts
The term layout is used as a synonym for an arbitrary entity space which can contain DXF entities like LINE, CIRCLE,
TEXT and so on. Each DXF entity can only reside in exact one layout.
There are three different layout types:
e Modelspace: the common construction space
e Paperspace: used to to create print layouts
e BlockLayout: reusable elements, every block has its own entity space

A DXF document consist of exact one modelspace and at least one paperspace. DXF R12 has only one unnamed pa-
perspace the later DXF versions support more than one paperspace and each paperspace has a name.

Getting the modelspace layout

The modelspace contains the “real” world representation of the drawing subjects in real world units. The modelspace has
the fixed name “Model” and the DXF document has a special getter method mode Ispace ().

msp = doc.modelspace ()

Iterate over DXF entities of a layout

This code shows how to iterate over all DXF entities in modelspace:

helper function
def print_entity(e):

print ("LINE on layer: \n" % e.dxf.layer)
print ("start point: \n" % e.dxf.start)
print ("end point: \n" % e.dxf.end)

iterate over all entities in modelspace
msp = doc.modelspace ()
for e in msp:
if e.dxftype() == "LINE":
print_entity (e)

entity query for all LINE entities in modelspace
for e in msp.query ("LINE") :
print_entity(e)

All layout objects supports the standard Python iterator protocol and the in operator.

Access DXF attributes of an entity

The e . dxftype () method returns the DXF type, the DXF type is always an uppercase string like "LINE". All DXF
attributes of an entity are grouped in the namespace attribute dxf:

e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer

See Common graphical DXF attributes

9.5. Tutorials 57

ezdxf Documentation, Release 1.2.0

If a DXF attribute is not set (the DXF attribute does not exist), a DXFValueError will be raised. The get () method
returns a default value in this case or None if no default value is specified:

If DXF attribute 'paperspace' does not exist, the entity defaults
to modelspace:
p = e.dxf.get ("paperspace", 0)

or check beforehand if the attribute exist:

if e.dxf.hasattr ("paperspace"):

An unsupported DXF attribute raises a DXFAttributeError, to check if an attribute is supported by an entity use:

if e.dxf.is_supported ("paperspace") :

Getting a paperspace layout

paperspace = doc.paperspace ("layout0")

The code above retrieves the paperspace named layout 0, the usage of the Paperspace object is the same as of the
modelspace object. DXF R12 provides only one paperspace, therefore the paperspace name in the method call doc.
paperspace ("layoutO0") isignored or can be left off. For newer DXF versions you can get a list of the available
layout names by the methods Iayout_names () and layout_names_in_taborder ().

Retrieve entities by query language
Ezdxf provides a flexible query language for DXF entities. All layout types have a query () method to start an entity
query or use the ezdxf. query.new () function.

The query string is the combination of two queries, first the required entity query and second the optional attribute query,
enclosed in square brackets: "EntityQuery [AttributeQuery]"

The entity query is a whitespace separated list of DXF entity names or the special name *. Where * means all DXF
entities, all DXF names have to be uppercase. The * search can exclude entity types by adding the entity name with a
preceding ! (e.g. * !LINE, search all entities except lines).

The attribute query is used to select DXF entities by its DXF attributes. The attribute query is an addition to the entity
query and matches only if the entity already match the entity query. The attribute query is a boolean expression, supported
operators: and, or, !.

See also:
Entity Query String

Get all LINE entities from the modelspace:

msp = doc.modelspace ()
lines = msp.query ("LINE")

The result container Ent it yQuery also provides the query () method to further refine the query, such as retrieving
all LINE entities at layer construction:

construction_lines = lines.query('*[layer=="construction"]")

58 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

The * is a wildcard for all DXF types, in this case you could also use LINE instead of *, * works here because the source
just contains LINE entities.

This could be executed as a single query:

lines = msp.query ('LINE[layer=="construction"]"')

An advanced query for getting all modelspace entities at layer construction, but excluding entities with linetype
DASHED:

not_dashed_entities = msp.query('*[layer=="construction" and linetype!="DASHED"]'")

Extended EntityQuery Features

The EntityQuery class has properties and overloaded operators to build extended queries by Python features instead
of a query string.

Same task as in the previous section but using features of the Ent it yQuery container:

The overloaded rational operators return an EntityQuery object and not a bool value!

lines = msp.query ("LINES") .layer == "construction"
not_dashed_lines = lines.linetype != "DASHED"
See also:

Extended EntityQuery Features

Retrieve entities by groupby() function

The groupby () function searches and group entities by a user defined criteria. As an example let’s group all entities
from modelspace by layer, the result will be a dict with layer names as dict-key and a list of all entities from the modelspace
matching this layer as dict-value:

from ezdxf.groupby import groupby
group = groupby (entities=msp, dxfattrib="layer")

The entities argument can be any container or generator which yields DXF entities:

group = msp.groupby (dxfattrib="layer")

for layer, entities in group.items() :

print (f'Layer "{layer}" contains following entities:')
for entity in entities:

print (£" entity /")
print ("-"*40)

The previous example shows how to group entities by a single DXF attribute. For a more advanced query create a custom
key function, which accepts a DXF entity as argument and returns a hashable value as dict-key or None to exclude the
entity.

The following example shows how to group entities by layer and color, the dict-key isa (layer, color) tuple and
the dict-value is a list of entities with matching DXF attributes:

def layer_and_color_key(entity) :
return None to exclude entities from the result container
if entity.dxf.layer == "0": # exclude entities from default layer "O0"
(continues on next page)

9.5. Tutorials 59

ezdxf Documentation, Release 1.2.0

(continued from previous page)

return None
else:
return entity.dxf.layer, entity.dxf.color

group = msp.groupby (key=layer_and_color_key)
for key, entities in group.items/() :
print (f'Grouping criteria "<{key}" matches following entities:')
for entity in entities:
print (£" entity /")
print ("-"*40)

The groupby () function catches DXFAttributeError exceptions while processing entities and excludes this en-
tities from the result. There is no need to worry about DXF entities which do not support certain attributes, they will be
excluded automatically.

See also:
groupby () documentation

9.5.2 Tutorial for Creating DXF Drawings

Create a new DXF document by the ezdx 1. new () function:

import ezdxf

create a new DXF R2010 document
doc = ezdxf.new ("R2010")

add new entities to the modelspace
msp = doc.modelspace ()

add a LINE entity

msp.add_line((0, 0), (10, 0))

save the DXF document

doc.saveas ("line.dxf")

New entities are always added to layouts, a layout can be the modelspace, a paperspace layout or a block layout.
See also:

Thematic Index of Layout Factory Methods
Predefined Resources
Ezdxf creates new DXF documents with as little content as possible, this means only the resources that are absolutely

necessary are created. The ezdxf.new () function can create some standard resources, such as linetypes and text
styles, by setting the argument sefup to True.

import ezdxf

doc = ezdxf.new("R2010", setup=True)
msp = doc.modelspace ()
msp.add_line((0, 0), (10, 0), dxfattribs={"linetype": "DASHED"})

The defined standard linetypes are shown in the basic concept section for Linetypes and the available text styles are shown
in the Tutorial for Text.

60 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Important: To see the defined text styles in a DXF viewer or CAD application, the applications have to know where the
referenced TTF fonts can be found. This configuration is not possible by ezdxf and has to be done for each application as
described in their documentation.

See also: Font Resources

Simple DXF R12 drawings
The r12writer add-on creates simple DXF R12 drawings with a restricted set of DXF types: LINE, CIRCLE, ARC,
TEXT, POINT, SOLID, 3DFACE and POLYLINE.

The advantage of the r/2writer is the speed and the small memory footprint, all entities are written directly to a file or
stream without creating a document structure in memory.

See also:

ri2writer

9.5.3 Tutorial for Common Graphical Attributes

The graphical attributes color, linetype, lineweight, true_color, transparency, ltscale and in-
visible are available for all graphical DXF entities and are located in the DXF namespace attribute dx £ of the DXF
entities. All these attributes are optional and all except for t rue_color and transparency have a default value.

Not all of these attributes are supported by all DXF versions. This table shows the minimum required DXF version for
each attribute:

R12 color, linetype
R2000 1lineweight, ltscale, invisible
R2004 true_color, transparency

Color

Please read the section about the AutoCAD Color Index (ACI) to understand the basics.

The usage of the color attribute is very straight forward. Setting the value is:

entity.dxf.color = 1

and getting the value looks like this:

value = entity.dxf.color

The color attribute has a default value of 256, which means take the color defined by the layer associated to the entity.
The ezdxf. colors module defines some constants for often used color values:

entity.dxf.color = ezdxf.colors.RED

The ezdxf.colors.aciZrgb () function converts the ACI value to the RGB value of the default modelspace palette.
See also:

* Basics about AutoCAD Color Index (ACI)

9.5. Tutorials 61

ezdxf Documentation, Release 1.2.0

e ezdxf.colors module

True Color

Please read the section about 7rue Color to understand the basics.

The easiest way is to use the rglb property to set and get the true color values as RGB tuples:

entity.rgb = (255, 128, 16)

The rgb property return None if the t rue_color attribute is not present:

rgb = entity.rgb
if rgb is not None:
r, g, b = rgb

Setting and getting the t rue_color DXF attribute directly is possible and the ezdxf. colors module has helper
function to convert RGB tuples to 24-bit value and back:

entity.dxf.true_color = ezdxf.colors.rgb2int (255, 128, 16)

The true_color attribute is optional does not have a default value and therefore it is not safe to use the attribute
directly, check if the attribute exists beforehand:

if entity.dxf.hasattr("true_color"):
r, g, b = ezdxf.colors.int2rgb(entity.dxf.true_color)

or use the get () method of the dxf namespace attribute to get a default value if the attribute does not exist:

r, g, b = ezdxf.colors.int2rgb(entity.dxf.get ("true_color", 0)

See also:
¢ Basics about True Color

e ezdxf.colors module

Transparency

Please read the section about Transparency to understand the basics.

It’s recommended to use the t ransparency property of the DXFGraphic base class. The transparency prop-
erty is a float value in the range from 0.0 to 1.0 where 0.0 is opaque and 1.0 if fully transparent:

entity.transparency = 0.5

or set the values of the DXF attribute by constants defined in the ezdx . colors module:

entity.dxf.transparency = ezdxf.colors.TRANSPARENCY_ 50

The default setting for t ransparency in CAD applications is always transparency by layer, but the t ransparency
property in ezdxf has a default value of 0.0 (opaque), so there are additional entity properties to check if the transparency
value should be taken from the associated entity layer or from the parent block:

62 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

if entity.is_transparency_by_layer:
elif entity.is_transparency_by_block:

else:

The top level entity attribute t ransparency does not support setting transparency by layer or block:

from ezdxf import colors

set transparency by layer by removing the DXF attribute "transparency':
entity.dxf.discard("transparency")

set transparency by block:
entity.dxf.transparency = colors.TRANSPARENCY_BYBLOCK

there are also some handy constants in the colors module:

TRANSPARENCY_ 10 upto TRANSPARENCY_ 90 in steps of 10
entity.dxf.transparency = colors.TRANSPARENCY_30 # set 30% transparency
entity.dxf.transparency = colors.OPAQUE

See also:
 Basics about Transparency

e ezdxf.colors module

Linetype

Please read the section about Linetypes to understand the basics.

The linetype attribute contains the name of the linetype as string and can be set by the dxf namespace attribute
directly:

entity.dxf.linetype = "DASHED" # linetype DASHED must exist!

The 1inetype attribute is optional and has a default value of “BYLAYER?”, so the attribute can always be used without
any concerns:

name = entity.dxf.linetype

Warning: Make sure the linetype you assign to an entity is really defined in the linetype table otherwise AutoCAD
will not open the DXF file. There are no implicit checks for that by ezdxf but you can call the audit () method of
the DXF document explicitly to validate the document before exporting.

Ezdxf creates new DXF documents with as little content as possible, this means only the resources that are absolutely
necessary are created. The ezdxf. new () function can create some standard linetypes by setting the argument sefup to
True:

doc = ezdxf.new("R2010", setup=True)

See also:

9.5. Tutorials 63

ezdxf Documentation, Release 1.2.0

 Basics about Linetypes

e Tutorial for Creating Linetype Pattern

Lineweight

Please read the section about Lineweights to understand the basics.

The 1ineweight attribute contains the lineweight as an integer value and can be set by the dxf namespace attribute
directly:

entity.dxf.lineweight = 25

The 1ineweight value is the line width in millimeters times 100 e.g. 0.25mm = 25, but only certain values are valid
for more information go to section: Lineweights.

Values < 0 have a special meaning and can be imported as constants from ezdxf.11dxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT_DEFAULT

The 1ineweight attribute is optional and has a default value of -1, so the attribute can always be used without any
concerns:

lineweight = entity.dxf.lineweight

Important: You have to enable the option to show lineweights in your CAD application or viewer to see the effect on
screen, which is disabled by default, the same has to be done in the page setup options for plotting lineweights.

activate on screen lineweight display
doc.header ["SLWDISPLAY"] = 1

See also:

* Basics about Lineweights

Linetype Scale

The 1t scale attribute scales the linetype pattern by a float value and can be set by the dx £ namespace attribute directly:

entity.dxf.ltscale = 2.0

The 1t scale attribute is optional and has a default value of 1.0, so the attribute can always be used without any concerns:

scale = entity.dxf.ltscale

See also:

 Basics about Linetypes

64 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Invisible

The invisible attribute an boolean value (0/1) which defines if an entity is invisible or visible and can be set by the
dx f namespace attribute directly:

entity.dxf.invisible = 1

The invisible attribute is optional and has a default value of O, so the attribute can always be used without any
concerns:

is_invisible = bool (entity.dxf.invisible)

GfxAttribs

When adding new entities to an entity space like the modelspace or a block definition, the factory methods expect the
graphical DXF attributes by the argument dxfattribs. This object can be a Python dict where the key is the DXF attribute
name and the value is the attribute value, or better use the GfxAttribs object which has some additional validation
checks and support for code completions by IDEs:

import ezdxf
from ezdxf.gfxattribs import GfxAttribs

doc = ezdxf.new/()
msp doc.modelspace ()

line = msp.add_line(
(0, 0), (10, 10), dxfattribs=GfxAttribs (layer="0", rgb=(25, 128, 16))
)

See also:

e ezdxf.gfxattribs module

9.5.4 Tutorial for Layers

If you are not familiar with the concept of layers, please read this first: Concept of Layers

Reminder: a layer definition is not required for using a layer!

Create a Layer Definition

import ezdxf

doc = ezdxf.new(setup=True) # setup required line types
msp = doc.modelspace ()
doc.layers.add (name="MyLines", color=7, linetype="DASHED")

The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using
"BYLAYER" as linetype string and 256 as color, both values are default values for new entities so you can leave off these
assignments:

msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"})

The new created line will be drawn with color 7 and linetype "DASHED".

9.5. Tutorials 65

ezdxf Documentation, Release 1.2.0

Moving an Entity to a Different Layer

Moving an entity to a different layer is a simple assignment of the new layer name to the 1ayer attribute of the entity.

line = msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"})
move the entity to layer "OtherLayer"
line.dxf.layer = "OtherLayer"

Changing Layer State

Get the layer definition object from the layer table:

my_lines = doc.layers.get ('MyLines')

Check the state of the layer:

my_lines.is_off () # True if layer is off
my_lines.is_on() # True if layer is on
my_lines.is_locked() # True i1f layer is locked
layer_name = my_lines.dxf.name # get the layer name

Change the state of the layer:

switch layer off, entities at this layer will not shown in CAD applications/viewers
my_lines.off ()

lock layer, entities at this layer are not editable in CAD applications
my_lines.lock ()

Get/set the color of a layer by property Layer.color, because the DXF attribute Layer.dxf.color is misused
for switching the layer on and off, the layer is off if the color value is negative.

Changing the layer properties:

my_lines.dxf.linetype = "DOTTED"
my_lines.color = 13 # preserves on/off state of layer
See also:

For all methods and attributes see class Layer.

Check Available Layers

The LayerTable object supports some standard Python protocols:

iteration
for layer in doc.layers:
if layer.dxf.name != "0":
layer.off () # switch all layers off except layer "0"

check for existing layer definition
if "MyLines" in doc.layers:

layer = doc.layers.get ("MyLines")

layer_count = len(doc.layers) # total count of layer definitions

66 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Renaming a Layer

The Layer class has a method for renaming the layer, but has same limitations, not all places where layer references can
occur are documented, third-party entities are black-boxes with unknown content and layer references could be stored in
the extended data section of any DXF entity or in a XRECORD entity, so some references may reference a non-existing
layer definition after the renaming, at least these references are still valid, because a layer definition is not required for
using a layer.

my_lines = doc.layers.get ("MyLines")
my_lines.rename ("YourLines")

Deleting a Layer Definition

Delete a layer definition:

doc.layers.remove ("MyLines")

This just deletes the layer definition, all DXF entities referencing this layer still exist, if they inherit any properties from
the deleted layer they will now get the default layer properties.

Warning: The behavior of entities referencing the layer by handle is unknown and may break the DXF document.

Deleting All Entities From a Layer
Because of all these uncertainties about layer references mentioned above, deleting all entities referencing a certain layer
from a DXF document is not implemented as an API call!

Nonetheless deleting all graphical entities from the DXF document which do reference a certain layer by the layer
attribute is a safe procedure:

key_func = doc.layers.key
layer_key = key_func("MyLines")
The trashcan context-manager is a safe way to delete entities from the
entities database while iterating.
with doc.entitydb.trashcan() as trash:
for entity in doc.entitydb.values() :
if not entity.dxf.hasattr ("layer"):
continue
if layer_key == key_func(entity.dxf.layer):
safe destruction while iterating
trash.add(entity.dxf.handle)

9.5. Tutorials 67

ezdxf Documentation, Release 1.2.0

9.5.5 Tutorial for Creating Linetype Pattern

Simple line type example:

You can define your own linetypes. A linetype definition has a name, a description and line pattern elements:

elements = [total_pattern_length, eleml, elem2, ...]

total_pattern_length
Sum of all linetype elements (absolute values)

elem
if elem > O it is a line, if elem < 0 it is gap, if elem == 0.0 it is a dot

Create a new linetype definition:

import ezdxf
from ezdxf.tools.standards import linetypes # some predefined linetypes

doc = ezdxf.new/()
msp doc.modelspace ()

my_line_types = [
(
"DOTTED",
"Dottedy,
(0.2, 0.0, -0.2],

"DOTTEDX2",
"Dotted (2x) o Y
(0.4, 0.0, -0.4],

"DOTTED2",
"Dotted (.5) L. ... 0.0,
0.1, 0.0, =0,17,
) ’
1
for name, desc, pattern in my_line_types:
if name not in doc.linetypes:
doc.linetypes.add (
name=name,
pattern=pattern,
description=desc,

Setup some predefined linetypes:

for name, desc, pattern in linetypes():
if name not in doc.linetypes:
doc.linetypes.add (
name=name,
pattern= pattern,
description=desc,

68 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Check Available Linetypes

The linetypes object supports some standard Python protocols:

iteration
print ("available linetypes:")
for 1t in doc.linetypes:
print (£" {1t .dxf.name}: 1t .dxf.description/")

check for existing linetype
if "DOTTED" in doc.linetypes:

pass

count = len(doc.linetypes) # total count of linetypes

Removing Linetypes

Warning: Ezdxf does not check if a linetype is still in use and deleting a linetype which is still in use generates an
invalid DXF file. The audit process audit () of the DXF document removes 1inetype attributes referencing
non existing linetypes.

You can delete a linetype:

doc.layers.remove ("DASHED")

This just removes the linetype definition, the 1inetype attribute of DXF entities may still refer the removed linetype
definition “DASHED” and AutoCAD will not open DXF files including undefined linetypes.

9.5.6 Tutorial for Creating Complex Linetype Pattern

In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in line types.

Complex linetype example with text:

— GAS

GAS

GAS

GAS

GAS

GAS

GAS

GAS

GAS

GAS —

Complex line type example with shapes:

_D 1 1 1 1 1 1
L= [o J J J

For easy usage the pattern string for complex line types is mostly the same string as the pattern definition strings in
AutoCAD “lin” files.

Example for complex line type TEXT:

doc = ezdxf.new ("R2018") # DXF R13 or later is required

doc.linetypes.add(
name="GASLEITUNG2",
linetype definition string from acad.lin:
pattern='A, .5,-.2, ["GAS", STANDARD, S=.1,U=0.0,X=-0.1,Y=-.05],-.25",
description= "Gasleitung2 --—--GAS----GAS----GAS----GAS--—-GAS—-—--",

(continues on next page)

9.5. Tutorials 69

ezdxf Documentation, Release 1.2.0

(continued from previous page)

length=1, # required for complex line types
})

The pattern always starts with an “A”, the following float values have the same meaning as for simple linetypes, a value >
0 is a line, a value < 0 is a gap, and a O is a point, the opening square bracket “[” starts the complex part of the linetype
pattern.

The text after the “[” defines the complex linetype:
¢ A text in quotes (e.g. “GAS”) defines a complex TEXT linetype and represents the pattern text itself.

* A text without quotes is a SHAPE name (in “.lin” files) and defines a complex SHAPE linetype. Ezdxf can not
translate this SHAPE name from the “lin” file into the required shape file index, so *YOU have to translate this
SHAPE name into the shape file index, e.g. saving the file with AutoCAD as DXF and searching for the DXF
linetype definition, see example below and the DXF Internals: LTYPE Table.

For complex TEXT linetypes the second parameter is the text style, for complex SHAPE linetypes the second parameter
is the shape file name, the shape file has to be in the same directory as the DXF file or in one of the CAD application
support paths.

The meaning of the following comple linetype parameters are shown in the table below:

S scaling factor, always > 0, if S=0 the TEXT or SHAPE is not visible
Ror U rotation relative to the line direction

X x-direction offset (along the line)

Y y-direction offset (perpendicular to the line)

These parameters are case insensitive and the closing square bracket “]” ends the complex part of the linetype pattern.

The fine tuning of this parameters is a try an error process, for complex TEXT linetypes the scaling factor (e.g. the
STANDARD text style) sets the text height (e.g. “S=0.1" sets the text height to 0.1 units), by shifting in y-direction by
half of the scaling factor, the text is vertically centered to the line. For the x-direction it seems to be a good practice to
place a gap in front of the text and after the text, find x shifting value and gap sizes by try and error. The overall length is
at least the sum of all line and gap definitions (absolute values).

Example for complex line type SHAPE:

doc.linetypes.add ("GRENZE2",
linetype definition in acad.lin:
A,.25,-.1, [BOX, ltypeshp.shx,x=—.1,s=.1],-.1,1
replacing BOX by shape index 132 (got index from an AutoCAD file),
ezdxf can't get shape index from ltypeshp.shx
pattern="A, .25,-.1, [132,1ltypeshp.shx,x=-.1,s=.1],-.1,1",
description="Grenze eckig ————[]-———- (1-——=[]1-——- [(1-——=[1--",
length= 1.45, # required for complex line types

})

Complex line types with shapes only work if the associated shape file (e. g. Itypeshp.shx) and the DXF file are in the
same directory or the shape file is placed in one of the CAD application support folders.

70 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.5.7 Tutorial for Simple DXF Entities

These are basic graphical entities located in an entity space like the modelspace or a block definition and only support the
common graphical attributes.

The entities in the following examples are always placed in the xy-plane of the WCS aka the 2D drawing space. Some
of these entities can only be placed outside the xy-plane in 3D space by utilizing the OCS, but this feature is beyond the
scope of this tutorial, for more information about that go to: Tutorial for OCS/UCS Usage.

Prelude to all following examples:

import ezdxf
from ezdxf.gfxattribs import GfxAttribs

doc = ezdxf.new()

doc.layers.new ("ENTITY", color=1)
msp = doc.modelspace ()

attribs = GfxAttribs (layer="ENTITY")

See also:
e Tutorial for Creating DXF Drawings
» Tutorial for Layers

* ezdxf.gfxattribs module

Point

The Point entity marks a 3D point in the WCS:

point = msp.add_point ((10, 10), dxfattribs=attribs)

All Point entities have the same styling stored in the header variable SPDMODE, for more information read the refer-
ence of class Point.

See also:
¢ Reference of class Point

e Tutorial for Common Graphical Attributes

Line

The Line entity is a 3D line with a start- and an end point in the WCS:

line = msp.add_line((0, 0), (10, 10), dxfattribs=attribs)

See also:
 Reference of class Line
e Tutorial for Common Graphical Attributes

e ezdxf.math.ConstructionLine

9.5. Tutorials 71

ezdxf Documentation, Release 1.2.0

Circle

The Circle entity is an OCS entity defined by a center point and a radius:

circle = msp.add_circle((10, 10), radius=3, dxfattribs=attribs)

See also:
» Reference of class Circle
o Tutorial for Common Graphical Attributes

e ezdxf.math.ConstructionCircle

Arc

The Arc entity is an OCS entity defined by a center point, a radius a start- and an end angle in degrees:

arc = msp.add_arc((10, 10), radius=3, start_angle=30, end_angle=120,.
—dxfattribs=attribs)

The arc goes always in counter-clockwise orientation around the z-axis more precisely the extrusion vector of OCS, but
this is beyond the scope of this tutorial.

The helper class ezdxf.math.ConstructionArc provides constructors to create arcs from different scenarios:
e from_Z2p_angle: arc from 2 points and an angle
e from Z2p_radius: arc from 2 points and a radius
e from_3p: arc from 3 points

This example creates an arc from point (10, 0) to point (0, 0) passing the point (5, 3):

from ezdxf.math import ConstructionArc
—X—X—X— Snip —-Xx—-X—-X-—

arc = ConstructionArc.from_3p (

start_point=(10, 0), end_point=(0, 0), def_point=(5, 3)
)
arc.add_to_layout (msp, dxfattribs=attribs)

See also:
» Reference of class Arc
o Tutorial for Common Graphical Attributes

e ezdxf.math.ConstructionArc

72 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Ellipse

The E111ipse entity requires DXF R2000 or newer and is a true WCS entity. The ellipse is defined by a center point, a
vector for the major axis, the ratio between major- and minor axis and the start- and end parameter in radians:

ellipse = msp.add_ellipse (

(10, 10), major_axis=(5, 0), ratio=0.5, start_param=0, end_param=math.pi,._
—dxfattribs=attribs
)

When placed in 3D space the extrusion vector defines the normal vector of the ellipse plane and the minor axis is the
extrusion vector cross the major axis.

See also:
¢ Reference of class E11ipse
* Tutorial for Common Graphical Attributes

* ezdxf.math.ConstructionEllipse

Further Tutorials

e Tutorial for LWPolyline

* Tutorial for Spline

* Tutorial for Text

e Tutorial for MText and MTextEditor
o Tutorial for Hatch

* Tutorial for MultiLeader

* Tutorial for Mesh

9.5.8 Tutorial for Blocks

If you are not familiar with the concept of blocks, please read this first: Concept of Blocks

Create a Block

Blocks are managed as BlockLayout objects by the Bl ocksSection object, every drawing has only one blocks
section referenced by attribute Drawing.blocks.

import ezdxf
import random # needed for random placing points

def get_random_point () :
"""Returns random x, y coordinates.
x = random.randint (=100, 100)
y = random.randint (=100, 100)
return x, y

mrn

(continues on next page)

9.5. Tutorials 73

ezdxf Documentation, Release 1.2.0

(continued from previous page)

Create a new drawing in the DXF format of AutoCAD 2010
doc = ezdxf.new('R2010")

Create a block with the name 'FLAG'
flag = doc.blocks.new(name='FLAG")

Add DXF entities to the block 'FLAG'.

The default base point (= insertion point) of the block is (0, 0).
flag.add_lwpolyline ([(O, O), (0, 5), (4, 3), (0, 3)1) # the flag symbol as 2D..
—polyline

flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a.
—circle

Block References (Insert)

A block reference can be created by adding an Tnsert entity to any of these layout types:
* Modelspace
* Paperspace
* BlockLayout

A block reference can be scaled and rotated individually. Lets add some random flags to the modelspace:

Get the modelspace of the drawing.
msp = doc.modelspace ()

Get 50 random placing points.
placing_points = [get_random_point () for _ in range (50)]

for point in placing_points:
Every flag has a different scaling and a rotation of -15 deg.
random_scale = 0.5 + random.random() * 2.0
Add a block reference to the block named 'FLAG' at the coordinates 'point'.
msp.add_blockref ('FLAG', point, dxfattribs=({

'xscale': random_scale,
'yscale': random_scale,
'rotation': -15

b

Save the drawing.
doc.saveas ("blockref tutorial.dxf™)

Query all block references of block FLAG:

for flag_ref in msp.query ('INSERT [name=="FLAG"]'):
print (str (flag_ref))

When adding a block reference to a layout with different units, the scaling factor between these units should be applied
as scaling attributes (xscale, ...) e.g. modelspace in meters and block in centimeters, xscale has to be 0.01.

74 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Block Attributes

A block attribute (At t rib) is a text annotation attached to a block reference with an associated tag. Attributes are often
used to add information to blocks which can be evaluated and exported by CAD applications. An attribute can be added
to a block reference by the Insert.add_attrib () method, the ATTRIB entity is geometrically not related to the
block reference, so insertion point, rotation and scaling of the attribute have to be calculated by the user, but helper tools
for that do exist.

Using Attribute Definitions

Another way to add attributes to block references is using attribute templates (At tDef). First create the attribute
definition in the block definition, then add the block reference by add_blockref () and attach and fill attributes
automatically by the add_auto_attribs () method to the block reference. This method has the advantage that
all attributes are placed relative to the block base point with the same rotation and scaling as the block reference, but
non-uniform scaling is not handled very well.

The add_auto_blockref () method handles non-uniform scaling better by wrapping the block reference and its
attributes into an anonymous block and let the CAD application do the transformation work. This method has the disad-
vantage of a more complex evaluation of attached attributes

Using attribute definitions (At t De f templates):

Define some attributes for the block 'FLAG', placed relative

to the base point, (0, 0) in this case.

flag.add_attdef ('NAME', (0.5, -0.5), dxfattribs={'height': 0.5, 'color': 3})
flag.add_attdef ('XPOS', (0.5, -1.0), dxfattribs={'height': 0.25, 'color': 4})
flag.add_attdef ('YPOS', (0.5, -1.5), dxfattribs={'height': 0.25, 'color': 4})

Get another 50 random placing points.
placing_points = [get_random_point () for _ in range (50)]

for number, point in enumerate (placing_points) :
values is a dict with the attribute tag as item—key and
the attribute text content as item-value.

values {
'NAME': "P()" % (number + 1),
'"XPOS': "x = " % point[0],
"YPOS': "y = " ¢ point[1]

Every flag has a different scaling and a rotation of +15 deg.

random_scale = 0.5 + random.random() * 2.0
blockref = msp.add_blockref ('FLAG', point, dxfattribs={
'rotation': 15

}) .set_scale (random_scale)
blockref.add_auto_attribs (values)

Save the drawing.
doc.saveas ("auto_blockref tutorial.dxf")

9.5. Tutorials 75

ezdxf Documentation, Release 1.2.0

Get/Set Attributes of Existing Block References

See the howto: Get/Set Block Reference Attributes

Evaluate Wrapped Block References

As mentioned above the evaluation of block references wrapped into anonymous blocks is complex:

Collect all anonymous block references starting with '*U'
anonymous_block_refs = modelspace.query (' INSERT [name ? ""*U.+"]")

Collect the references of the 'FLAG' block
flag_refs = []
for block_ref in anonymous_block_refs:
Get the block layout of the anonymous block
block = doc.blocks.get (block_ref.dxf.name)
Find all block references to 'FLAG' in the anonymous block
flag_refs.extend(block.query (' INSERT [name=="FLAG"]"))

Evaluation example: collect all flag names.
flag_numbers = [

flag.get_attrib_text ("NAME")

for flag in flag_refs

if flag.has_attrib ("NAME")

print (flag_numbers)

Exploding Block References

This is an advanced feature and the results may not be perfect. A non-uniform scaling lead to incorrect results for text
entities (TEXT, MTEXT, ATTRIB) and some other entities like HATCH with circular- or elliptic path segments. The
“exploded” entities are added to the same layout as the block reference by default.

for flag_ref in msp.query ('INSERT [name=="FLAG"]'):
flag_ref.explode ()

Examine Entities of Block References

To just examine the content entities of a block reference use the virtual entities () method. This methods yields
“virtual” entities with properties identical to “exploded” entities but they are not stored in the entity database, have no
handle and are not assigned to any layout.

for flag _ref in msp.query ('INSERT [name=="FLAG"]'):
for entity in flag ref.virtual_entities():
if entity.dxftype() == "LWPOLYLINE":
print (f"Found {str(entity) }.")

76 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.5.9 Tutorial for LWPolyline

The LwPolyline (lightweight polyline) was introduced in DXF R13/14 and it is defined as a single graphic entity,
which differs from the old-style Poly1ine entity, which is defined as a group of sub-entities. It is recommended to
prefer the LWPOLYLINE over the 2D POLYLINE entity because it requires less space in memory and in DXF files and
displays faster in AutoCAD.

Important: The LWPOLYLINE is a planar element, therefore the (x, y) point coordinates are located in the OCS and
the z-axis is stored in the LWPolyline.dxf.elevation attribute. The method vertices_in_wcs returns the
polyline vertices as WCS coordinates.

Create a simple polyline:

import ezdxf

doc = ezdxf.new ("R2000")
msp = doc.modelspace ()
points = [(0, 0), (3, 0), (6, 3), (6, 6)]

msp.add_lwpolyline (points)

doc.saveas ("lwpolylinel.dxf")

Append multiple points to a polyline:

doc = ezdxf.readfile("lwpolylinel.dxf")
msp = doc.modelspace ()

line = msp.query ("LWPOLYLINE") .first
if line is not None:

line.append_points ([(8, 7), (10, 7)1)

doc.saveas ("lwpolyline2.dxf")

The index operator [] always returns polyline points as 5-tuple (X, y, start_width, end_width, bulge), the start_width,
end_width and bulge values are 0 if not present:

first_point = line([0]
x, y, start_width, end_width, bulge = first_point

The context manager points () can be used to edit polyline points, this method was introduced because accessing
individual points was very slow in early versions of ezdxf, in current versions of ezdxf the direct access by the index
operator [] is very fast and using the context manager is not required anymore, but the context manager still exist and
has the advantage of supporting an user defined point format:

doc = ezdxf.readfile("lwpolyline2.dxf")
msp doc.modelspace ()

line = msp.query ("LWPOLYLINE") .first

with line.points("xyseb") as points:

points is a standard Python 1list

existing points are 5S5-tuples, but new points can be

set as (x, y, [start_width, [end_width, [bulge]]]) tuple

set start_width, end width to 0 to be ignored (x, y, 0, 0, bulge).

oW W W

(continues on next page)

9.5. Tutorials 77

ezdxf Documentation, Release 1.2.0

(continued from previous page)

delete 1c¢

2l
del points]|

st 2 points
2:]
adding two points

points.extend ([(4, 7), (0, 7)1)

doc.saveas ("lwpolyline3.dxf")

Each line segment can have a different start- and end width, if omitted start- and end width is 0:

doc = ezdxf.new ("R2000")
doc.modelspace ()

3
0
o]
Il

mat = (x, Y

_width, end w

points = [(0, O, .1, .15), (3, O, .2, .25), (6, 3, .3, .35), (6, 6)]
msp.add_lwpolyline (points)

doc.saveas ("lwpolyline4d.dxf")

The first point carries the start- and end-width of the first segment, the second point of the second segment and so on,
the start- and end width value of the last point is used for the closing segment if the polyline is closed else these values
are ignored. Start- and end width only works if the DXF attribute dxf . const_width is unset, delete it to be sure it’s
unset:

1 be raised if const_width is already t

no exception w

del line.dxf.const_width

()

LWPolyline can also have curved elements, they are defined by the Bulge value:

doc = ezdxf.new ("R2000")
doc.modelspace ()

3
0
o]
Il

points = [(0, O, O, .05), (3, o0, .1, .2, -.5), (6, O, .1, .05), (9, 0)1
msp.add_lwpolyline (points)

doc.saveas ("lwpolyline5.dxf")

The curved segment is drawn from the point which defines the bulge value to the following point, the curved segment is
always an arc. The bulge value defines the ratio of the arc sagitta (segment height /) to half line segment length (point

78 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

distance), a bulge value of 1 defines a semicircle. The curve is on the right side of the line for a bulge value > 0, and on
the left side of the line for a bulge value < 0.

Helper functions to handle bulge values: Bulge Related Functions
The user defined point format, default is xy seb:

¢ x =X coordinate

e y =Yy coordinate

e s = start width

¢ e =end width

* b = bulge value

* v=(X,Y) as tuple

msp.add_lwpolyline([(O, O, 0), (10, O, 1), (20, 0, 0)], format="xyb")
msp.add_lwpolyline([(O, 10, 0), (10, 10, .5), (20, 10, 0)], format="xyb")

bulge = 0.5 [h=2.5

R6.25

bulge =1.0 & ‘

R3.0
h=5.0 T

9.5. Tutorials 79

ezdxf Documentation, Release 1.2.0

9.5.10 Tutorial for Text

Add a simple one line text entity by factory function add_text ().

import ezdxf
from ezdxf.enums import TextEntityAlignment

The TEXT entity is a DXF primitive and is supported in all DXF versions.
The argument setup=True creates standard linetypes and text styles in the
new DXF document.

doc = ezdxf.new("R12", setup=True)

msp = doc.modelspace ()

Use method set_placement () to define the TEXT alignment, because the
relations between the DXF attributes 'halign', 'valign', 'insert' and
'align_point' are tricky.
msp.add_text ("A Simple Text") .set_placement (

(2, 3),

align=TextEntityAlignment .MIDDLE_RIGHT

Using a predefined text style:

msp.add_text (
"Text Style Example: Liberation Serif",
height=0.35,
dxfattribs={"style": "LiberationSerif"}

) .set_placement ((2, 6), align=TextEntityAlignment.LEFT)

doc.saveas ("simple_text.dxf")

Alignments defined by the enum TextEntityAlignment:

Vert/Horiz Left Center Right

Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

Special alignments are ALIGNED and FIT, they require a second alignment point, the text is justified with the vertical
alignment Baseline on the virtual line between these two points.

Align- Description
ment

ALIGNEI Text is stretched or compressed to fit exactly between p/ and p2 and the text height is also adjusted to
preserve height/width ratio.

FIT Text is stretched or compressed to fit exactly between p/ and p2 but only the text width is adjusted, the text
height is fixed by the height attribute.

MID- also a special adjustment, but the result is the same as for MIDDLE_CENTER.

DLE

80 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Standard Text Styles

Setup some standard text styles and linetypes by argument setup=True:

doc = ezdxf.new('R12', setup=True)

Replaced all proprietary font declarations in setup_styles () (ARIAL, ARIAL_NARROW, ISOCPEUR and
TIMES) by open source fonts, this is also the style name (e.g. { 'style': 'OpenSans-Italic'}):

9.5. Tutorials 81

ezdxf Documentation, Release 1.2.0

LiberationMono-Italic
LiberationMono-BoldItalic
LiberationMono-Bold
LiberationMono
LiberationSerif-Italic
LiberationSerif-BoldlItalic
LiberationSerif-Bold
LiberationSerif
LiberationSans-Italic
LiberationSans-BoldItalic
LiberationSans-Bold
LiberationSans
OpenSansCondensed-ltalic
OpenSansCondensed-Light
OpenSansCondensed-Bold
OpenSans-ExtraBolditalic
OpenSans-ExtraBold
OpenSans-BoldIitalic
OpenSans-Bold
OpenSans-SemiBoldltalic
OpenSans-SemiBold
OpenSans-Italic

OpenSans
OpenSans-Light-Italic
OpenSans-Light
STANDARD

82 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Important: To see the defined text styles in a DXF viewer or CAD application, the applications have to know where the
referenced TTF fonts can be found. This configuration is not possible by ezdxf and has to be done for each application as
described in their documentation.

See also: Font Resources

New Text Style

Creating a new text style is simple:

doc.styles.new ("myStandard", dxfattribs={"font" : "OpenSans-Regular.ttf"})

Getting the correct font name is often not that simple, especially on Windows. This shows the required steps to get the
font name for Open Sans:

* open font folder c:\windows\fonts

« select and open the font-family Open Sans

* right-click on Open Sans Standard and select Properties

* on top of the first tab you see the font name: 'OpenSans—Regular.ttf'

The style name has to be unique in the DXF document, otherwise ezdxf will raise an DXFTableEntryError excep-
tion. To replace an existing entry, delete the existing entry by doc.styles.remove (name), and add the replace-
ment entry.

3D Text

It is possible to place the 2D Text entity into 3D space by using the OCS, for further information see: Tutorial for
OCS/UCS Usage and Tutorial for UCS Based Transformations.

9.5.11 Tutorial for MText and MTextEditor

The MText entity is a multi line entity with extended formatting possibilities and requires at least DXF version R2000,
to use all features (e.g. background fill) DXF R2007 is required.

Important: The rendering result of the MTEXT entity depends on the DXF viewer or CAD application and can differ
between different applications. These differences have the greatest impact on line wrapping, which can cause columns of
text to have different heights in different applications!

In order for the text to look similar in different programs, the formatting should be as simple as possible or omitted
altogether.

Prolog code:

import ezdxf

doc = ezdxf.new ("R2007", setup=True)
msp = doc.modelspace ()

lorem_ipsum = """
(continues on next page)

9.5. Tutorials 83

ezdxf Documentation, Release 1.2.0

(continued from previous page)

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

nwn

Adding a MTEXT entity

The MTEXT entity can be added to any layout (modelspace, paperspace or block) by the add_mtext () function.

store MTEXT entity for additional manipulations
mtext = msp.add_mtext (lorem_ipsum, dxfattribs={"style": "OpenSans"})

This adds a MTEXT entity with text style “OpenSans”. The MTEXT content can be accessed by the t ext attribute, this
attribute can be edited like any Python string:

mtext.text += "Append additional text to the MTEXT entity."
even shorter with __iadd__ () support:
mtext += "Append additional text to the MTEXT entity."

Lorem ipsum dolor sit amet, consectetur adipiscing elit,

sed do ejusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Append additional text to the MText entity.

The MText entity has an alias MText . dxf . text for the MText . text attribute for compatibility to the Text entity.

Important: Line endings “\n” will be replaced by the MTEXT line endings “\P” at DXF export, but not vice versa “\P”
by “\n” at DXF file loading.

84 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Text placement

The location of the MTEXT entity is defined by the MText.dxf.insert and the MText.dxf.
attachment_point attributes in WCS coordinates. The attachment_point defines the text alignment
relative to the insert location, default value is 1.

Attachment point constants defined in ezdxf. 11dxf.const:

MText.dxf.attachment_point Value

MTEXT_TOP_LEFT
MTEXT_TOP_CENTER
MTEXT_TOP_RIGHT
MTEXT_MIDDLE_LEFT
MTEXT_MIDDLE_CENTER
MTEXT_MIDDLE_RIGHT
MTEXT_BOTTOM_LEFT
MTEXT_BOTTOM_CENTER
MTEXT_BOTTOM_RIGHT

O 0O N A~ W~

The MTEXT entity has a method for setting insert, attachment_point and rotation attributes by one call:
set_location()

Character height

The character height is defined by the DXF attribute MText .dxf.char_height in drawing units, which has also
consequences for the line spacing of the MTEXT entity:

mtext.dxf.char_height = 0.5

The character height can be changed inline, see also MTEXT formatting and MText Inline Codes.

Text rotation (direction)

The MText .dxf.rotation attribute defines the text rotation as angle between the x-axis and the horizontal direction
of the text in degrees. The MText .dxf.text_direction attribute defines the horizontal direction of MTEXT as
vector in WCS. Both attributes can be present at the same entity, in this case the MText .dxf.text_direction
attribute has the higher priority.

The MTEXT entity has two methods to get/set rotation: get_rotation () returns the rotation angle in degrees in-
dependent from definition as angle or direction, and set_rotation () setthe rotation attribute and removes the
text_direction attribute if present.

9.5. Tutorials 85

ezdxf Documentation, Release 1.2.0

Defining a wrapping border

The wrapping border limits the text width and forces a line break for text beyond this border. Without attribute dxf .
width (or setting 0) the lines are wrapped only at the regular line endings “ \P” or “\n”, setting the reference column
width forces additional line wrappings at the given width. The text height can not be limited, the text always occupies as
much space as needed.

mtext.dxf.width = 60

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut
labore et dolore magna

aliqua. Ut enim ad minim veniam,
quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea
commodo consequat.

Duis aute irure dolor in
reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint

occaecat cupidatat non proident,
sunt in culpa qui officia

deserunt mollit anim id est laborum.
Append additional text to the MText

entity.

MTEXT formatting

MTEXT supports inline formatting by special codes: MText Inline Codes

‘mtext.text = "{\\C1;red text} - {\\C3;green text} - {\\C5;blue text}"

red text - green text - blue text

See also the support class MTextEditor.

86 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Stacked text

MTEXT supports stacked text:

the space ' ' in front of 'Lower' and the ';' behind 'Lower' are necessary
combined with vertical center alignment
mtext.text = "\\A1;\\SUpper” Lower; - \\SUpper/ Lower;} — \\SUpper# Lower;"

Upper _ Upper _Upper
Lower Lower PP /Lower

See also the support class M7extEditor.

Background color (filling)

The MTEXT entity can have a background filling:
e AutoCAD Color Index (ACI)
e true color value as (r, g, b) tuple
* color name as string, use special name 'canvas' to use the canvas background color

Because of the complex dependencies ezdxf provides a method to set all required DXF attributes at once:

mtext.set_bg_color (2, scale=1.5)

The parameter scale determines how much border there is around the text, the value is based on the text height, and should
be in the range of 1 - 5, where 1 fits exact the MTEXT entity.

9.5. Tutorials 87

ezdxf Documentation, Release 1.2.0

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut
labore et dolore magna

aliqua. Ut enim ad minim veniam,
quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea
commodo consequat.,

Duis aute irure dolor in
reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint

occaecat cupidatat non proident,
sunt in culpa qui officia

deserunt mollit anim id est laborum.

MTextEditor

Warning: The MTextEditor assembles just the inline code, which has to be parsed and rendered by the target
CAD application, ezdxf has no influence to that result.

Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not work across different
CAD applications and keep the formatting in a logic manner like, do not change paragraph properties in the middle
of a paragraph.

There is no official documentation for the inline codes!

The MTextEditor class provides a floating interface to build MText content in an easy way.

This example only shows the connection between MText and the MTextEditor, and shows no additional features to
the first example of this tutorial:

88 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Init Editor

import ezdxf
from ezdxf.tools.text import MTextEditor

doc = ezdxf.new("R2007", setup=True)
msp = doc.modelspace ()

lorem_ipsum = """

Lorem ipsum dolor sit amet, consectetur adipiscing elit, ... see prolog code
mmw

create a new editor object with an initial text:
editor = MTextEditor (lorem_ipsum)

get the MTEXT content string from the editor by the str() function:
mtext = msp.add_mtext (str(editor), dxfattribs={"style": "OpenSans"})

Tutorial Prolog:

use constants defined in MTextEditor:
NP = MTextEditor.NEW_PARAGRAPH

ATTRIBS = {
"char_height": 0.7,
"style": "OpenSans",
"width": 10,
I3
editor = MTextEditor ("using colors:" + NP)

Set Text Color

There are three ways to change the color inline:
* by color name “red”, “green”, “blue”, “yellow”, “cyan”, “magenta”,
* by AutoCAD Color Index (ACI)

* by RGB values

white”

RED: set color by name - red, green, blue, yellow, cyan, magenta, white
editor.color ("red") .append ("RED" + NP)

RED: the color stays the same until the next change

editor.append("also RED" + NP)

GREEN: change color by ACI (AutoCAD Color Index)
editor.aci (3) .append ("GREEN" + NP)

BLUE: change color by RGB tuples
editor.rgb((0, 0, 255)).append("BLUE" + NP)

add the MTEXT entity to the model space:
msp.add_mtext (str (editor), attribs)

9.5. Tutorials 89

ezdxf Documentation, Release 1.2.0

using colors:

GREEN

Changing Text Height

The MtextEditor.height () method set the text height as absolute value in drawing units (text height = cap height):

attribs = dict (ATTRIBS)

attribs["width"] = 40.0

editor = MTextEditor ("changing text height absolute: default height is 0.7" + NP)
doubling the default height = 1.4

editor.height (1.4)

editor.append("text height: 1.4" + NP)
editor.height (
(
(

3.5) .append ("text height: 3.5" + NP)
editor.height (0.7) .append ("back to default height: 0.7" + NP)
msp.add_mtext (str (editor), attribs)

changing text height absolute: default height is 0.7

text height: 1.4

text height: 3.5

back to default height: 0.7

The MtextEditor.scale_height () method set the text height by a relative factor, the MtextEditor object
does not keep track of current text height, you have to do this by yourself. The initial text height is MText .dxf.
char_height:

90 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

attribs = dict (ATTRIBS)

attribs["width"] = 40.0

editor = MTextEditor ("changing text height relative: default height is 0.7" + NP)
this is the default text height in the beginning:

current_height = attribs["char_height"]

The text height can only be changed by a factor:

editor.scale_height (2) # scale by 2 = 1.4

keep track of the actual height:

current_height *= 2

editor.append("text height: 1.4" + NP)

to set an absolute height, calculate the required factor:

desired_height = 3.5

factor = desired_height / current_height
editor.scale_height (factor) .append("text height: 3.5" + NP)

current_height = desired_height

and back to 0.7

editor.scale_height (0.7 / current_height) .append("back to default height: 0.7" + NP)
msp.add_mtext (str(editor), attribs).set_location(insert=location)

Changing Font

The font name for changing MText fonts inline is the font family name! The font family name is the name shown in font
selection widgets in desktop applications: “Arial”, “Times New Roman”, “Comic Sans MS”. The font has to be installed
at the target system, else then CAD default font will be used, in AutoCAD/BricsCAD is this the font defined for the text
style “Standard”.

Important: The DXF/DWG format is not optimal for preserving text layouts across multiple systems, and it’s getting
really bad across different CAD applications.

attribs = dict (ATTRIBS)

attribs["width"] = 15.0

editor = MTextEditor ("changing fonts:" + NP)
editor.append("Default: Hello World!" + NP)

editor.append ("SimSun: ")

change font in a group to revert back to the default font at the end:
simsun_editor = MTextEditor () .font ("SimSun") .append ("FEZEZ" + NP)
reverts the font back at the end of the group:
editor.group (str (simsun_editor))

back to default font OpenSans:

editor.append ("Times New Roman: ")

change font outside of a group until next font change:

editor.font ("Times New Roman") .append ("lIpusetr Mup!" + NP)
If the font does not exist, a replacement font will be used:
editor.font ("Does not exist") .append("This is the replacement font!")

msp.add_mtext (str(editor), attribs)

9.5. Tutorials 91

ezdxf Documentation, Release 1.2.0

changing fonts:
Default: Hello World!

SimSun: R, tHF

Times New Roman: IIpuser mup!
s Is the replacement

Set Paragraph Properties

The paragraph properties are set by the paragraph () method and a ParagraphProperties object, which bun-
dles all paragraph properties in a named tuple.

Each paragraph can have its own properties for:
* indentation arguments:
— indent is the left indentation of the first line
— left is the left side indentation of the paragraph
— right is the right side indentation of the paragraph
* text adjustment: align, by enum MTextParagraphAlignment

MTextParagraphAlignment. LEFT

MTextParagraphAlignment. RIGHT

MTextParagraphAlignment. CENTER

MTextParagraphAlignment.JUSTIFIED

MTextParagraphAlignment. DISTRIBUTED
* tabulator stops: tab_stops, a tuple of tabulator stops

Indentation and tabulator stops are multiples of the default MText text height stored in MText . dxf.char_height.
Calculate the drawing units for indentation and tabulator stops, by multiplying the indentation value by the
char_height value.

Mtext paragraphs are separated by new paragraph “\P” characters.

1mport support classes:

from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment

attribs = dict (ATTRIBS)

(continues on next page)

92 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor ("Indent the first line:" + NP)
props = ParagraphProperties(
indent=1, # indent first line = 1x0.25 drawing units

align= MTextParagraphAllgnment JUSTIFIED
)
editor.paragraph (props)
editor.append (lorem_ipsum)
msp.add_mtext (str (editor), attribs)

Indent the first line:
=m ipsum dolo
[|IE4I" r'|rnnu|*'| y eir

ipsum do
sit amet,
diam nonumy eirmc Id
tJrl = et do = M =
IJ._JTLlr_1 i-'-'L)

takimata
sit amet.

The first line indentation “indent” is relative to the “left” indentation.

t Tmport giir Nt~ o o
import support classes:

from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment

attribs = dict (ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5

editor = MTextEditor ("Indent left paragraph side:" + NP)

indent = 0.7 # 0.7 * 0.25 = 0.175 drawing units

props = ParagraphProperties (
indentation is relative to "left", this reverses the
tion:

1ndent*flndent # first line
indent left paragraph side:
left=indent,
align=MTextParagraphAlignment .JUSTIFIED

)

editor.paragraph (props)

editor.append (" ".Jjoin(lorem_ipsum(100)))

msp.add_mtext (str(editor), attribs).set_location(insert=location)

9.5. Tutorials 93

ezdxf Documentation, Release 1.2.0

Indent left par e
em ipsum C - st amet
ipsCi d diam
Ut

. =

amet, consete
diam nonumy

tempor
ut labore et d e magna
aliquyam erat, s : 0
eos et accusam et justo duc

rebum, Stet clita kasd guber
takimata sanctus est Lorem if
sit amet.

Bullet List

There are no special commands to build bullet list, the list is build of indentation and a tabulator stop. Each list item needs
a marker as an arbitrary string. For more information about paragraph indentation and tabulator stops see also chapter

Set Paragraph Properties.

attribs = dict (ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
bullet = "." # alt + numpad 7
editor = MTextEditor ("Bullet List:" + NP)
editor.bullet_1list (
indent=1,
bullets=[bullet] * 3,
content=[
"First item",

each list item needs a marker

"Second item",
" " Join(lorem_ipsum(30)),
1)
msp.add_mtext (str (editor), attribs)

94

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Bullet List:
First item
Second item

sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et
dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et

Numbered List

There are no special commands to build numbered list, the list is build of indentation and a tabulator stop. There is no
automatic numbering, but therefore the absolute freedom for using any string as list marker. For more information about
paragraph indentation and tabulator stops see also chapter Ser Paragraph Properties.

attribs = dict (ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor ("Numbered List:" + NP)
editor.bullet_list (
indent=1,
bullets=["1.", "2.", "3."],
content=[
"First item",
"Second item",
" " Join (lorem_ipsum(30)),
1)
msp.add_mtext (str(editor), attribs)

Numbered List:
1. Firstitem
Second item

sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et
dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et

9.5. Tutorials 95

ezdxf Documentation, Release 1.2.0

Stacked Text

MText supports stacked text (fractions) as a single inline code, which means it is not possible to change any property
inside the fraction. This example shows a fraction with scaled down text height, placed in a group to revert the text height
afterwards:

editor = MTextEditor ("Stacked text:" + NP)

stack = MTextEditor () .scale_height (0.6) .stack("1", "2", "~™")
editor.append("over: ") .group(str(stack)) .append (NP)

stack = MTextEditor () .scale_height (0.6) .stack("1", "2", "/")
editor.append("fraction: ") .group (str(stack)) .append (NP)

stack = MTextEditor () .scale_height (0.6) .stack("1", "2", "#")

editor.append("slanted: ") .group(str (stack)) .append (NP)

10t supported
stacked text
to red does not work:

numerator = MTextEditor () .color ("red") .append("1")

stack = MTextEditor () .scale_height (0.6) .stack(str (numerator), "2", "#")
editor.append("color red: ").group(str(stack)) .append (NP)

msp.add_mtext (str (editor), attribs)

Stacked text:
over: »

. 1
fraction: 2

slanted: >

color red: C11#2:

See also:
e MTextEditor example code on github.

e Documentation of MTextEditor

96 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/entities/mtext_editor.py

ezdxf Documentation, Release 1.2.0

9.5.12 Tutorial for Spline

Background information about B-spline at Wikipedia.

Splines from fit points

Splines can be defined by fit points only, this means the curve passes all given fit points. AutoCAD and BricsCAD
generates required control points and knot values by itself, if only fit points are present.

Create a simple spline:

doc = ezdxf.new ("R2000")

fit_points = [(0, O, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)]
msp = doc.modelspace ()
spline = msp.add_spline (fit_points)

Append a fit point to a spline:

fit_points, control_points, knots and weights are list—-like containers:
spline.fit_points.append((2250, 2500, 0))

9.5. Tutorials 97

https://en.wikipedia.org/wiki/B-spline

ezdxf Documentation, Release 1.2.0

You can set additional control points, but if they do not fit the auto-generated AutoCAD values, they will be ignored and
don’t mess around with knot values.

doc = ezdxf.readfile ("AutoCAD_generated.dxf")

msp = doc.modelspace ()
spline msp.query ("SPLINE") .first

fit_points, control_points, knots and weights are list-like objects:
spline.fit_points.append((2250, 2500, 0))

As far as I have tested, this approach works without complaints from AutoCAD, but for the case of problems remove
invalid data from the SPLINE entity:

current control points do not match spline defined by fit points
spline.control_points = []

count of knots 1is not correct:
count of knots = count of control points + degree + 1
spline.knots = []

same for weights,

count of weights == count of control points
spline.weights = []

98 Chapter 9. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 1.2.0

Splines by control points

Creating splines from fit points is the easiest way, but this method is also the least accurate, because a spline is defined by
control points and knot values, which are generated for the case of a definition by fit points, and the worst fact is that for
every given set of fit points exist an infinite number of possible splines as solution.

To ensure the same spline geometry for all CAD applications, the spline has to be defined by control points.
The method add _spline control_frame () adds a spline passing the given fit points by calculating the
control points by the Global Curve Interpolation algorithm. There is also a low level function ezdxf.math.
global bspline interpolation () which calculates the control points from fit points.

msp.add_spline_control_frame (fit_points, method='uniform', dxfattribs={'color': 1})
msp.add_spline_control_frame (fit_points, method='chord', dxfattribs={'color': 3})
msp.add_spline_control_frame (fit_points, method='centripetal', dxfattribs={'color': 5}
—)

* black curve: AutoCAD/BricsCAD spline generated from fit points
* red curve: spline curve interpolation, “uniform” method
* green curve: spline curve interpolation, “chord” method

* blue curve: spline curve interpolation, “centripetal” method

Since ezdxf v1.1 the method add_cad_spline_control_frame () calculates the same control points from fit
points as AutoCAD and BricsCAD.

9.5. Tutorials 99

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html

ezdxf Documentation, Release 1.2.0

Open Spline

Add and open (clamped) spline defined by control points with the method add_open_spline (). If no knot values
are given, an open uniform knot vector will be generated. A clamped B-spline starts at the first control point and ends at

the last control point.

control_points = [(0, O, 0), (1250, 1560, 0), (3130,

msp.add_open_spline (control_points)

6

10,

0),

(2250,

1250, 0)]

Rational Spline

Rational B-splines have a weight for every control point, which can raise or lower the influence of the control point, default
weight = 1, to lower the influence set a weight < 1 to raise the influence set a weight > 1. The count of weights has to be

always equal to the count of control points.

Example to raise the influence of the first control point:

msp.add_rational_spline (control_points,

weights=[3,

1,

1,

11)

100

Chapter 9. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node5.html

ezdxf Documentation, Release 1.2.0

i

Spline Tangents

The tangents of a spline are the directions of the first derivative of the curve:

additional required imports:
from ezdxf.math import Vec3, estimate_tangents
import numpy as np

snip —-X—-X—-x-—

fit_points = Vec3.list (
[
(0, 0, 0),
(1000, 600, 0),
(1500, 1200, 0),
(500, 1250, 0)
(0, 0, 0),

’

)
spline = msp.add_spline (fit_points)

draw the curve tangents as red lines:
ct = spline.construction_tool ()
for t in np.linspace (0, ct.max_t, 30):
point, derivative ct.derivative(t, 1)
msp.add_line (point, point + derivative.normalize (200), dxfattribs={"color": 1})

9.5. Tutorials 101

ezdxf Documentation, Release 1.2.0

To get a smooth closed curve the start- and end tangents have to be set manually when the control points are calculated
and they have to point in the same direction:

t0= Vec3 (1, -1, 0) # the length (magnitude) of the tangent is not relevant!
spline = msp.add_cad_spline_control_frame (fit_points, tangents=[t0, tO0])

102 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

To avoid guess work the function ezdxf.math.estimate_tangents () can be used to estimate the start- and
end tangents of the curve:

tangents = estimate_tangents (fit_points)

linear interpolation of the first and the last tangent:

t0 = tangents[0].lerp(tangents[-1], 0.5)
msp.add_cad_spline_control_frame (fit_points, tangents=[t0, tO0])

9.5. Tutorials 103

ezdxf Documentation, Release 1.2.0

It is also possible to add the SPLINE by fit-points and setting the tangents as DXF attributes:

spline = msp.add_spline (fit_points)
spline.dxf.flags = spline.PERIODIC | spline.CLOSED
spline.dxf.start_tangent = t0
spline.dxf.end_tangent = tO0

Spline properties

Check if spline is a closed curve or close/open spline, for a closed spline the last point is connected to the first point:

if spline.closed:
this spline is closed
pass

close spline
spline.closed = True

(continues on next page)

104 Chapter 9. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html

ezdxf Documentation, Release 1.2.0

(continued from previous page)

open spline
spline.closed = False

Set start- and end tangent for splines defined by fit points:

spline.dxf.start_tangent = (0, 1, 0)
spline.dxf.end_tangent = (0, 1, 0)

Get data count as stored in DXF attributes:

count = spline.dxf.n_fit_points
count = spline.dxf.n_control_points
count = spline.dxf.n_knots

Get data count from existing data:

count = spline.fit_point_count
count = spline.control_point_count
count = spline.knot_count

9.5.13 Tutorial for Polyface

The Polyface entity represents a 3D mesh build of vertices and faces and is just an extended POLYLINE entity with a
complex VERTEX structure. The Polyface entity was used in DXF R12 and older DXF versions and is still supported
by newer DXF versions. The new Mesh entity stores the same data much more efficient but requires DXF R2000 or
newer. The Polyface entity supports only triangles and quadrilaterals as faces, the Me sh entity supports also n-gons.

Its recommended to use the MeshBuilder objects to create 3D meshes and render them as POLYFACE entities by
the render_polymesh () method into a layout:

import ezdxf

from ezdxf import colors

from ezdxf.gfxattribs import GfxAttribs
from ezdxf.render import forms

cube = forms.cube () .scale_uniform(10) .subdivide (2)
red = GfxAttribs (color=colors.RED)

green = GfxAttribs (color=colors.GREEN)

blue = GfxAttribs (color=colors.BLUE)

doc = ezdxf.new/()
msp = doc.modelspace ()

render as MESH entity
cube.render_mesh (msp, dxfattribs=red)
cube.translate (20)

render as POLYFACE a.k.a. POLYLINE entity
cube.render_polyface (msp, dxfattribs=green)

cube.translate (20)

render as a bunch of 3DFACE entities
cube.render_3dfaces (msp, dxfattribs=blue)

doc.saveas ("meshes.dxf")

9.5. Tutorials 105

ezdxf Documentation, Release 1.2.0

Warning: If the mesh contains n-gons the render methods for POLYFACE and 3DFACES subdivides the n-gons
into triangles, which does not work for concave faces.

The usage of the MeshBui l1der object is also recommended for inspecting Polyface entities:
* MeshBuilder.vertices is asequence of 3D points as ezdxf.math. Vec3 objects

* aface in MeshBuilder. faces is a sequence of indices into the MeshBuilder.vertices sequence

import ezdxf
from ezdxf.render import MeshBuilder

def process (mesh) :
vertices is a sequence of 3D points
vertices = mses.vertices
a face is a sequence of indices into the vertices sequence
faces = mesh.faces

doc = ezdxf.readfile("meshes.dxf")
msp = doc.modelspace ()
for polyline in msp.query ("POLYLINE") :
if polyline.is_poly_ face_mesh:
mesh = MeshBuilder.from polyface (polyline)
process (mesh)

See also:

Tutorial for Mesh

106 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.5.14 Tutorial for Mesh

The Mesh entity is a 3D object in WCS build up from vertices and faces.

Create a cube mesh by directly accessing the base data structures:

import ezdxf

8 corner vertices

cube_vertices = |

(0, 0, 0),
(1, 0, 0),
(L, 1, 0),
(0, 1, 0),
(0, 0, 1),
(L, 0, 1),
(1, i, 1),
(0, 1, 1),

6 cube faces
cube_faces [

o, 1, 2, 31,
(4, 5, 6, 71,
(o, 1, 5, 41,
[1, 2, 6, 51,
[3, 2, 6, 71,
[0, 3, 7, 4]

’ ’

~

MESH requires DXF R2000 or later

doc = ezdxf.new ("R2000")

msp = doc.modelspace ()

mesh = msp.add_mesh ()

do not subdivide cube, 0 1is the default value

mesh.dxf.subdivision_levels = 0

with mesh.edit_data () as mesh_data:
mesh_data.vertices = cube_vertices
mesh_data.faces = cube_faces

doc.saveas ("cube_mesh_1.dxf")

Create a cube mesh by assembling single faces using the edit_data () context manager of the Mesh class and the
helper class MeshData:

import ezdxf

8 corner vertices

p = I
(0, 0, 0),
(1, 0, 0),
(L, 1, 0),
(0, 1, 0),
(0, 0, 1),
(L, 0, 1),
(¢, 1, 1),

(continues on next page)

9.5. Tutorials

107

ezdxf Documentation, Release 1.2.0

(continued from previous page)

(0, 1, 1),

MESH requires DXF R2000 or later
doc = ezdxf.new ("R2000")

msp = doc.modelspace ()

mesh = msp.add_mesh ()

with mesh.edit_data () as mesh_data:

mesh_data.add_face ([p[0], pl[l], pl[2], p[311])
mesh_data.add_face ([p[4], p[5], pl6l, p[711])
mesh_data.add_face ([p[0], pl[l], p[5], pl4]1])
mesh_data.add_face([p[1], p[2], pl6]l, p[5]11])
mesh_data.add_face ([p[3], p[2], pl6l, p[711])
mesh_data.add_face ([p[0], p[3], pl[7], pl41])
optional call optimize(): minimizes the vertex count
()

mesh_data.optimize

doc.saveas ("cube _mesh_2.dxf")

Its recommended to use the MeshBuilder objects to create 3D meshes and render them as MESH entities by the
render_mesh () method into a layout:

import ezdxf

from ezdxf import colors

from ezdxf.gfxattribs import GfxAttribs
from ezdxf.render import forms

cube = forms.cube () .scale_uniform(10) .subdivide (2)
red = GfxAttribs (color=colors.RED)

green = GfxAttribs(color=colors.GREEN)

blue = GfxAttribs (color=colors.BLUE)

doc ezdxf.new ()
msp = doc.modelspace ()

render as MESH entity
cube.render_mesh (msp, dxfattribs=red)
cube.translate (20)

render as POLYFACE a.k.a. POLYLINE entity
cube.render_polyface (msp, dxfattribs=green)

cube.translate (20)

render as a bunch of 3DFACE entities
cube.render_3dfaces (msp, dxfattribs=blue)

doc.saveas ("meshes.dxf")

108 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

There exist some tools to manage meshes:

* ezdxf.render.MeshBuilder: The MeshBuilder classes are helper tools to manage meshes buildup by
vertices and faces.

e ezdxf.render.MeshTransformer: Same functionality as MeshBu1i 1 der but supports inplace transfor-
mation.

* ezdxf.render.MeshDiagnose: A diagnose tool which can be used to analyze and detect errors of Mesh—
Builder objects like topology errors for closed surfaces.

e ezdxf.render.FaceOrientationDetector: A helper class for face orientation and face normal vector
detection

The ezdxf. render. forms module provides function to create basic geometries like cube, cone, sphere and so on
and functions to create meshes from profiles by extrusion, rotation or sweeping.

This example shows how to sweep a gear profile along a helix:

import ezdxf
from ezdxf.render import forms

doc = ezdxf.new/()
doc.layers.add ("MESH", color=ezdxf.colors.YELLOW)
msp = doc.modelspace ()
sweeping a gear-profile
gear = forms.gear (

8, top_width=0.01, bottom_width=0.02, height=0.02, outside_radius=0.1
)
helix = path.helix(radius=2, pitch=1, turns=6)
along a helix spine
sweeping_path = helix.flattening(0.1)

mesh = forms.sweep (gear, sweeping_path, close=True, caps=True)
(continues on next page)

9.5. Tutorials 109

ezdxf Documentation, Release 1.2.0

(continued from previous page)

and render as MESH entity
mesh.render_mesh (msp, dxfattribs={"layer": "MESH"})
doc.saveas ("gear_along_helix.dxf")

9.5.15 Tutorial for Hatch

Create hatches with one boundary path

The simplest form of the Hat ch entity has one polyline path with only straight lines as boundary path:

import ezdxf

hatch requires DXF R2000 or later
doc = ezdxf.new ("R2000")
msp = doc.modelspace ()

by default a solid fill hatch with fill color=7 (white/black)

hatch = msp.add_hatch(color=2)

vertex f or the polyli th is: (x, y[, bulge])

there are
hatch.paths.add_polyline_path (
[(0, 0), (10, 0), (10, 10), (O, 10)], is_closed=True

this example

)

doc.saveas ("solid_hatch_polyline_path.dxf")

But like all polyline entities the polyline path can also have bulge values:

110 Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

import ezdxf

hatch requires the DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace ()

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element

vertex format for the polyline path is: (x, y/[, bulge])

bulge value 1 = an arc with diameter=10 (= distance to next vertex * bulge value)
bulge value > 0 ... arc is right of line

bulge value < 0 ... arc 1is left of line

hatch.paths.add_polyline_path (
[(, o, 1), (0, 0), (10, 10, -0.5), (0, 10)], is_closed=True

doc.saveas ("solid_hatch_polyline_path_with_bulge.dxf")

The most flexible way to define a boundary path is the edge path. An edge path can have multiple edges and each edge
can be one of the following elements:

¢ line EdgePath.add_line ()
e arc EdgePath.add_arc ()
e ellipse EdgePath.add_ellipse ()
¢ spline EdgePath.add_spline ()
Create a solid hatch with an edge path (ellipse) as boundary path:

import ezdxf

hatch requires the DXF R2000 or later
doc = ezdxf.new ("R2000")
msp = doc.modelspace ()

important: major axis >= minor axis (ratio <= 1.)
minor axis length = major axis length * ratio
msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element

edge_path = hatch.paths.add_edge_path ()

each edge path can contain line, arc, ellipse and spline elements
important: major axis >= minor axis (ratio <= 1.)
edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)

doc.saveas ("solid_hatch_ellipse.dxf")

9.5. Tutorials 111

ezdxf Documentation, Release 1.2.0

Create hatches with multiple boundary paths (islands)

The DXF attribute hat ch_style defines the island detection style:

0 nested - altering filled and unfilled areas
1 outer - area between external and outermost path is filled
2 ignore - external path is filled

hatch = msp.add_hatch (

color=1,

dxfattribs={
"hatch_style": ezdxf.const.HATCH_STYLE_NESTED,
0 = nested: ezdxf.const.HATCH STYLE_ _NESTED
1 = outer: ezdxf.const.HATCH STYLE_ OUTERMOST
2 = ignore: ezdxf.const.HATCH_STYLE_IGNORE

}I

The first path has to set flag: 1 = external
flag const.BOUNDARY _PATH POLYLINE is added (OR) automatically
hatch.paths.add_polyline_path (

[(o, 0), (10, 0), (10, 20), (O, 10)1,

is_closed=True,

flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,

This is also the result for all 4 paths and hatch_style set to 2 (ignore).

The second path has to set flag: 16 = outermost
hatch.paths.add_polyline_path (
(1, 1y, 9, 1), (9, 9, (1, 91,
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST,

This is also the result for all 4 paths and hatch_style setto 1 (outer).

112

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

The third path has to set flag: 0 = default
hatch.paths.add_polyline_path (
(2, 23, (8, 2), (8, 8), (2, 8)1,
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_ DEFAULT,

The forth path has to set flag: 0 = default, and so on
hatch.paths.add_polyline_path (
(3, 3y, (7, 3), (7, 7Y, (3, 7)1,
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_DEFAULT,

doc.saveas (OUTDIR / "solid_hatch_islands_04.dxf")

9.5. Tutorials

113

ezdxf Documentation, Release 1.2.0

The expected result of combinations of various hatch_style values and paths flags, or the handling of overlapping
paths is not documented by the DXF reference, so don’t ask me, ask Autodesk or just try it by yourself and post your

experience in the forum.

Example for Edge Path Boundary

hatch = msp.add_hatch(color=1)

1. polyline path
hatch.paths.add_polyline_path (
[

(240, 210, 0),
(0, 210, 0),
(0, 0, 0.0),
(240, 0, 0),
]I
is_closed=1,
flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,
)
2. edge path

edge_path = hatch.paths.add_edge_path (flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST)

edge_path.add_spline (
control_points=[
(126.658105895725, 177.0823706957212)

157.363511042264, 26.4621294342132),

1,

55.20174685732758,
98.33239645153571,
175.1126541251052,
213.2061566683142,
213.2061566683142,
213.2061566683142,
213.2061566683142,
]I
)
edge_path.add_arc(

center=(152.6378550678883, 128.3209356351659),

radius=100.1880612627354,
start_angle=94.4752130054052,
end_angle=177.1345242028005,

)

edge_path.add_line (
(52.57506282464041, 123.3124200796114),
(126.658105895725, 177.0823706957212),

141.5497003747484, 187.8907860433995
205.8997365206943, 154.7946313459515
113.0168862297068, 117.8189380884978
202.9816918983783, 63.17222935389572

144.8204003260554, 28.4383294369643),

114

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Associative Boundary Paths

A HATCH entity can be associative to a base geometry, which means if the base geometry is edited in a CAD application
the HATCH get the same modification. Because ezdxf is not a CAD application, this association is not maintained nor
verified by ezdxf, so if you modify the base geometry afterwards the geometry of the boundary path is not updated and
no verification is done to check if the associated geometry matches the boundary path, this opens many possibilities to
create invalid DXF files: USE WITH CARE.

This example associates a LWPOLYLINE entity to the hatch created from the LWPOLYLINE vertices:

Create base geometry

lwpolyline = msp.add_lwpolyline (
[¢o, o, o), (o, o, 0.5), (10, 10, 0), (0O, 210, 0)1,
format="xyb",
close=True,

hatch = msp.add_hatch(color=1)

path = hatch.paths.add_polyline_path (
get path vertices from associated LWPOLYLINE entity
lwpolyline.get_points (format="xyb"),
get closed state also from associated LWPOLYLINE entity
is_closed=lwpolyline.closed,

Set association between boundary path and LWPOLYLINE
hatch.associate (path, [lwpolyline])

An EdgePath needs associations to all geometry entities forming the boundary path.

9.5. Tutorials 115

ezdxf Documentation, Release 1.2.0

Predefined Hatch Pattern

Use predefined hatch pattern by name:

hatch.set_pattern_fill ("ANSI31",

scale=0.5)

116

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

K
ANSI31 ANSI34 A s
ANSI38 ACAD_ISO02WI00 | ACAD_ISO03W100 |ACAD_ISOOSW100 |ACAD_ISOOSW100 [ACAD_ISO06W100 | ACAD_ISOO7WI00
ACAD_15008W100 | ACAD_ISO09W100 | ACAD_ISO10W100 | ACAD_ISOTTW100 | ACAD_ISO12W100 ~| ACAD_ISO13W100 | ACAD_ISO14W100 |
——— —{ CLLCLCLCLY : T . T
[
—LLLLerr
N
NN
[SUPRUN I .
ACAD_ISO15W100 | ANGLE | L L_ | AR-8816 AR-BBI6C =] AR-823] T{ARBRELM [| ARBRSTD
A \ — |
4 O O
SN y 0 H o
ARCONC 2 . | AR-HBONE AR-PARQ AR-RROOF AR-RSHKE | | ARSAND * - BOX
““““““ T T 7 —— e I G T
T 1 —— T
——————————— T 1T 1 — — ——
----------- T 1 e e
——————————— i —— — + +
BRASS Somee BRICK T~ | BRSTONE CLAY s (ORK S CROSS +_ + :
e’ e “ o [I
Z e
— e
DOLMIT ESCHER | AE — — ~— GOST GLASS ,
= . - o O LSS e T
SOt oY o
O O O o
W o _0
05990
- \y /__\O__\)-} D
GOST_GROUND _{GRASS GRATE GRAVEL HeCY O
—————— T B :
..... — :l
- e
- = e
LINE MUDST . . |nem I NeT e B PLASTI
- e |EpEpEpEpEpE] v v v o
-,'_,unuununu:ZICKECZ[CIZy ———————— VTVVv vy
~Jaoooooon 277777 [sl Vv vVvVvv
“#{0oooooog ECZ E\Ar_ 7/ B apfp - - - - - - VY VYV VY
“4oooooood 77777777 I sttt
-.._1-nnunnnnn;$$$5 -------- vvvVvvwy
T EEEE B 77V VY
; SQUHRE ioooo STARS Va0 SWAMP TRANS = = = = = TRIANG YVvVY

-

IGUG jﬁ

9.5. Tutorials

117

ezdxf Documentation, Release 1.2.0

Load Hatch Patterns From File

CAD applications store the hatch patterns in pattern files with the file extension .pat. The following script shows how
to load and use these pattern files:

EXAMPLE = """; a pattern file

*SOLID, Solid fill

45, 0,0, 0,.125

*ANSI31, ANSI Iron, Brick, Stone masonry
45, 0,0, 0,.125

*ANSI32, ANSI Steel

45, 0,0, 0,.375

45, .176776695,0, 0, .375

*ANSI33, ANSI Bronze, Brass, Copper
45, 0,0, 0,.25

45, .176776695,0, 0, .25, .125,-.0625
*ANSI34, ANSI Plastic, Rubber

45, 0,0, 0,.75

45, .176776695,0, 0,.75

45, .353553391,0, 0,.75

45, .530330086,0, 0,.75

nwn

hatch = msp.add_hatch ()

load your pattern file from the file system as string:
with open ("pattern_file.pat", "rt'") as fp:

EXAMPLE = fp.read()

patterns = pattern.parse (EXAMPLE)

hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0, # the overall rotation of the pattern in degrees
scale=1.0, # overall scaling of the pattern
style=0, # normal hatching style
pattern_type=0, # user-defined
pattern name without the preceding asterisk
definition=patterns["ANSI34"],
)
points = [(0, 0), (10, 0), (10, 10), (0, 10)]
hatch.paths.add_polyline_path (points)
msp.add_lwpolyline (points, close=True, dxfattribs={"color": 1})

See also:

Tutorial for Hatch Pattern Definition

118 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.5.16 Tutorial for Hatch Pattern Definition

A hatch pattern consist of one or more hatch lines. A hatch line defines a set of lines which have the same orientation an
the same line pattern. All the lines defined by a hatch line are parallel and have a constant distance to each other. The
origin defines the start point of the hatch line and also the starting point of the line pattern. The direction defines the angle
between the WCS x-axis and the hatch line. The offset is a 2D vector which will be added consecutively the the origin for
each new hatch line. The line pattern has the same format as as the simple linetype pattern (7utorial for Creating Linetype
Pattern).

Important: The hatch pattern must be defined for a hatch scaling factor of 1.0 and a hatch rotation angle of 0 degrees!

The first example creates a simple pattern of horizontal solid lines with a vertical distance of 0.5 drawing units.

import ezdxf

doc = ezdxf.new ("R2010")
msp = doc.modelspace ()
hatch = msp.add_hatch ()
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
pattern definition as list of:
[angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
line pattern is a solid line
definition=[[0, (O, O0), (O, 0.5), [111],

)
points = [(0, 0O), (10, 0O), (10, 10), (O, 10)1
hatch.paths.add_polyline_path (points)

msp.add_lwpolyline (points, close=True, dxfattribs={"color": 1})
doc.saveas ("user_defined_hatch_pattern.dxf")

9.5. Tutorials 119

ezdxf Documentation, Release 1.2.0

The next example shows how the offser value works:

#—X—X—X— SHIpP —X—X—X—

hatch = msp.add_hatch()

hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # nor

pattern_type=0,

s

S

[angle in 2d vector,

definition=[[0, (0, 0), (0.3, 1), [1, -11]

or, line patt

— "

’

120 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

The next example combines two parallel hatch lines, the origin defines how the hatch lines are offset from each other:

—X—X-X— Snip —-X-X—-X-—
hatch = msp.add_hatch()
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # norm
pattern_type=0,

[angle in degree, origin as 2d vector, offset as 2d vector ‘
definition=][

(o, o, 0), (0.3, 1), [1

]

(0, (0, 0.5), (0, 1), I

, line pa

1
0]

ern]

r
k

1,

W o=R=RmR= BiAdlp =sR=sr—se=

9.5. Tutorials 121

ezdxf Documentation, Release 1.2.0

The next example combines two hatch lines with different angles. The origins can be the same for this example. The
Vec?2 class is used to calculate the offset value for a normal distance of 0.7 drawing units between the slanted lines:

from ezdxf.math import Vec2

—X—-X-X— Snip —-X—-X-x—
hatch = msp.add_hatch ()
ce of 0.7 for a 45

+ 90, length=0.7)

offset vector for a normal di
offset = Vec2.from_deg_angle (45
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # nor.
pattern_type=0,
[angle in degree,
definition=]
(o, (o, 0), (0, 1),
[45, (0, 0), offset,

122 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.5.17 Tutorial for Image and ImageDef

This example shows how to use a raster image in a DXF document. Each IMAGE entity requires an associated IM-
AGEDEF entity in the objects section, which stores the filename of the linked image and the size in pixels. Multiple
IMAGE entities can share the same IMAGEDEEF entity.

Important: The raster image is NOT embedded in the DXF file!

import ezdxf

The IMAGE entity is like a block definition, it just defines the image.

my_image_def = doc.add_image_def (
filename="mycat.jpg", size_in_pixel=(640, 360)

modelspace ()

E entity 1s

(continues on next page)

9.5. Tutorials 123

ezdxf Documentation, Release 1.2.0

(continued from previous page)

msp.add_image (

insert=(2, 1),

size_in_units=(6.4, 3.6),

image_def=my_image_def,

rotation=0
)
2nd image reference
msp.add_image (

insert=(4, 5),

size_in_units=(3.2, 1.8),

image_def=my_image_def,

rotation=30

Get existing image definitions from the OBJECTS section:
image_defs = doc.objects.query ("IMAGEDEEF")

doc.saveas ("dxf with_cat.dxf")

9.5.18 Tutorial for Underlay and UnderlayDefinition

This example shows hot to insert a a PDF, DWF, DWFx or DGN file as drawing underlay. Each UNDERLAY entity
requires an associated UNDERLAYDEEF entity in the objects section, which stores the filename of the linked document
and the parameters of the underlay. Multiple UNDERLAY entities can share the same UNDERLAYDEEF entity.

Important: The underlay file is NOT embedded into the DXF file:

import ezdxf

doc = ezdxf.new('AC1015') # underlay requires the DXF R2000 format or later
my_underlay_def = doc.add_underlay_def (filename="my_underlay.pdf', name='1l")

The (PDF)DEFINITION entity is like a block definition, it just defines the underlay
'name' is misleading, because it defines the page/sheet to be displayed

PDF: name 1is the page number to display

DGN: name='default' ???

DWF: 2227

msp = doc.modelspace ()

add first underlay

msp.add_underlay (my_underlay_def, insert=(2, 1, 0), scale=0.05)

The (PDF)UNDERLAY entity is like the INSERT entity, it creates an underlay..
—reference,

and there can be multiple references to the same underlay in a drawing.

msp.add_underlay (my_underlay_def, insert=(4, 5, 0), scale=.5, rotation=30)
get existing underlay definitions, Important: UNDERLAYDEFs resides in the objects.
—section

pdf_defs = doc.objects.query ('PDFDEFINITION') # get all pdf underlay defs in drawing

doc.saveas ("dxf_with_underlay.dxf")

124 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.5.19 Tutorial for MultiLeader

A multileader object typically consists of an arrowhead, a horizontal landing (a.k.a. “dogleg”), a leader line or curve, and
either a MTEXT object or a BLOCK.

Factory methods of the BaseLayout class to create new Mult i Leader entities:
e add multileader_ _mtext ()
* add_multileader_block ()

Because of the complexity of the MULTILEADER entity, the factory method add multileader _mtext ()
returns a MultiLeaderMTextBuilder instance to build a new entity and the factory method
add _multileader block () returns a MultiLeaderBlockBuilder instance.

Due of the lack of good documentation it’s not possible to support all combinations of MULTILEADER properties with
decent quality, so stick to recipes and hints shown in this tutorial to get usable results otherwise, you will enter uncharted
territory.

The rendering result of the MULTILEADER entity is highly dependent on the CAD application. The MULTILEADER
entity does not have a pre-rendered anonymous block of DXF primitives like all DIMENSION entities, so results may vary
from CAD application to CAD application. The general support for this entity is only good in Autodesk products other
CAD applications often struggle when rendering MULTILEADERS, even my preferred testing application BricsCAD
has rendering issues.

Important: MULTILEADER support has flaws in many CAD applications except Autodesk products!

See also:
e ezdxf.render.MultiLeaderBuilder classes
e ezdxf.entities.MultiLeader class
e ezdxf.entities.MLeaderStyle class
* ezdxf.tools.text.MTextEditor class

o MULTILEADER Internals

MTEXT Quick Draw

Full Python script: mtext_quick_leader.py

The quick_leader () method of a MTEXT - MULTILEADER entity constructs the geometry parameters in reverse
manner, starting from a given target point:

DXF document setup:

doc = ezdxf.new (setup=True)

Create a new custom MLEADERSTYLE:

mleaderstyle doc.mleader_styles.duplicate_entry ("Standard", "EZDXE")

The required TEXT style "OpenSans" was created by ezdxf.new() because setup is.
—True:

mleaderstyle.set_mtext_style ("OpenSans")
msp = doc.modelspace ()

Draw a red circle to mark the target point:

9.5. Tutorials 125

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/mtext_quick_leader.py

ezdxf Documentation, Release 1.2.0

target_point = Vec2 (40, 15)
msp.add_circle (
target_point, radius=0.5, dxfattribs=GfxAttribs (color=colors.RED)

Create four horizontal placed MULTILEADER entities pointing at the target point, the first segment of the leader line is
determined by an angle in this example pointing away from the target point:

for angle in [45, 135, 225, -45]:
ml_builder = msp.add_multileader_mtext ("EZDXE")
ml_builder.quick_leader (
f"angle={angle}°\n2nd text line",
target=target_point,
segmentl=Vec2.from_deg_angle (angle, 14),

angle=135° angle=45°
2nd text line | 2nd text line

angle=225° angle=-45°
2nd text line 2nd text line

The content is automatically aligned to the end of the leader line. The first segment is a relative vector to the target point
and the optional second segment vector is relative to the end of the first segment. The default connection type is horizontal
but can be changed to vertical:

A smaller text size is required:

mleaderstyle = doc.mleader_styles.duplicate_entry ("Standard", "EZDXE")
mleaderstyle.set_mtext_style ("OpenSans")
mleaderstyle.dxf.char_height = 2.0 # set the default char height of MTEXT

Adding vertical placed MULTILEADER entities:

for angle in [45, 135, 225, -45]:
ml_builder = msp.add_multileader_mtext ("EZDXE")
ml_builder.quick_leader (
f"angle={angle}°\n2nd text line",
target=target_point,
segmentl=Vec2.from_deg_angle (angle, 14),
connection_type=mleader.VerticalConnection.center_overline,

This example already shows the limitation caused by different text renderings in various CAD applications. The ezdxf
text measurement by matplotlib is different to AutoCAD and BricsCAD and the result is a misalignment of the overline
and the leader line.

The DXF file shown in BricsCAD:

126 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

angle=135° angle=45°
2nd text line 2nd text line

angle=225° angle=-45°
2nd text line 2nd text line

The same DXF file shown with the ezdxf view command (drawing add-on):

9.5. Tutorials

127

ezdxf Documentation, Release 1.2.0

angle=135° angle=45°
2nd text line 2nd text line

angle=225° angle=-45°
2nd textline 2nd text line

My advice is to avoid vertical placed MULTILEADER entities at all and for horizontal placed MULTILEADER entities
avoid styles including an “underline” or an “overline”.

The quick_leader () method is not very customizable for ease of use, but follows the settings of the associated
MLeaderStyle.

The following sections show how to have more control when adding MULTILEADER entities.

128 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Create MTEXT Content

Full Python script: mtext_content.py

This section shows how to create a MULTILEADER entity with MTEXT content the manual way with full control over
all settings.

For good results the MTEXT alignment should match the leader connection side, e.g. if you attach leaders to the left side
also align the MTEXT to the left side, for leaders attached at the right side, align the MTEXT to the right side and if you
attach leaders at both sides one side will fit better than the other or maybe a center aligned MTEXT is a good solution,
for further details see section MTEXT Alignment.

The first example uses the default connection type of the MLEADERSTYLE “Standard” which is “middle of the top line”
for left and right attached leaders. The render UCS for this example is the WCS to keep things simple.

Create a new MULTILEADER entity.

ml_builder = msp.add_multileader_mtext ("Standard")

Set MTEXT content, text style and alignment.

ml _builder.set_content (
"Linel\nLine2",
style="OpenSans",
alignment=mleader.TextAlignment.left, # set MTEXT alignment!

Add the first leader on the left side. The leader points always to the first given vertex and all vertices are given in render
UCS coordinates (= WCS in this example).

ml_builder.add_leader_line (mleader.ConnectionSide.left, [Vec2(-20, -15)1)

More than one vertex per leader can be used:

ml_builder.add_leader_line(
mleader.ConnectionSide.left,
[Vec2 (-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)1,

The insert point of the build () method is the alignment point for the MTEXT content.

ml_builder.build(insert=Vec2 (5, 0))

The “dogleg” settings are defined by the MLEADERSTYLE “Standard”.

9.5. Tutorials 129

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/mtext_content.py

ezdxf Documentation, Release 1.2.0

This example shows a leader attached to the right side and the MTEXT aligned to the right side.

ml_builder = msp.add _multileader_mtext ("Standard")
ml_builder.set_content (

"Linel\nLine2",

style="OpenSans",

alignment=mleader.TextAlignment.right, # set MTEXT alignment!
)
ml_builder.add_leader_line (mleader.ConnectionSide.right, [Vec2 (40, -15)1)
ml_builder.build(insert=Vec2 (15, 0))

130 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

This example shows two leaders attached to both sides and the MTEXT aligned to the left side, which shows that the right
landing gap (space between text and start of vertex) is bigger than the gap on the left size. This is due to the different text
size calculations from AutoCAD/BricsCAD and Matplotlib. The longer the text, the greater the error.

ml_builder = msp.add _multileader_mtext ("Standard")
ml_builder.set_content (

"Linel\nLinel",

style="OpenSans",

alignment=mleader.TextAlignment.left, # set MTEXT alignment!

)

ml_builder.add_leader_line (mleader.ConnectionSide.left, [Vec2 (-20, 15)7)
ml_builder.add_leader_line (mleader.ConnectionSide.right, [Vec2 (40, -15)1)
ml_builder.build(insert=Vec2 (5, 0))

A centered MTEXT alignment gives a more even result.

ml_builder = msp.add_multileader_mtext ("Standard")
ml _builder.set_content (
"First Line\n2. Line",
style="OpenSans",
alignment=mleader.TextAlignment.center, # set

aliagnment!
lignment!

(continues on next page)

9.5. Tutorials 131

ezdxf Documentation, Release 1.2.0

(continued from previous page)
)
ml_builder.add_leader_line (mleader.ConnectionSide.left, [Vec2 (-20, -15)1)
ml_builder.add_leader_line (mleader.ConnectionSide.right, [Vec2 (40, 15)1)
ml_builder.build(insert=Vec2 (10, 0))

— First Line —

2. Line

But even this has its disadvantages, the attachment calculation is always based on the bounding box of the MTEXT content.

1. Line

Second Line

MTEXT Connection Types

There are four connection sides defined by the enum ezdxf. render.ConnectionSide:
e left
* right
¢ top
* bottom

The MultiLeader entity supports as the name says multiple leader lines, but all have to have a horizontal (left/right)
connection side or a vertical (top/bottom) connection side, it’s not possible to mix left/right and top/bottom connection
sides. This is determined by the DXF format.

There are different connection types available for the horizontal and the vertical connection sides. All leaders connecting
to the same side have the same connection type. The horizontal connection sides support following connection types,
defined by the enum ezdxf. render.HorizontalConnection:

* by_style
* top_of_top_line

* middle_of_top_line

132 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

¢ middle_of _text

* middle_of_bottom_line

¢ bottom_of bottom_line

¢ bottom_of_bottom_line_underline (not recommended)
* bottom_of_top_line_underline (not recommended)

* bottom_of_top_line

¢ bottom_of_top_line_underline_all (not recommended)

The vertical connection sides support following connection types, defined by the enum ezdxf.render.
VerticalConnection:

* by_style
* center
¢ center_overline (not recommended)

The connection type for each side can be set by the method set_connection_types (), the default for all sides is
by_style:

ml_builder.set_connection_types (
left=mleader.HorizontalConnection.middle_of_top_1line,
right=mleader.HorizontalConnection.middle_of_bottom_line,

Hint: As shown in the quick draw section using connection types including underlines or overlines do not render well
in AutoCAD/BricsCAD because of the different text measurement of matplotlib, therefore it’'s not recommended to use
any of these connection types when creating MULTILEADERS by ezdxf.

MTEXT Alignment

In contrast to the standalone MTEXT entity supports the MTEXT content entity only three text alignments defined by the
enum ezdxf.render.TextAlignment.

o eft
* center

* right

9.5. Tutorials 133

ezdxf Documentation, Release 1.2.0

The MTEXT alignment is set as argument alignment of the set_content () method and the alignment point is the
insert point of the buiIld () method.

Create BLOCK Content

Full Python script: block_content.py

This section shows how to create a MULTILEADER entity with BLOCK content the manual way with full control over
all settings.

The BLOCK content consist of a BLOCK layout and optional ATTDEF entities which defines the location and DXF
attributes of dynamically created ATTRIB entities.

Create the BLOCK content, the full create_square_block () function can be found in the block_content.py script.

block = create_square_block (
doc, size=8.0, margin=0.25, base_point=base_point

Create the MULTILEADER and set the content:

ml_builder = msp.add_multileader_block (style="Standard")
ml _builder.set_content (
name=pblock.name, alignment=mleader.BlockAlignment.insertion_point

Set the BLOCK attribute content as text:

ml_builder.set_attribute ("ONE", "Datal")
ml_builder.set_attribute ("TWO", "Data2")

Add some leader lines to the left and right side of the BLOCK:

Construction plane of the entity is defined by a render UCS. The leader lines vertices are expected in render UCS coordi-
nates, which means relative to the UCS origin and this example shows the simple case where the UCS is the WCS which
is also the default setting.

ml_builder.add_leader_line (mleader.ConnectionSide.right, [Vec2 (x2, vyl
ml_builder.add_leader_line (mleader.ConnectionSide.right, [Vec2 (x2, y2
ml_builder.add_leader_line (mleader.ConnectionSide.left, [Vec2(x1l, vy1l)
ml_builder.add_leader_line (mleader.ConnectionSide.left, [Vec2(xl, y2)

) 1)
) 1)
1)
1)

Last step is to build the final MULTILEADER entity. This example uses the alignment type insertion_point where the
insert point of the build () method is the base point of the BLOCK:

134 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/block_content.py
https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/block_content.py

ezdxf Documentation, Release 1.2.0

ml_builder.build(insert=Vec2 (5, 2), rotation=30)

The result is shown in BricsCAD as expected, although BricsCAD shows “Center extents” as attachment type in the
properties dialog instead of the correct attachment type “Insertion point™.

BLOCK Connection Types

There are four connection sides defined by the enum ezdxf. render.ConnectionSide:
o left
* right
¢ top
* bottom

The connection point for leader lines is always the center of the side of the block bounding box the leader is connected
to and has the same limitation as for the MTEXT content, it’s not possible to mix the connection sides left/right and
top/bottom.

The connection side is set when adding the leader line by the add_leader_1ine () method.

Unfortunately BricsCAD has an error in version 22.2.03 and renders all connection types as left/right, this is top/bottom
connection shown in Autodesk TrueView 2022:

9.5. Tutorials 135

ezdxf Documentation, Release 1.2.0

The top/bottom connection type does not support the “dogleg” feature.

BLOCK Alignment

There are two alignments types, defined by the enum ezdxf. render.BlockAlignment
* center_extents
* insertion_point

The alignment is set by the set__content () method.

The alignment type center_extent inserts the BLOCK with the center of the bounding box at the insert point of the
build () method. The insert point is (5, 2) in this example:

136 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

The same MULTILEADER with alignment type insert_point:

9.5. Tutorials 137

ezdxf Documentation, Release 1.2.0

BLOCK Scaling

The BLOCK content can be scaled independently from the overall scaling of the MULTILEADER entity:

The block scaling factor is set by the set__content () method:

ml _builder.set_content (
name=block.name, scale=2.0, alignment=mleader.BlockAlignment.center_extents

)

This is the first example with a block scaling factor of 2. The BLOCK and the attached ATTRIB entities are scaled but
not the arrows.

138 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

BLOCK Rotation

The rotation around the render UCS z-axis in degrees is applied by the bui 1d () method:

ml_builder.build(insert=Vec2 (5, 2), rotation=30)

This is the first example with a rotation of 30 degrees. The BLOCK, the attached ATTRIB entities and the last connection
lines (“dogleg”) are rotated.

9.5. Tutorials 139

ezdxf Documentation, Release 1.2.0

BLOCK Attributes

BLOCK attributes are defined as ATTDEF entities in the BLOCK layout. This ATTDEF entities will be replaced by
ATTRIB entities at the rendering process of the CAD application. Only the text content and the text width factor can be
changed for each MULTILEADER entity individually by the set_attribute () method. The ATTDEF is addressed
by it’s DXF fag attribute:

ml_builder.set_attribute ("ONE", "Datal")
ml_builder.set_attribute ("TWO", "Data2")

140 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Leader Properties

“Dogleg” Properties

The “dogleg” is the last line segment from the last leader vertex to the MULTILEADER content for polyline leaders.

gap dogleg length

MText

The length of the dogleg and the landing gap size is set by the set_connection_properties ().

Polyline Leader

A polygon leader line has only straight line segments and is added by the add_leader_line():

ml_builder.add_leader_line (
mleader.ConnectionSide.left,
[Vec2 (-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)1,

9.5. Tutorials 141

ezdxf Documentation, Release 1.2.0

M T ext

All leader line vertices have render UCS coordinates and the start- and end-vertex of the “dogleg” is calculated automat-
ically.

Spline Leader

A spline leader line has a single curved line as leader line and is also added by the add_leader_Iline (). Thisis
spline leader has the same vertices as the previous created polyline leader:

ml_builder.set_leader_properties (leader_type=mleader.LeaderType.splines)
ml_builder.add_leader_line(

mleader.ConnectionSide.left,

[Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)1,

142 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

M T ext

The spline leader has no “dogleg” and spline leaders and polyline leaders can not be mixed in a single MULTILEADER
entity.

The leader type is set by the set_leader_properties () method.
The LeaderType enum:

* none

* straight_lines

* splines

Line Styling

The leader color, linetype and lineweight is set by the set_leader properties () method:

ml_builder.set_leader_properties (
color=colors.MAGENTA,
linetype="DASHEDX2",
lineweight=70,

9.5. Tutorials 143

ezdxf Documentation, Release 1.2.0

_—— MText

/
/
/

All leader lines have the same properties.

Arrowheads

The arrow head is set by the set_arrow_properties () method:

from ezdxf.render import ARROWS
ml_builder.set_arrow_properties (name=ARROWS.closed_blank, size=8.0)

M T ext

All leader lines have the same arrow head and size. The available arrow heads are defined in the ARROWS object.

144 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Overall Scaling

The overall scaling has to be applied by the set_overall scaling () method and scales the MTEXT or BLOCK
content and the arrows.

Setup MLEADERSTYLE

The MLeadersStyle stores many of the MULTILEADER settings but most of them are copied to the MULTILINE
entity at initialization. So changing the MLEADERSTYLE style afterwards has little to no effect for existing MULTI-
LEADER entities.

Create a new MLEADERSTYLE called “MY_STYLE” and set the MTEXT style to “OpenSans”:

my_style = doc.mleader_styles.duplicate_entry ("Standard", "MY_STYLE")
my_style.set_mtext_style ("OpenSans")

The style for a MULTILEADER is set at the add_multileader mtext () and add_multileader_block ()
factory methods.

9.5.20 Tutorial for Viewports in Paperspace

This tutorial is based on the example script viewports_in_paperspace.py. The script creates DXF files for the version R12
and for R2000+, but the export for DXF R12 has a wrong papersize in BricsCAD and wrong margins in Autodesk DWG
Trueview. I don’t know why this happens and I don’t waste my time to fix this.

Important: If you need paperspace layouts use DXF version R2000 or newer because the export of the page dimensions
does not work for DXF R12!

The scripts creates three flat geometries in the xy-plane of the WCS and a 3D mesh as content of the modelspace:

9.5. Tutorials 145

ezdxf Documentation, Release 1.2.0

Page Setup

The paperspace layout feature lacks documentation in the DXF reference, there is no information in practice on how it is
used, so most of the information here is assumptions gathered through trail and error.

The page_setup () method defines the properties of the paper sheet itself. The units of the modelspace and the
paperspace are not related and can even have different unit systems (imperial, meters), but to keep things simple it’s
recommended to use the same unit system for both spaces.

layout .page_setup(size=(24, 18), margins=(1, 1, 1, 1), units="inch")

The size argument defines the overall paper size in rotation mode 0, it seems to be the best practice to define the paper
extents in landscape mode and rotate the paper by the rotate argument afterwards.

Choices for the rotation argument:

146 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

no rotation

90 degrees counter-clockwise
upside-down

90 degrees clockwise

W N = O

The scale argument reflects the relationship between paper unit and drawing unit in paperspace. It’'s recommended to let
this scale at the default value of 1:1 and draw lines and text in paperspace with the same units as you defined the paper
size.

See also:
¢ AutoCAD: About Plotting and About Setting the Plot Scale

* BricsCAD: General Procedure for Printing
Drawing in Paperspace
You can add DXF entities to the paperspace like to any other layout space. The coordinate origin (0, 0) is in the left bottom

corner of the canvas which is the paper size minus the margins. You can draw beyond this limits but CAD applications
may not print that content.

Hint: By writing this tutorial I noticed that changing the printer/plotter and the paper size does shift the layout content,
because all paper sizes are defined without margins. Maybe it’s preferable to set all margins to zero.

I added the helper method page_setup () to the Drawing class and an example simple_page_setup.py how to use
it.

Adding Viewports

The Viewport entity is a window to the modelspace to display the content of the modelspace in paperspace with an
arbitrary scaling and rotation. The VIEWPORT entity will be added by the factory method add_viewport (), the
center argument defines the center and the size argument defines the width and height of the of the VIEWPORT in
paperspace. The source of the modelspace to display is defined by the arguments view_center_point and view_height.

9.5. Tutorials 147

https://help.autodesk.com/view/ACD/2018/ENU/?guid=GUID-2DB9EB8C-767C-4C91-B0A3-FFFEC4C5863A
https://help.autodesk.com/view/ACD/2018/ENU/?guid=GUID-89604826-0B55-4994-8214-1CA93FA66985
https://help.bricsys.com/document/_guides--BCAD_printing_and_plotting--GD_generalprocedureforprinting/V23/EN_US?id=165079156041
https://github.com/mozman/ezdxf/blob/master/examples/simple_page_setup.py

ezdxf Documentation, Release 1.2.0

‘Owerall View Scale=1:1 Scale=1:50

-]

View of Rectangle Scale=1:2 View of Circle Scale=1:5 View of Triangle Scale=1:1

Scaling Factor

The scaling factor of the VIEWPORT is not an explicit value, the factor is defined by the relation of the VIEWPORT
height of the size argument and the view_height argument.

If both values are equal the scaling is 1:1

paperspace.add_viewport (
center=(14.5, 2.5),
size=(5, 5),
view_center_point=(12.5, 7.5),
view_height=5,

If the view_height is 5x larger than the VIEWPORT height the scaling is 1:5

paperspace.add_viewport (
center=(8.5, 2.5),
size= (5, 5),
view_center_point=(10, 5),
view_height=25,

148 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

View Direction

The default view direction is the top down view, but can be changed to any view by the attributes view_target_point and
view_direction_vector of the dxf namespace.

vp = paperspace.add_viewport (

center=(16, 10), size=(4, 4), view_center_point=(0, 0), view_height=30
)
vp.dxf.view_target_point = (40, 40, 0)
vp.dxf.view_direction_vector = (-1, -1, 1)

Viewport Frame

The VIEWPORT frame (borderlines) are shown in paperspace by default. The VIEWPORT entity does not have an
attribute to change this. The visibility of the VIEWPORT frame is controlled by the layer assigned to the VIEWPORT
entity which is the layer “VIEWPORTS” by default in ezdxf. Turning off this layer hides the frames of the VIEWPORT
entities on this layer, to do that the layer “VIEWPORTS” have to be created by the library user:

vp_layer = doc.layers.add ("VIEWPORTS")
vp_layer.off ()

Freeze Layers

Each VIEWPORT can have individual frozen layers, which means the layers are not visible in this VIEWPORT. To freeze
layers in a VIEWPORT assign the names of the frozen layers as a list-like object to the frozen_layers attribute of
the VIEWPORT entity:

vp.frozen_layers = ["LayerO", "Layerl"]

Important: AutoCAD and BricsCAD do not crash if the layer names do not have layer table entries and the layer
names are case insensitive as all table names.

See also:
* Basic concept of Layers

e Layer

Override Layer Properties

Each VIEWPORT can override layer properties individually. These overrides are stored in the Layer entity and ref-
erenced by the handle of the VIEWPORT. This procedure is a bit more complex and shown in the example file view-
ports_override_layer_attributes.py.

1. getthe Layer object

2. getthe LayerOverrides object from the layer
3. override the properties of the VIEWPORT
4

. commit changes

9.5. Tutorials 149

https://github.com/mozman/ezdxf/blob/master/examples/viewports_override_layer_attributes.py
https://github.com/mozman/ezdxf/blob/master/examples/viewports_override_layer_attributes.py

ezdxf Documentation, Release 1.2.0

layer = doc.layers.get ("LayerQ0")

override = layer.get_vp_overrides ()
override.set_linetype (vp.dxf.handle, "DASHED")
override.commit ()

Supported property overrides:
* ACI color
e true color
* transparency
* linetype
¢ lineweight
See also:
* Basic concept of Layers
* Basic concept of AutoCAD Color Index (ACI)
* Basic concept of True Color
* Basic concept of Transparency
* Basic concept of Linetypes
* Basic concept of Lineweights
e Layer

* LayerOverrides

9.5.21 Tutorial for OCS/UCS Usage

For OCS/UCS usage is a basic understanding of vector math required, for a brush up, watch the YouTube tutorials of
3Blue 1 Brown about Linear Algebra.

Second read the Coordinate Systems introduction please.
See also:

The free online book 3D Math Primer for Graphics and Game Development is a very good resource for learning vector
math and other graphic related topics, it is easy to read for beginners and especially targeted to programmers.

For WCS there is not much to say as, it is what it is: the main world coordinate system, and a drawing unit can have any
real world unit you want. Autodesk added some mechanism to define a scale for dimension and text entities, but because
I am not an AutoCAD user, I am not familiar with it, and further more I think this is more an AutoCAD topic than a
DXF topic.

150 Chapter 9. Contents

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://gamemath.com/

ezdxf Documentation, Release 1.2.0

Object Coordinate System (OCS)

The OCS is used to place planar 2D entities in 3D space. ALL points of a planar entity lay in the same plane, this is also
true if the plane is located in 3D space by an OCS. There are three basic DXF attributes that gives a 2D entity its spatial
form.

Extrusion

The extrusion vector defines the OCS, it is a normal vector to the base plane of a planar entity. This base plane is always
located in the origin of the WCS. But there are some entities like £111pse, which have an extrusion vector, but do
not establish an OCS. For this entities the extrusion vector defines only the extrusion direction and thickness defines the
extrusion distance, but all other points and directions in WCS.

Elevation

The elevation value defines the z-axis value for all points of a planar entity, this is an OCS value, and defines the distance
of the entity plane from the base plane.

This value exists only in output from DXF versions prior to R11 as separated DXF attribute (group code 38). In DXF
R12 and later, the elevation value is supplied as z-axis value of each point. But as always in DXF, this simple rule does not
apply to all entities: LWPolyline and Hatch have an DXF attribute elevation as a 3D point, where the z-values
of this point is the elevation height and the x-value and the y-value are 0.

Thickness

Defines the extrusion distance for an entity.

Note: There is a new edition of this tutorial using UCS based transformation, which are available in ezdxf v0.11 and
later: Tutorial for UCS Based Transformations

This edition shows the hard way to accomplish the transformations by low level operations.

Placing 2D Circle in 3D Space

The colors of the system axis follow the AutoCAD standard:
* red is x-axis
* green is y-axis

e blue is z-axis

import ezdxf
from ezdxf.math import OCS

doc = ezdxf.new('R2010")
msp = doc.modelspace ()

For this example the OCS is rotated around x-axis about 45 degree
OCS z-axis: x=0, y=1, z=1
extrusion vector must not normalized here

(continues on next page)

9.5. Tutorials 151

ezdxf Documentation, Release 1.2.0

ocs = 0OCs((0, 1, 1))
msp.add_circle (
You can place the 2D circle in 3D space
but you have to convert WCS into OCS
center=ocs.from_wcs ((0, 2, 2)),
center in OCS: (0.0, 0.0, 2.82842712474619)
radius=1,
dxfattribs={
here the extrusion vector should be normalized,
which is granted by using the ocs.uz
'extrusion': ocs.uz,
'color': 1,
})
mark center point of circle in WCS
msp.add_point ((0, 2, 2), dxfattribs={'color': 1})

(continued from previous page)

The following image shows the 2D circle in 3D space in AutoCAD Left and Front view. The blue line shows the OCS
z-axis (extrusion direction), elevation is the distance from the origin to the center of the circle in this case 2.828, and you

see that the x- and y-axis of the OCS and the WCS are not aligned.

152

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Placing LWPolyline in 3D Space

For simplicity of calculation I use the UCS class in this example to place a 2D pentagon in 3D space.

The center of the pentagon should be (0, 2, 2), and the shape is
rotated around x-axis about 45 degree, to accomplish this I use an
UCS with z-axis (0, 1, 1) and an x—-axis parallel to WCS x-axis.
ucs = UCS(

origin=(0, 2, 2), # center of pentagon

ux=(1, 0, 0), # x—-axis parallel to WCS x-axis

uz=(0, 1, 1), # z-axis
)

calculating corner points in local (UCS) coordinates

points = [Vec3.from_deg_angle((360 / 5) * n) for n in range(5)]
converting UCS into OCS coordinates
ocs_points = list (ucs.points_to_ocs (points))

LWPOLYLINE accepts only 2D points and has an separated DXF attribute elevation.
All points have the same z-axis (elevation) in OCS!
elevation = ocs_points[0].z

msp.add_lwpolyline (
points=ocs_points,
format="'xy', # ignore z-axis
close=True,
dxfattribs={

'elevation': elevation,
'extrusion': ucs.uz,
'color': 1,

H)

The following image shows the 2D pentagon in 3D space in AutoCAD Left, Front and Top view. The three lines from
the center of the pentagon show the UCS, the three colored lines in the origin show the OCS, the white lines in the origin
show the WCS.

The z-axis of the UCS and the OCS pointing in the same direction (extrusion direction), and the x-axis of the UCS and

9.5. Tutorials 153

ezdxf Documentation, Release 1.2.0

the WCS pointing also in the same direction. The elevation is the distance from the origin to the center of the pentagon
and all points of the pentagon have the same elevation, and you see that the y-axis of the UCS, the OCS and the WCS are
not aligned.

Using UCS to Place 3D Polyline

It is much simpler to use a 3D Polyline to create the 3D pentagon. The UCS class is handy for this example and all
kind of 3D operations.

Using an UCS simplifies 3D operations, but UCS definition can happen later

calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians (360 / 5)

corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]

(continues on next page)

154 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

let's do some transformations

tmatrix = Matrix44.chain(# creating a transformation matrix
Matrix44.z_rotate (math.radians (15)), # 1. rotation around z—-axis
Matrix44.translate (0, .333, .333), # 2. translation

)

transformed_corners_ucs = tmatrix.transform_vertices (corners_ucs)

transform UCS into WCS

ucs = UCS (
origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x—-axis parallel to WCS x—-axis
uz=(0, 1, 1), # z—axis

)

corners_wcs = list (ucs.points_to_wcs (transformed_corners_ucs))
msp.add_polyline3d(

points=corners_wcs,
close=True,

add lines from center to corners

center_wcs = ucs.to_wcs ((0, .333, .333))
for corner in corners_wcs:
msp.add_line (center_wcs, corner, dxfattribs={'color': 1})

ucs.render_axis (msp)

9.5. Tutorials 155

ezdxf Documentation, Release 1.2.0

Placing 2D Text in 3D Space
The problem of placing text in 3D space is the text rotation, which is always counter clockwise around the OCS z-axis,
and 0 degree is the direction of the positive OCS x-axis, and the OCS x-axis is calculated by the Arbitrary Axis Algorithm.

Calculate the OCS rotation angle by converting the TEXT rotation angle (in UCS or WCS) into a vector or begin with text
direction as vector, transform this direction vector into OCS and convert the OCS vector back into an angle in the OCS xy-
plane (see example), this procedure is available as UCS. to_ocs_angle_deg () orUCS.to_ocs_angle_rad().

AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.

Thickness for text works only with shx fonts not with true type fonts
doc.styles.new ('TXT', dxfattribs={'font': 'romans.shx'})

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))

calculation of text direction as angle in OCS:

convert text rotation in degree into a vector in UCS
text_direction = Vec3.from_deg_angle (-45)

transform vector into OCS and get angle of vector in xy-plane
rotation = ucs.to_ocs (text_direction) .angle_deg

text = msp.add_text (
text="TEXT",
dxfattribs={
text rotation angle in degrees in OCS
'rotation': rotation,
'extrusion': ucs.uz,
'thickness': .333,
'color': 1,
'style': '"TXT',
)
set text position in OCS
text.set_pos(ucs.to_ocs((0, 0, 0)), align="MIDDLE_CENTER')

o
<+

156 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Hint: For calculating OCS angles from an UCS, be aware that 2D entities, like TEXT or ARC, are placed parallel to
the xy-plane of the UCS.

Placing 2D Arc in 3D Space

Here we have the same problem as for placing text, you need the start- and end angle of the arc in degrees in the OCS,
and this example also shows a shortcut for calculating the OCS angles.

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
msp.add_arc (
center=ucs.to_ocs ((0, 0)),
radius=1,
start_angle=ucs.to_ocs_angle_deg (45),
end_angle=ucs.to_ocs_angle_deg(270),
dxfattribs={
'extrusion': ucs.uz,
'color': 1,
})
center = ucs.to_wcs((0, 0))
msp.add_line (
start=center,
end=ucs.to_wcs (Vec3.from_deg_angle (45)),
dxfattribs={'color': 1},

msp.add_line (
start=center,
end=ucs.to_wcs (Vec3.from_deg_angle (270)),
dxfattribs={'color': 1},

9.5. Tutorials 157

ezdxf Documentation, Release 1.2.0

Placing Block References in 3D Space

Despite the fact that block references (Insert) can contain true 3D entities like Line or Mesh, the Insert entity
uses the same placing principe as Text or Arc shown in the previous chapters.

Placement by OCS coordinates and rotation about the OCS z-axis, can be achieved the same way as for generic 2D entities.
The DXF attribute Insert .dxf.rotation rotates a block reference around the block z-axis, which is located in
the Block.dxf .base_point. To rotate the block reference around the WCS x-axis, a transformation of the block
z-axis into the WCS x-axis is required by rotating the block z-axis 90 degree counter-clockwise around y-axis by using
an UCS:

This is just an excerpt of the important parts, see the whole code of insert.py at github.

158 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/ocs/insert.py

ezdxf Documentation, Release 1.2.0

rotate UCS around an arbitrary axis:
def ucs_rotation(ucs: UCS, axis: Vec3, angle: float):
new in ezdxf v0.11: UCS.rotate (axis, angle)
t = Matrix44.axis_rotate(axis, math.radians (angle))
ux, uy, uz = t.transform_vertices([ucs.ux, ucs.uy, ucs.uz])
return UCS (origin=ucs.origin, ux=ux, uy=uy, uz=uz)

doc = ezdxf.new('R2010', setup=True)
blk = doc.blocks.new('CSYS'")
setup_csys (blk)

msp = doc.modelspace ()

ucs = ucs_rotation(UCS(), axis=Y_AXIS, angle=90)
transform insert location to OCS
insert = ucs.to_ocs((0, 0, 0))
rotation angle about the z-axis (= WCS x-axis)
rotation = ucs.to_ocs_angle_deg(15)
msp.add_blockref ('CSYS', insert, dxfattribs={
'extrusion': ucs.uz,
'rotation': rotation,

H)

9.5. Tutorials 159

ezdxf Documentation, Release 1.2.0

To rotate a block reference around another axis than the block z-axis, you have to find the rotated z-axis (extrusion vector)
of the rotated block reference, following example rotates the block reference around the block x-axis by 15 degrees:

t is a transformation matrix to rotate 15 degree around the x—-axis

t = Matrix44.axis_rotate (axis=X_AXIS, angle=math.radians(15))

transform block z-axis into new UCS z—-axis (= extrusion vector)

uz = Vec3(t.transform(Z_AXIS))

create new UCS at the insertion point, because we are rotating around the x-axis,
ux 1s the same as the WCS x—-axis and uz 1s the rotated z—-axis.

ucs = UCS(origin=(1, 2, 0), ux=X_AXIS, uz=uz)

transform insert location to 0OCS, block base_point=(0, 0, O0)

insert = ucs.to_ocs((0, 0, 0))

for this case a rotation around the z-axis 1s not required

rotation = 0

blockref = msp.add_blockref ('CSYS', insert, dxfattribs={
'extrusion': ucs.uz,
'rotation': rotation,

)

160 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

i
(|
!
|1
|
Y
|
i
Y
il
i
|
_ Y
i !
L Y
|

!
L]
|

The next example shows how to translate a block references with an already established OCS

translate a block references with an established OCS
translation = Vec3 (-3, -1, 1)
get established OCS

ocs = blockref.ocs ()

get insert location in WCS
actual_wcs_location
translate location
new_wcs_location

= ocs.to_wcs (blockref.dxf.insert)

actual_wcs_location + translation
convert WCS location to OCS location

blockref.dxf.insert

ocs.from_wcs (new_wcs_location)

Setting a new insert location is the same procedure without adding a translation vector, just transform the new insert
location into the OCS.

9.5. Tutorials

161

ezdxf Documentation, Release 1.2.0

The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle
is -90 degrees. First transform block y-axis (rotation axis) and block z-axis (extrusion vector) from OCS into WCS:

rotate a block references with an established OCS around the block y-axis about 90.
—degree

ocs = blockref.ocs ()

convert block y—-axis (= rotation axis) into WCS vector

rotation_axis = ocs.to_wcs((0, 1, 0))

convert local z—-axis (=extrusion vector) into WCS vector

local_z_axis = ocs.to_wecs((0, 0, 1))

Build transformation matrix and transform extrusion vector and build new UCS:

build transformation matrix

t = Matrix44.axis_rotate (axis=rotation_axis, angle=math.radians (-90))
uz = t.transform(local_z_axis)

(continues on next page)

162 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)
uy = rotation_axis
the block reference origin stays at the same location, no rotation needed
wcs_insert = ocs.to_wcs (blockref.dxf.insert)
build new UCS to convert WCS locations and angles into OCS
ucs = UCS (origin=wcs_insert, uy=uy, uz=uz)

Set new OCS attributes, we also have to set the rotation attribute even though we do not rotate the block reference around
the local z-axis, the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted:

set new 0OCS

blockref.dxf.extrusion = ucs.uz

set new insert

blockref.dxf.insert = ucs.to_ocs((0, 0, 0))

set new rotation: we do not rotate the block reference around the local z-axis,

but the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted
blockref.dxf.rotation = ucs.to_ocs_angle_deg(0)

9.5. Tutorials 163

ezdxf Documentation, Release 1.2.0

And here is the point, where my math knowledge ends, for more advanced CAD operation you have to look elsewhere.

9.5.22 Tutorial for UCS Based Transformations

The ezdxf version v0.13 introduced a transformation interface for DXF primitives, which makes working with OCS/UCS
much easier. This is a new edition of the Turorial for OCS/UCS Usage. Please read the old tutorial for the basics about
the OCS.

For this tutorial we don’t have to worry about the OCS and the extrusion vector, this is done automatically by the t rans—
form () method of each DXF entity.

Placing 2D Circle in 3D Space

To recreate the situation of the old tutorial instantiate a new UCS and rotate it around the local x-axis. Use UCS coordinates
to place the 2D CIRCLE in 3D space and transform the UCS coordinates to the WCS.

import math
import ezdxf
from ezdxf.math import UCS

doc = ezdxf.new('R2010")
msp doc.modelspace ()

ucs = UCS () # New default UCS
All rotation angles in radians, and rotation
methods always return a new UCS.
ucs = ucs.rotate_local_x (math.radians (-45))
circle = msp.add_circle(
Use UCS coordinates to place the 2d circle in 3d space
center=(0, 0, 2),
radius=1,
dxfattribs={'color': 1}
)
circle.transform(ucs.matrix)

(continues on next page)

164 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

mark center point of circle in WCS
msp.add_point ((0, 0, 2), dxfattribs={'color': 1}).transform(ucs.matrix)

9.5. Tutorials 165

ezdxf Documentation, Release 1.2.0

Placing LWPolyline in 3D Space

Simplified LWPOLYLINE example:

The center of the pentagon should be (0, 2, 2), and the shape is
rotated around x-axis about -45 degree
ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians (-45))

msp.add_lwpolyline (
calculating corner points in UCS coordinates
points=(Vec3.from_deg_angle((360 / 5) * n) for n in range(5)),
format="'xy', # ignore z-axis
close=True,
dxfattribs={
'color': 1,
}

) .transform(ucs.matrix)

The 2D pentagon in 3D space in BricsCAD Left and Front view.

166 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

W

Using UCS to Place 3D Polyline

Simplified POLYLINE example: Using a first UCS to transform the POLYLINE and a second UCS to place the POLY-
LINE in 3D space.

using an UCS simplifies 3D operations, but UCS definition can happen later

calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians (360 / 5)

corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]

let's do some transformations by UCS

transformation_ucs = UCS().rotate_local_z (math.radians (15)) # 1. rotation around z-—
—axis

transformation_ucs.shift ((0, .333, .333)) # 2. translation (inplace)

corners_ucs = list(transformation_ucs.points_to_wcs (corners_ucs))

location_ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))

msp.add_polyline3d(
points=corners_ucs,
close=True,
dxfattribs={
'color': 1,
}

) .transform(location_ucs.matrix)

Add lines from the center of the POLYLINE to the corners
center_ucs = transformation_ucs.to_wcs((0, 0, 0))
for corner in corners_ucs:
msp.add_line (
center_ucs, corner, dxfattribs={'color': 1}
) .transform(location_ucs.matrix)

9.5. Tutorials 167

ezdxf Documentation, Release 1.2.0

—
|
|
|
—

Placing 2D Text in 3D Space

The problem with the text rotation in the old tutorial disappears with the new UCS based transformation method:

AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.

thickness for text works only with shx fonts not with true type fonts
doc.styles.new ('TXT', dxfattribs={'font': 'romans.shx'})

ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians (-45))
text = msp.add_text (

text="TEXT",

dxfattribs={
text rotation angle in degrees in UCS

'rotation': -45,
'thickness': .333,
'color': 1,
'style': '"TXT',

)
set text position in UCS
text.set_pos((0, 0, 0), align="MIDDLE_CENTER'")

text.transform(ucs.matrix)

168 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Placing 2D Arc in 3D Space

Same as for the text example, OCS angle transformation can be ignored:

ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians (-45))

CENTER = (0, 0)
START ANGLE = 45
END_ANGLE = 270

msp.add_arc (
center=CENTER,
radius=1,
start_angle=START_ANGLE,
end_angle=END_ANGLE,
dxfattribs={'color': 6},
) .transform(ucs.matrix)

(continues on next page)

9.5. Tutorials 169

ezdxf Documentation, Release 1.2.0

(continued from previous page)
msp.add_line (
start=CENTER,
end=Vec3. from_deg_angle (START_ANGLE),
dxfattribs={'color': 6},
) .transform(ucs.matrix)

msp.add_line (
start=CENTER,
end=Vec3.from_deg_angle (END_ANGLE) ,
dxfattribs={'color': 6},

) .transform(ucs.matrix)

-
W

I"u"'n."l

170 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Placing Block References in 3D Space
Despite the fact that block references (INSERT) can contain true 3D entities like LINE or MESH, the INSERT entity
uses the same placing principe as TEXT or ARC shown in the previous sections.

To rotate the block reference 15 degrees around the WCS x-axis, we place the block reference in the origin of the UCS,
and rotate the UCS 90 degrees around its local y-axis, to align the UCS z-axis with the WCS x-axis:

This is just an excerpt of the important parts, see the whole code of insert.py at github.

doc = ezdxf.new('R2010', setup=True)

blk = doc.blocks.new('CSYS")
setup_csys (blk)
msp = doc.modelspace ()
ucs = UCS() .rotate_local_y (angle=math.radians (90))
msp.add_blockref (
'Csys’',

insert=(0, 0),
rotation around the block z-axis (= WCS x—axis)
dxfattribs={'rotation': 15},

) .transform(ucs.matrix)

9.5. Tutorials 171

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/ucs/insert.py

ezdxf Documentation, Release 1.2.0

=

A more simple approach is to ignore the rotate attribute at all and just rotate the UCS. To rotate a block reference
around any axis rather than the block z-axis, rotate the UCS into the desired position. The following example rotates the
block reference around the block x-axis by 15 degrees:

ucs = UCS(origin=(1, 2, 0)).rotate_local_x(math.radians (15))
blockref = msp.add_blockref ('CSYS', insert=(0, 0, 0))
blockref.transform(ucs.matrix)

|
7 \
\

1

172 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

—
-

NZ

L

The next example shows how to translate a block references with an already established OCS:

New UCS at the translated location,
ucs = UCS((-3, -1, 1))
Transform an already placed block reference,

the transformation of the established OCS.
blockref.transform(ucs.matrix)

axis aligned to the WCS

including

9.5. Tutorials 173

ezdxf Documentation, Release 1.2.0

NT

W

The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle
is -90 degrees. The idea is to create an UCS in the origin of the already placed block reference, UCS axis aligned to the
block axis and resetting the block reference parameters for a new WCS transformation.

Get UCS at the block reference insert location, UCS axis aligned
to the block axis.

ucs = blockref.ucs ()

Rotate UCS around the local y-axis.

ucs = ucs.rotate_local_y (math.radians (-90))

Reset block reference parameters, this places the block reference in the UCS origin and aligns the block axis to the UCS
axis, now we do a new transformation from UCS to WCS:

Reset block reference parameters to place block reference in
UCS origin, without any rotation and OCS.
blockref.reset_transformation ()

Transform block reference from UCS to WCS
blockref.transform(ucs.matrix)

174 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.5.23 Tutorial for Linear Dimensions

The Dimension entity is the generic entity for all dimension types, but unfortunately AutoCAD is not willing to show
a dimension line defined only by this dimension entity, it also needs an anonymous block which contains the dimension
line shape constructed by DXF primitives like LINE and TEXT entities, this representation is called the dimension line
rendering in this documentation, beside the fact that this is not a real graphical rendering. BricsCAD is a much more
friendly CAD application, which do show the dimension entity without the graphical rendering as block, which was very
useful for testing, because there is no documentation how to apply all the dimension style variables (more than 80). This
seems to be the reason why dimension lines are rendered so differently by many CAD application.

Don’t expect to get the same rendering results by ezdxf as you get from AutoCAD. Ezdxf tries to be as close to the results
rendered by BricsCAD, but it is not possible to implement all the various combinations of dimension style parameters,
which often affect one another.

9.5. Tutorials 175

ezdxf Documentation, Release 1.2.0

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Text rendering is another problem, because ezdxf has no real rendering engine. Some font properties, like the real text
width, which is only available to ezdxf if the Matplotlib package is installed and this value may also vary slightly for
different CAD applications. Without access to the Matplotlib package the text properties in ezdxf are based on an abstract
monospaced font and are bigger than required by true type fonts.

Not all DIMENSION and DIMSTYLE features are supported by all DXF versions, especially DXF R12 does not support
many features, but in this case the required rendering of dimension lines is an advantage, because if the application just
shows the rendered block, all features which can be used in DXF R12 will be displayed, but these features will disappear
if the dimension line will be edited in the CAD application. Ezdxf writes only the supported DIMVARS of the used DXF
version to avoid invalid DXF files. So it is not that critical to know all the supported features of a DXF version, except for
limits and tolerances, ezdxf uses the advanced features of the MTEXT entity to create limits and tolerances and therefore
they are not supported (displayed) in DXF R12 files.

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

¢ The Script dimension_linear.py shows examples for linear dimensions.

Horizontal Dimension

import ezdxf

Create a DXF R2010 document :
Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new("R2010", setup=True)

Add new dimension entities to the modelspace:
msp = doc.modelspace ()

Add a LINE entity for visualization, not required to create the DIMENSION
entity:
msp.add_line ((0, 0), (3, 0))

Add a horizontal linear DIMENSION entity:

dim = msp.add_linear_dim(
base=(3, 2), # location of the dimension line
pl=(0, 0), # lst measurement point
p2=(3, 0), # 2nd measurement point
dimstyle="EZDXF", # default dimension style

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

dim.render ()

doc.saveas ("dim_ linear_ horiz.dxf")

176 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_linear.py

ezdxf Documentation, Release 1.2.0

gdimension ling / W /

’/ extension ling

The example above creates a horizontal Dimension entity. The default dimension style “EZDXF” is defined as:
* 1 drawing unit = 1m
» measurement text height = 0.25 (drawing scale = 1:100)
* the length factor dimlfac = 100, which creates a measurement text in cm.
e arrow is “ARCHTICK?”, arrow size dimasz = 0.175

Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save ()
or saveas () (e.g. dimension style setup was not initiated).

The base point defines the location of the dimension line, ezdxf accepts any point on the dimension line, the point p/
defines the start point of the first extension line, which also defines the first measurement point and the point p2 defines
the start point of the second extension line, which also defines the second measurement point.

The return value dim is not a dimension entity, instead a DimSt yleOverride object is returned, the dimension entity
is stored as attribute dim.dimension.

9.5. Tutorials 177

ezdxf Documentation, Release 1.2.0

Vertical and Rotated Dimension

Argument angle defines the angle of the dimension line in relation to the x-axis of the WCS or UCS, measurement is the
distance between first and second measurement point in direction of angle.

assignment to dim is not necessary, if no additional processing happens
msp.add_linear_dim(base=(3, 2), pl=(0, 0), p2=(3, 0), angle=-30) .render ()
doc.saveas ("dim_linear_ rotated.dxf")

For a vertical dimension set argument angle to 90 degree, but in this example the vertical distance would be 0.

Aligned Dimension

An aligned dimension line is parallel to the line defined by the definition points p/ and p2. The placement of the dimension
line is defined by the argument distance, which is the distance between the definition line and the dimension line. The
distance of the dimension line is orthogonal to the base line in counter clockwise orientation.

msp.add_line ((0, 2), (3, 0))
dim = msp.add_aligned_dim(pl=(0, 2), p2=(3, 0), distance=1)
doc.saveas ("dim_linear_aligned.dxf")

178 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Dimension Style Override

Many dimension styling options are defined by the associated DimSt y1e entity. But often you wanna change just a few
settings without creating a new dimension style, therefore the DXF format has a protocol to store this changed settings
in the dimension entity itself. This protocol is supported by ezdxf and every factory function which creates dimension

entities supports the override argument. This override argument is a simple Python dictionary (e.g. override =
{"dimtad": 4}, place measurement text below dimension line).

The overriding protocol is managed by the DimStyleOverride object, which is returned by the most dimension
factory functions.

9.5. Tutorials 179

ezdxf Documentation, Release 1.2.0

Placing Measurement Text

The default location of the measurement text depends on various DimSt y1e parameters and is applied if no user defined
text location is defined.

Default Text Locations

“Horizontal direction” means in direction of the dimension line and “vertical direction” means perpendicular to the di-
mension line direction.

The ““horizontal’ location of the measurement text is defined by dimjust:

Center of dimension line

Left side of the dimension line, near first extension line
Right side of the dimension line, near second extension line
Over first extension line

Over second extension line

LW = O

msp.add_linear_dim(
base=(3, 2), pl=(0, 0), p2=(3, 0), override={"dimjust": 1}
) .render ()

*

The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:

Center, it is possible to adjust the vertical location by dimtvp
Above

Outside, handled like Above by ezdxf

JIS, handled like Above by ezdxf

Below

B Lo = O

msp.add_linear_dim(
base=(3, 2), pl=(0, 0), p2=(3, 0), override={"dimtad": 4}
) .render ()

180 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

300

300 20

dimtad=0 dimtad=1, 2, 3 dimtad=4

The distance between text and dimension line is defined by dimgap.

The DimStyleOverride object has amethod set_text_align () tosetthe default text location in an easy way,
this is also the reason for the 2 step creation process of dimension entities:

dim = msp.add_linear_dim(base=(3, 2), pl=(0, 0), p2=(3, 0))
dim.set_text_align(halign="1left", valign="center")
dim.render ()

9

halign “left”, “right”, “center”, “abovel”, “above2”

9«

valign “above”, “center”, “below”

Run function example_for_all_text_placings_R2007 () inthe example script dimension_linear.py to cre-
ate a DXF file with all text placings supported by ezdxf.

User Defined Text Locations

Beside the default location, it is possible to locate the measurement text freely.

Location Relative to Origin

The user defined text location can be set by the argument location in most dimension factory functions and always refer-
ences the midpoint of the measurement text:

msp.add_linear_dim(
base=(3, 2), pl=(3, 0), p2=(6, 0), location=(4, 4)
) .render ()

9.5. Tutorials 181

https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_linear.py

ezdxf Documentation, Release 1.2.0

2
I\

W

The location is relative to the origin of the active coordinate system or WCS if no UCS is defined in the render ()
method, the user defined location can also be set by user_location override().

Location Relative to Center of Dimension Line

The method set_location () has additional features for linear dimensions. Argument leader = True adds a simple
leader from the measurement text to the center of the dimension line and argument relative = True places the measure-
ment text relative to the center of the dimension line.

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_location (location=(-1, 1), leader=True, relative=True)
dim.render ()

182 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

location

center of dimension fine /

Location Relative to Default Location

The method shift_text () shifts the measurement text away from the default text location. The shifting directions
are aligned to the text direction, which is the direction of the dimension line in most cases, dh (for delta horizontal) shifts
the text parallel to the text direction, dv (for delta vertical) shifts the text perpendicular to the text direction. This method
does not support leaders.

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.shift_text (dh=1, dv=1)
dim.render ()

o
BN

\
X —

default focation

9.5. Tutorials 183

ezdxf Documentation, Release 1.2.0

Overriding Text Rotation

All factory methods supporting the argument fext_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).

Measurement Text Formatting and Styling

Text Properties

DIMVAR Description

dimtxsty Specifies the text style of the dimension as Text sty le name.
dimtxt Text height in drawing units.
dimclrt Measurement text color as AutoCAD Color Index (ACI).

msp.add_linear_dim(
base=(3, 2),

pl=(3, 0),
p2=(6, 0),
override={
"dimtxsty": "Standard",

"dimtxt": 0.35,
"dimclrt": 1,
}

) .render ()

dimixt \L
soh 7

(W]

38! aimtxsty & gimelrt

fa

Background Filling

Background fillings are supported since DXF R2007, and ezdxf uses the MTEXT entity to implement this feature, so
setting background filling in DXF R12 has no effect. The DIMVAR dimt £i11 defines the kind of background filling
and the DIMVAR dimt £i11c1r defines the fill color.

DIMVAR Description

dimtfill Enables background filling if bigger than 0
dimtfillclr Fill color as AutoCAD Color Index (ACI), if dimt£i11 is 2

184 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dimtfill Description

0 disabled
1 canvas color
2 color defined by dimt fillclr

msp.add_linear_dim(

base=(3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimtfill": 2,
"dimtfillclr": 1,

}

) .render ()

Vé d

Text Formatting

 decimal places: dimdec defines the number of decimal places displayed for the primary units of a dimension.
(DXF R2000)

¢ decimal point character: dimdsep defines the decimal point as ASCII code, get the ASCII code by ord (' . ")

e rounding: dimrnd, rounds all dimensioning distances to the specified value, for instance, if dimrnd is set to
0.25, all distances round to the nearest 0.25 unit. If dimrnd is set to 1.0, all distances round to the nearest integer.
For more information look at the documentation of the ezdxf.math.xround () function.

e zero trimming: dimzin, ezdxf supports only a subset of values:
— 4 to suppress leading zeros
— 8 to suppress trailing zeros
— 12 as the combination of both

* measurement factor: scale measurement by factor diml fac, e.g. to get the dimensioning text in cm for a DXF
file where 1 drawing unit represents 1m, set dimlfac to 100.

* text template: dimpost, “<>” represents the measurement text, e.g. “~<>cm” produces “~300cm” for measure-
ment in previous example.

To set this values the ezdxf.entities.DimStyle.set_text_format () and ezdxf.entities.
DimStyleOverride.set_text_format () methods are very recommended.

9.5. Tutorials 185

ezdxf Documentation, Release 1.2.0

Overriding Measurement Text

This feature allows overriding the real measurement text by a custom measurement text, the text is stored as string in
the Dimension entity as attribute text. Special values of the text attribute are: one space “ “ to suppress the
measurement text at all, an empty string “” or “<>” to display the real measurement.

All factory functions have an explicit fext argument, which always replaces the fext value in the dxfatribs dict.

msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0), text=">Im").render ()

>Tm
/ 7

Dimension Line Properties

The dimension line color is defined by the DIMVAR dimc1rd as AutoCAD Color Index (ACI), dimc1rd and also defines
the color of the arrows. The linetype is defined by dimltype and requires DXF R2007. The lineweight is defined by
dimlwd and requires DXF R2000, see also the 1 ineweight reference for valid values. The dimd1le is the extension
of the dimension line beyond the extension lines, this dimension line extension is not supported for all arrows.

DIMVAR Description

dimclrd dimension line and arrows color as AutoCAD Color Index (ACI)
dimltype linetype of dimension line

dimlwd line weight of dimension line

dimdle extension of dimension line in drawing units

msp.add_linear_dim(
base= (3, 2),
pl=(3, 0),
p2=(6, 0),
override={
"dimclrd": 1, # red
"dimdle": 0.25,
"dimltype": "DASHED2",
"dimlwd": 35, # 0.35mm line weight
}

) .render ()

186 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Sbe 300

Al

(=1

=1

)
s

DimStyleOverride () method:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_dimline_format (
color=1, linetype="DASHED2", lineweight=35, extension=0.25

dim.render ()

Extension Line Properties

The extension line color is defined by the DIMVAR dimclre as AutoCAD Color Index (ACI). The linetype for the first
and the second extension line is defined by dimltex1 and dimltex?2 and requires DXF R2007. The lineweight is
defined by dimlwe and required DXF R2000, see also the 1 ineweight reference for valid values.

The dimexe is the extension of the extension line beyond the dimension line, and dimexo defines the offset of the
extension line from the measurement point.

DIMVAR Description

dimclre extension line color as AutoCAD Color Index (ACI)
dimltexl linetype of first extension line
dimltex2 linetype of second extension line

dimlwe line weight of extension line

dimexe extension beyond dimension line in drawing units
dimexo offset of extension line from measurement point
dimfxlon setto 1 to enable fixed length extension line
dimfxl length of fixed length extension line in drawing units
dimsel suppress first extension line if 1

dimse?2 suppress second extension line if 1

msp.add_linear_dim(
base=(3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimclre": 1, # red
"dimltex1": "DASHED2",
"dimltex2": "CENTER2",

(continues on next page)

9.5. Tutorials 187

ezdxf Documentation, Release 1.2.0

"dimlwe": 35,
"dimexe": 0.3,
"dimexo": 0.1,

}

) .render ()

0.35mm line weight

length above dimension line
offset from measurement point

(continued from previous page)

o
-

DimStyleOverride () methods:

dim = msp.add_linear_dim(base=(3,

2), pl=(3,

lineweight=35,

dim.set_extline_format (color=1,
dim.set_extlinel (linetype="DASHED2")
dim.set_extline2 (linetype="CENTER2")
dim.render ()

0),

p2=(6, 0))
extension=0.3,

offset=0.1)

Fixed length extension lines are supported in DXF R2007, set dimfxlon to 1 and dimfx1 defines the length of the
extension line starting at the dimension line.

msp.add_linear_dim(

base=(3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimfxlon": 1,
"dimexe": 0.2,

fixed length extension lines
length above dimension line

(continues on next page)

188

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

"dimfx1l": 0.4, # length below dimension line

}

) .render ()

0.2

dimexe

300)

0.4

DimStyleOverride () method

dim = msp.add_linear_dim(base=(3, 2),
dim.set_extline_format (extension=0.2,
dim.render ()

pl=(3, 0), p2=(6, 0))
fixed_length=0.4)

To suppress extension lines set dimsel to 1 to suppress the first extension line and dimse?2 to 1 to suppress the second

extension line.

msp.add_linear_dim(
base= (3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimsel": 1, # suppress first extension line
"dimse2": 1, # suppress second extension line

"dimblk": ezdxf.ARROWS.closed_filled, # arrows just looks better

}

) .render ()

300

DimStyleOverride () methods:

dim = msp.add_linear_dim(base=(3, 2),

pl=(3, 0), p2=(6, 0))

dim.set_arrows (blk=ezdxf.ARROWS.closed_filled)

dim.set_extlinel (disable=True)

(continues on next page)

9.5. Tutorials

189

ezdxf Documentation, Release 1.2.0

(continued from previous page)

dim.set_extline2 (disable=True)
dim.render ()

Arrows

“Arrows” mark then beginning and the end of a dimension line, and most of them do not look like arrows.
DXF distinguish between the simple tick (a slanted line) and arrows as blocks.

To use a simple tick as “arrow” set dimt sz to a value greater than 0, this also disables arrow blocks as side effect:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_tick(size=0.25)
dim.render ()

Ezdxf uses the “ARCHTICK?” block at double size to render the tick (AutoCAD and BricsCad just draw a simple line),
so there is no advantage of using the tick instead of an arrow.

Using arrows:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_arrow (blk="OPEN_30", size=0.25)
dim.render ()

DIMVAR Description

dimtsz tick size in drawing units, set to 0 to use arrows
dimblk set both arrow block names at once

dimblkl first arrow block name

dimblk2 second arrow block name

dimasz arrow size in drawing units

msp.add_linear_dim(
base=(3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimtsz": 0, # set tick size to 0 to enable arrow usage
"dimasz": 0.25, # arrow size in drawing units
"dimblk": "OPEN_30", # arrow block name

}

) .render ()

The dimension line extension (dimd1le) works only for a few arrow blocks and the simple tick:

* “ARCHTICK”

e “OBLIQUE”

* “NONE”

* “SMALL”

* “DOTSMALL”
e “INTEGRAL”

190 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Arrow Shapes

SMALL EZ_ARROW

@ @ t
ORIGINZ __/; 1\; DOTEMALL
C“\ /]) C\ (])
ORIGIM __/; 1\; DOTBLANK _../ .\L
OPENSD DOT
OPENZD DATUMFILLED
OPEN DATUMBLANEK : :
— 1
OELIQUE CLOSEDBLANK
— e
NOMNE CLOSED

~ -~
INTEGRAL -1 -1 BOXFILLED

B - B [
EZ_ARROW FILLED BOXBLANK || L
e —
EZ_ARROW _BLAME ARCHTICK
EZ_ARROW ** = clased filled

Arrow Names

The arrow names are stored as attributes in the ezdx £ . ARROWS object.

9.5. Tutorials 191

ezdxf Documentation, Release 1.2.0

Tolerances and Limits

closed_filled
dot

dot_small
dot_blank
origin_indicator
origin_indicator_2
open
right_angle
open_30

closed
dot_smallblank
none

oblique
box_filled

box
closed_blank

datum_triangle_filled

datum_triangle
integral
architectural_tick
eZ_arrow
ez_arrow_blank
ez_arrow_filled

@

(empty string)
“DOT”
“DOTSMALL”
“DOTBLANK”
“ORIGIN”
“ORIGIN2”
“OPEN”

“OPEN90”
“OPEN30”
“CLOSED”
“SMALL”

“NONE”
“OBLIQUE”
“BOXFILLED”
“BOXBLANK?”
“CLOSEDBLANK”
“DATUMFILLED”
“DATUMBLANK”
“INTEGRAL”
“ARCHTICK”
“EZ_ARROW”
“EZ_ARROW_BLANK”
“EZ_ARROW_FILLED”

The tolerances and limits features are implemented by using inline codes for the MText entity, therefore DXF R2000 is
required. It is not possible to use both tolerances and limits at the same time.

Tolerances

Geometrical tolerances are shown as additional text appended to the measurement text.

set_tolerance () methodin DimStyleOverrideor DimStyle.

It is recommend to use

The attribute dimt p defines the upper tolerance value, d imtm defines the lower tolerance value if present, else the lower

tolerance value is the same as the upper tolerance value. Tolerance values are shown as given!

Same upper and lower tolerance value:

dim = msp.add_linear_dim(base=(0,
dim.set_tolerance (.1,

dim.render ()

3), pl=(3, 0), p2=(6.5, 0))
hfactor=.4, align="top", dec=2)

192

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

— lowerance
3 5 0 .1
Different upper and lower tolerance values:
dim = msp.add_linear_dim(base=(0, 3), pl=(3, 0), p2=(6.5, 0))

dim.set_tolerance (upper=.1,
dim.render ()

lower=.15,

hfactor=.4, align="middle", dec=2)

JI:,I\I.-/Lr

./t' L-’ 'LE'

3501?12

7

— lnwer inleronre
VLT LU

) PN

The attribute dimt fac specifies a scale factor for the text height of limits and tolerance values relative to the dimension
text height, as set by dimtxt. For example, if dimt fac is set to 1.0, the text height of fractions and tolerances is the
same height as the dimension text. If dimtxt is set to 0.75, the text height of limits and tolerances is three-quarters the

size of dimension text.

Vertical justification for tolerances is specified by dimtol7:

dimtolj

Description

0
1
2

Align with bottom line of dimension text
Align vertical centered to dimension text
Align with top line of dimension text

9.5. Tutorials

193

ezdxf Documentation, Release 1.2.0

DIM- Description
VAR
dim— set to 1 to enable tolerances
tol
dimtp set the maximum (or upper) tolerance limit for dimension text
dimtm set the minimum (or lower) tolerance limit for dimension text
dimt- specifies a scale factor for the text height of limits and tolerance values relative to the dimension text height,
fac as set by dimtxt.
dimtzir 4 to suppress leading zeros, 8 to suppress trailing zeros or 12 to suppress both, like dimz in for dimension
text, see also Text Formatting
dim- set the vertical justification for tolerance values relative to the nominal dimension text.
tolj
dimt— set the number of decimal places to display in tolerance values
dec
Limits

The geometrical limits are shown as upper and lower measurement limit and replaces the usual measurement text. It is
recommend to use set_limits () methodin DimStyleOverride or DimStyle.

For limits the tolerance values are drawing units scaled by measurement factor dimlfac, the upper limit is scaled
measurement value + dimtp and the lower limit is scaled measurement value - dimtm.

The attributes dimt fac, dimtzin and dimtdec have the same meaning for limits as for tolerances.

dim = msp.add_linear_dim(base=(0, 3), pl=(3, 0), p2=(6.5, 0))
dim.set_limits (upper=.1, lower=.15, hfactor=.4, dec=2)
dim.render ()

DIMVAR Description

dimlim setto 1 to enable limits

194

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Alternative Units

Alternative units are not supported.

9.5.24 Tutorial for Radius Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

import ezdxf

DXF R2010 drawing, official DXF version name: 'AC1024',
setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)

msp = doc.modelspace () # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
add default radius dimension, measurement text is located outside
dim = msp.add_radius_dim(

center=(0, 0), radius=3, angle=45, dimstyle="EZ_RADIUS"
)
necessary second step, to create the BLOCK entity with the dimension geometry.
dim.render ()
doc.saveas ("radius_dimension.dxf")

The example above creates a 45 degrees slanted radius Dimension entity, the default dimension style “EZ_RADIUS”
is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100, which creates a measurement text
in cm, the default location for the measurement text is outside of the circle.

The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle
radius, which is also the measurement, and angle defines the slope of the dimension line, it is also possible to define the
circle by a measurement point mpoint on the circle.

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

Placing Measurement Text

There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:

* 1 drawing unit = Im

e scale 1:100

¢ the length factor diml fac = 100, which creates a measurement text in cm.

¢ uses a closed filled arrow, arrow size dimasz = 0.25

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the
radial dimension there are less features implemented than for the linear dimension because of the lack of good documen-
tation.

9.5. Tutorials 195

ezdxf Documentation, Release 1.2.0

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

¢ The Script dimension_radius.py shows examples for radius dimensions.

Default Text Locations Outside

Advanced “EZ_RADIUS” settings for placing the text outside of the circle:

tmove 1 =add aleader when dimension text is moved, this is the best setting for text outside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dim- 1 = place the text vertical above the dimension line

tad

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS"

dim.render () # always required, but not shown in the following examples
2 5
AP o)
: ¥ &
e
| !
| w
Center |
dimtad=1 : \ dimtad=0 dimtad=4

To force text outside horizontal set dimtohto 1:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,

angle=45,
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}

196 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_radius.py

ezdxf Documentation, Release 1.2.0

R250
: R250

dimtad=1 / ! dimtad=0 | \ dimtad=4

Default Text Locations Inside

DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location.
The basic DIMSTYLE “EZ_RADIUS_INSIDE” settings are:

* 1 drawing unit = Im

* scale 1:100, length_factor is 100 which creates

¢ the length factor diml fac = 100, which creates a measurement text in cm.

¢ uses a closed filled arrow, arrow size dimasz = 0.25

Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:

tmove 0 =moves the dimension line with dimension text, this is the best setting for text inside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dimti 1 = force text inside

di- 0= force text inside, required by BricsCAD and AutoCAD

mat-

fit

dim- O = center text vertical, BricsCAD and AutoCAD always create a vertical centered text, ezdxf let you choose

tad the vertical placement (above, below, center), but editing the DIMENSION in BricsCAD or AutoCAD will
reset text to center placement.

dim = msp.add_radius_dim/(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle:"EszADIUSilNSIDE "

9.5. Tutorials 197

ezdxf Documentation, Release 1.2.0

“t.% <
) &
| .
| || l.
! dimtad=1 dimtad=0
dimtmave=0 / W dimtmove=0
& &
| dimtad=1 i \ dimtad=0
\ dimtmove=1 dimtmove=1

To force text inside horizontal set dimtihto 1:

&

dimtad=4
dimtmaove=0 /

&

dimtad=4 i
dimtmove=1 /

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}

198

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

R250 R250

dimtad=0 | dimtad=0
dimtmove=0 dimtmove=1

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location. This location
also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not
necessary to force text inside (dimt ix=1), because the location of the text is explicit given, therefore the DIMSTYLE
“EZ_RADIUS” can be used for all this examples.

User defined location outside of the circle:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location= (4, 4),
dimstyle="EZ_ RADIUS"

) -
— — —— [

dimtad=1 dimtad=0 dimtad=4

User defined location outside of the circle and forced horizontal text:

9.5. Tutorials 199

ezdxf Documentation, Release 1.2.0

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location= (4, 4),
dimstyle="EZ_RADIUS",

override={"dimtoh": 1}
)
R250 -
k250 2 R250
| I I
f [
dimtad=1 J | dimtad=0 | dimtad=4
User defined location inside of the circle:
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_ RADIUS"
)
S \ / N
A% | f & ey
] LF {-b
|
dimtad=1 \ dimtad=0 dimtad=4
dimtmaove=0 / \ dimtmaove=0 dimtmove=0
200 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

S

/ &Ny &\ I
| | |
1 | |
dimtad=1 | dimtad=0 J dimtad=4 |
dimtmove=2) | dimtmaove=2 ' | dimtmove=2 '

User defined location inside of the circle and forced horizontal text:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_ RADIUS",

override={"dimtih": 1},
)
R250 i
' \ [50 = - [R250
|
|

dimtad=1 | dimtad=0 | 1 dimtad=4

Center Mark/Lines

Center mark/lines are controlled by dimcen, default value is O for predefined dimstyles “EZ_RADIUS” and
“EZ_RADIUS_INSIDE”:

0 Center mark is off
>0 Create center mark of given size
<0 Create center lines

dim = msp.add_radius_dim(
center=(0, 0),

(continues on next page)

9.5. Tutorials 201

ezdxf Documentation, Release 1.2.0

(continued from previous page)

radius=2.5,

angle=45,
dimstyle="EZ_RADIUS",
override={"dimcen": 0.25},
)
5 AN sy
.——___.. Q’_‘Lz — Q-.‘lf' _ —— - ({t:_’,
dimeen =0 / \ dimeen=0.25 / \ dimcen =-0.25

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

9.5.25 Tutorial for Diameter Dimensions

Please read the Tutorial for Radius Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

This is a repetition of the radius tutorial, just with diameter dimensions.

import ezdxf

setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)

msp = doc.modelspace () # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
add default diameter dimension, measurement text is located outside
dim = msp.add_diameter_dim(

center=(0, 0),

radius=3,

angle=45,

(continues on next page)

202 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

dimstyle="EZ_ RADIUS"
)
dim.render ()
doc.saveas ("diameter_dimension.dxf")

The example above creates a 45 degrees slanted diameter Dimen s i on entity, the default dimension style “EZ_RADIUS”
(same as for radius dimensions) is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100,
which creates a measurement text in cm, the default location for the measurement text is outside of the circle.

The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle
radius and angle defines the slope of the dimension line, it is also possible to define the circle by a measurement point
mpoint on the circle.

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

Placing Measurement Text

There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:

¢ 1 drawing unit = 1m

e scale 1:100

* the length factor dimlfac = 100, which creates a measurement text in cm.

* uses a closed filled arrow, arrow size dimasz = 0.25

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for
the diameter dimension there are less features implemented than for the linear dimension because of the lack of good
documentation.

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

¢ The Script dimension_diameter.py shows examples for radius dimensions.

Default Text Locations Outside

“EZ_RADIUS” default settings for to place text outside:

tmove 1 =add aleader when dimension text is moved, this is the best setting for text outside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dim- 1 = place the text vertical above the dimension line

tad

9.5. Tutorials 203

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_diameter.py

ezdxf Documentation, Release 1.2.0

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS"

)

dim.render () # always required,

but not shown in the following examples

dimlad=1 . dimtad=0 dimtad=4
t$ o /
& - & _ q‘:;‘*‘%\ _
To force text outside horizontal set dimtohto 1:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}
)
| R . -
. dimtad=1 dimtad=0 dimiad=4
@500
_ e _ @500

204

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Default Text Locations Inside

DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location.
The basic DIMSTYLE settings are:

* 1 drawing unit = 1m

e scale 1:100, length_factor is 100 which creates

¢ the length factor diml fac = 100, which creates a measurement text in cm.

¢ uses a closed filled arrow, arrow size dimasz = 0.25

Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:

tmove 0 =moves the dimension line with dimension text, this is the best setting for text inside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dimti 1 = force text inside

di- 0= force text inside, required by BricsCAD and AutoCAD

mat-

fit

dim- 0 = center text vertical, BricsCAD and AutoCAD always create a vertical centered text, ezdxf let you choose

tad the vertical placement (above, below, center), but editing the DIMENSION in BricsCAD or AutoCAD will
reset text to center placement.

dim = msp.add_diameter_dim(
center=(0, 0),

radius=2.5,

angle=45,
dimstyle="EZ_RADIUS_INSIDE"

| & & &

dimtad=1 - ' dimtad=0 / \ dimtad=4

To force text inside horizontal set dimtihto 1:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,

angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}

9.5. Tutorials 205

ezdxf Documentation, Release 1.2.0

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location. This location
also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not
necessary to force text inside (dimt ix=1), because the location of the text is explicit given, therefore the DIMSTYLE
“EZ_RADIUS” can be used for all this examples.

User defined location outside of the circle:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location= (4, 4),
dimstyle="EZ_RADIUS"

206 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

& o .
Logrs $¥ %$
fimlad=1 limtad=0 Jimtad=4
User defined location outside of the circle and forced horizontal text:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location= (4, 4),
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}
)
500 o)

" @500

dimiad=1 / \ fimtad=0 f A dimtad=4

User defined location inside of the circle:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS"

9.5. Tutorials 207

ezdxf Documentation, Release 1.2.0

0\
A3) .
Gl @ é%@
dimtad=1 / N dimtad=0 dimtad=4
User defined location inside of the circle and forced horizontal text:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS",
override={"dimtih": 1},
)
@500 -
/ @500 750 I
|
|
dimtad=1 / A dimtad=0 dimtad=4

Center Mark/Lines

See Radius Dimension Tutorial: Center Mark/Lines

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

208

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

9.5.26 Tutorial for Angular Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Dimension Style “EZ_CURVED”
All factory methods to create angular dimensions uses the dimension style “EZ_CURVED” for curved dimension lines
which is defined as:

* angle unit is decimal degrees, dimaunit =0

* measurement text height = 0.25 (drawing scale = 1:100)

* measurement text location is above the dimension line

¢ closed filled arrow and arrow size dimasz = 0.25

e dimazin =2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)

This DIMENSION style only exist if the argument setup is True for creating a new DXF document by ezdxf . new ().
Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save ()
or saveas () (e.g. dimension style setup was not initiated).

Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:

import ezdxf
from ezdxf.tools.standards import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing (doc, topics="all")

Factory Methods to Create Angular Dimensions

Defined by Center, Radius and Angles

The first example shows an angular dimension defined by the center point, radius, start- and end angles:

import ezdxf

Create a DXF R2010 document:
Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new ("R2010", setup=True)

Add new entities to the modelspace:
msp = doc.modelspace ()

Add an angular DIMENSION defined by the center point, start- and end angles,

(continues on next page)

9.5. Tutorials 209

ezdxf Documentation, Release 1.2.0

(continued from previous page)

the measurement text is placed at the default location above the dimension

line:

dim = msp.add_angular_dim_cra(
center=(5, 5), # center point of the angle
radius= 7, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees
end_angle=120, # end angle in degrees
distance=3, # distance from start of the extension lines to the dimension line
dimstyle="EZ_CURVED", # default angular dimension style

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

dim.render ()

doc.saveas ("angular_dimension_cra.dxf")

The return value dim is not a dimension entity, instead a DimSt yleOverride object is returned, the dimension entity
is stored as dim.dimension.

60°

end_angfe\
120°

start_angle

210 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Angle by 2 Lines

The next example shows an angular dimension for an angle defined by two lines:

import ezdxf

doc = ezdxf.new (setup=True)
msp doc.modelspace ()

Setup the geometric parameters for the DIMENSION entity:
base = (5.8833, -6.3408) # location of the dimension line

pl = (2.0101, -7.5156) # start point of 1st leg
p2 = (2.7865, -10.4133) # end point of 1st leg
p3 = (6.7054, -7.5156) # start point of 2nd leg
p4 = (5.9289, -10.4133) # end point of 2nd leg

Draw the lines for visualization, not required to create the
DIMENSION entity:
msp.add_line (pl, p2)
msp.add_line (p3, p4)

Add an angular DIMENSION defined by two lines, the measurement text is
placed at the default location above the dimension line:
dim = msp.add_angular_dim_21 (

base=base, # defines the location of the dimension line

linel=(pl, p2), # start leg of the angle

line2=(p3, p4), # end leg of the angle

dimstyle="EZ_CURVED", # default angular dimension style

Necessary second step to create the dimension line geometry:
dim.render ()
doc.saveas ("angular_dimension_21.dxf")

The example above creates an angular Dimension entity to measures the angle between two lines (linel and line2).

The base point defines the location of the dimension line (arc), any point on the dimension line is valid. The points p/ and
p2 define the first leg of the angle, pI also defines the start point of the first extension line. The points p3 and p4 define
the second leg of the angle and point p3 also defines the start point of the second extension line.

The measurement of the DIMENSION entity is the angle enclosed by the first and the second leg and where the dimension
line passes the base point.

9.5. Tutorials 211

ezdxf Documentation, Release 1.2.0

30°

linel.pl

v

linel.p2

P

Angle by 3 Points

base

lineZ.pT

line2.pZ

N

The next example shows an angular dimension defined by three points, a center point and the two end points of the angle

legs:

import ezdxf

doc = ezdxf.new (setup=True)
msp = doc.modelspace ()

msp.add_angular_dim_3p (
base=(0, 7),
center=(0, 0),

location of the dimension line
center point

pl=(-3, 5), # end point of 1st leg = start angle
p2=(3, 5), # end point of 2nd leg = end angle
) .render ()
212 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

62°

base

center

Angle from ConstructionArc

The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.

Add an angular dimension to an ARC entity:

import ezdxf

doc
msp

ezdxf.new (setup=True)
doc.modelspace ()

arc = msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,

(continues on next page)

9.5. Tutorials 213

ezdxf Documentation, Release 1.2.0

(continued from previous page)

end_angle = 120,
)
msp.add_angular_dim_arc (
arc.construction_tool (),
distance=2,
) .render ()

60°

distance

Placing Measurement Text

The default location of the measurement text depends on various DimSt y 1e parameters and is applied if no user defined
text location is defined.

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for
the angular dimension there are less features implemented than for the linear dimension because of the lack of good

documentation.

See also:
¢ Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

* Source code file standards.py shows how to create your own DIMSTYLES.

* The Script dimension_angular.py shows examples for angular dimensions.

214 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_angular.py

ezdxf Documentation, Release 1.2.0

Default Text Locations

The DIMSTYLE “EZ_CURVED?” places the measurement text in the center of the angle above the dimension line. The
first examples above show the measurement text at the default text location.

The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this
angle is manually overridden.

The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:

Center, it is possible to adjust the vertical location by dimt vp
Above

Outside, handled like Above by ezdxf

JIS, handled like Above by ezdxf

Below

I NS I S i)

msp.add_angular_dim_cra (
center= (3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={
"dimtad": 1, # O=center; l=above; 4=below;
}I
) .render ()

9.5. Tutorials 215

ezdxf Documentation, Release 1.2.0

60° 300°
¢y
dimtad=1 i j
60°
60° 300°
Y
dimtad=0 /\
'Q_ 6[]-;:. _)
60° 300°
dimtad=4
60°

Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t
sufficient. This overrides the dimtad value by 1 (“above”). Ezdxf follows its own rules, ignores the dimat £1i t attribute
and works similar to dimat £it = 1, move arrows first, then text:

216 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

. R T

Shift Text From Default Location

The method shift_text () shifts the measurement text away from the default location. The shifting direction is
aligned to the text rotation of the default measurement text.

dim = msp.add_angular_dim_cra (
center= (3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
)
shift text from default text location:
dim.shift_text (0.5, 1.0)
dim.render ()

shifted fofmfon\

60°
default Komn'on\ ’ﬂ

{

@

This is just a rendering effect, editing the dimension line in a CAD application resets the text to the default location.

9.5. Tutorials 217

ezdxf Documentation, Release 1.2.0

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location.

The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the WCS.

Absolute User Location

Absolute placing of the measurement text means relative to the origin of the render UCS. The user location is stored in
the DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location.
This location also determines the rotation of the measurement text.

dim = msp.add_angular_dim_cra (

center= (3, 3),

radius=3,

distance=1,

start_angle=60,

end_angle=120,

location=(5, 8), # user defined measurement text location
)

dim.render ()

218 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

640
user location

Relative User Location

Relative placing of the measurement text means relative to the middle of the dimension line. This is only possible by
calling the set_location () method, and the argument relative has to be True. The user location is stored in the
DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location. This
location also determines the rotation of the measurement text.

dim = msp.add_angular_dim_cra (
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
)
dim.set_location((1, 2), relative=True)
dim.render ()

9.5. Tutorials 219

ezdxf Documentation, Release 1.2.0

60°

Adding a Leader

600

The method set_location () has the option to add a leader line to the measurement text. This also aligns the text
rotation to the render UCS x-axis, this means in the default case the measurement text is horizontal. The leader line can
be “below” the text or start at the “left” or “right” center of the text, this location is defined by the dimtad attribute, O

means “center” and any value != 0 means “below”.

for dimtad,
dim =

x in [(0, Q0), (4, 6)]:
msp.add_angular_dim_cra (
center=(3 + x, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={"dimtad": dimtad} # "center" == 0;
)

dim.set_location((1,
dim.render ()

2), relative=True, leader=True)

"below"

I= 0,

220

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

60°

60°

Advanced version which calculates the relative text location: The user location vector has a length 2 and the orientation

is defined by center_angle pointing away from the center of the angle.

import ezdxf
from ezdxf.math import Vec3

doc
msp
for

ezdxf.new (setup=True)
doc.modelspace ()
dimtad, y, leader in
[0, 0, False],

[0, 7, True],

[4, 14, True]l,

[

for x,

(0,

center_angle in
), (7, 45),

[

(14, 90), (21, 135), (26, 225),

dim msp.add_angular_dim_cra (
center=(x, V),

radius=3.0,

distance=1.0,
start_angle=center_angle - 15.0,
end_angle=center_angle + 15.0,
override={"dimtad": dimtad},

)

(29, 270)

The user location 1is relative to the center of the dimension line:

usr_location =

dim.set_location (usr_location,
dim.render ()

leader=1leader,

Vec3.from_deg_angle (angle=center_.

angle, length=2.0)

relative=True)

9.5. Tutorials

221

ezdxf Documentation, Release 1.2.0

Overriding Text Rotation

All factory methods supporting the argument fext_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).

This example uses a relative text location without a leader and forces the text rotation to 90 degrees:

for x, center_angle in [(7, 45), (14, 90), (21, 135)]:
dim = msp.add_angular_dim_cra (

center=(x, 0),
radius=3.0,
distance=1.0,
start_angle=center_angle - 15.0,
end_angle=center_angle + 15.0,
text_rotation=90, # vertical text

(continues on next page)

222 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

usr_location = Vec3.from_deg_angle (angle=center_angle, length=1.0)
dim.set_location (usr_location, leader=False, relative=True)
dim.render ()

[o]
(e
™
o o
[a] [a]
N on
Angular Units
Angular units are set by dimaunit:
0 Decimal degrees
1 Degrees/Minutes/Seconds, dimadec controls the shown
precision
e dimadec=0: 30°
e dimadec=2: 30°35’
e dimadec=4: 30°35’25”
¢ dimadec=7: 30°3525.15”
2 Grad
3 Radians
dl = 15

d2 = 15.59031944
for x, (dimaunit, dimadec) in enumerate (

[

w N - O
~ S~ 0~
SO J D

~

dim = msp.add_angular_dim_cra (
center=(x * 4.0, 0.0),
radius=3.0,
distance=1.0,
start_angle=90.0 - di,
(continues on next page)

9.5. Tutorials 223

ezdxf Documentation, Release 1.2.0

(continued from previous page)

end_angle=90.0 + d2,
override=/{
"dimaunit": dimaunit,
"dimadec": dimadec,
}I
)

dim.render ()

30°35'25.15"

30.5903° 33.9892g 0.5339r

dimaunit=0 dimaunit =1 dimaunit =2 dimaunit=3

Degree DMS Grad Radians
30°35'25" 30°35'25.15"
30° 30°35'
dimadec=0 dimadec=2 dimadec =4 dimadec=7

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

9.5.27 Tutorial for Arc Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t. This is a repetition of the Tutorial for Angular
Dimensions, because ezdxf reuses the angular dimension to render arc dimensions. This approach is very different to
CAD applications, but also much less work.

Note: FEzdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE variables,
so the rendering results are very different from CAD applications.

224 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Dimension Style “EZ_CURVED”
All factory methods to create arc dimensions uses the dimension style “EZ_CURVED” for curved dimension lines which
is defined as:

* angle unit is decimal degrees, dimaunit =0

* measurement text height = 0.25 (drawing scale = 1:100)

* measurement text location is above the dimension line

¢ closed filled arrow and arrow size dimasz = 0.25

e dimzin =2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)

e dimarcsym = 2, disables the arc symbol, O renders only an open round bracket “(” in front of the text and 1 for
arc symbol above the text is not supported, renders like disabled

For more information go to: Dimension Style “EZ_CURVED”

Factory Methods to Create Arc Dimensions

Defined by Center, Radius and Angles

The first example shows an arc dimension defined by the center point, radius, start- and end angles:

import ezdxf

Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new (setup=True)

Add new entities to the modelspace:
msp = doc.modelspace ()

Add an arc DIMENSION defined by the center point, start- and end angles,

the measurement text is placed at the default location above the dimension

line:

dim = msp.add_arc_dim_cra(
center=(5, 5), # center point of the angle
radius=5, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees
end_angle=120, # end angle in degrees
distance=2, # distance from start of the extension lines to the dimension line
dimstyle="EZ_CURVED", # default angular dimension style

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

dim.render ()

doc.saveas ("arc_dimension_cra.dxf")

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

9.5. Tutorials 225

ezdxf Documentation, Release 1.2.0

523.6

end_ang/e\
120°

start_angle

Arc by 3 Points

The next example shows an angular dimension defined by three points, a center point and the two end points of the angle
legs, the first point defines the radius, the second point defines only the end angle, the distance from the center point is
not relevant:

import ezdxf

doc = ezdxf.new (setup=True)
msp = doc.modelspace ()

msp.add_arc_dim_3p(
base=(0, 7), # location of the dimension line
center=(0, 0), # center point
pl=(2.5, 4.330127018922193), # 1st point of arc defines start angle and radius
p2=(-2.5, 4.330127018922194), # 2nd point defines the end angle
) .render ()

226 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

523.6

base

center

Angle from ConstructionArc

The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.

Add an angular dimension to an ARC entity:

import ezdxf

doc
msp

arc

ezdxf.new (setup=True)
= doc.modelspace ()

= msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,
end_angle = 120,

(continues on next page)

9.5.

Tutorials 227

ezdxf Documentation, Release 1.2.0

(continued from previous page)

)

msp.add_arc_dim_arc(
arc.construction_tool (),
distance=2,

) .render ()

Placing Measurement Text

The default location of the measurement text depends on various DimSt y1e parameters and is applied if no user defined
text location is defined.

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the arc
dimension there are less features implemented than for the linear dimension because of the lack of good documentation.
If the arc symbol is enabled (dimarcsym = 0) only an open round bracket “(” is rendered in front of the measurement
text!

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

* The Script dimension_arc.py shows examples for angular dimensions.

Default Text Locations

The DIMSTYLE “EZ_CURVED?” places the measurement text in the center of the angle above the dimension line. The
first examples above show the measurement text at the default text location.

The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this
angle is manually overridden.

Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t
sufficient.

For more information go to: Default Text Locations

Shift Text From Default Location

The method shift_text () shifts the measurement text away from the default location. The shifting direction is
aligned to the text rotation of the default measurement text.

For more information go to: Shift Text From Default Location

228 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_arc.py

ezdxf Documentation, Release 1.2.0

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location.
The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the WCS.

For more information go to: User Defined Text Locations

Absolute User Location

Absolute placing of the measurement text means relative to the origin of the render UCS.

For more information go to: User Defined Text Locations

Relative User Location

Relative placing of the measurement text means relative to the middle of the dimension line.

For more information go to: User Defined Text Locations

Adding a Leader

Add a leader line to the measurement text and set the text rotation to “horizontal”.
For more information go to: User Defined Text Locations
Overriding Text Rotation

All factory methods supporting the argument fext_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).

For more information go to: User Defined Text Locations

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Text Rotation

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

9.5. Tutorials 229

ezdxf Documentation, Release 1.2.0

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

9.5.28 Tutorial for Ordinate Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Local Coordinate System

Ordinate dimensioning is used when the x- and the y-coordinates from a location (feature), are the only dimensions
necessary. The dimensions to each feature, originate from one datum location, called “origin” in this tutorial.

The local coordinate system (LCS) in which the measurement is done, is defined by the origin and the rotation angle
around the z-axis in the rendering UCS, which is the WCS by default.

Factory Methods to Create Ordinate Dimensions
All factory methods for creating ordinate dimensions expect global coordinates to define the feature location.
Global Feature Location

The first example shows ordinate dimensions defined in the render UCS, in this example the WCS, this is how the DI-
MENSION entity expects the coordinates of the feature location:

import ezdxf
from ezdxf.math import Vec3
from ezdxf.render import forms

Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new (setup=True)

Add new entities to the modelspace:
msp = doc.modelspace ()
Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3)
origin = Vec3(2, 3)
msp.add_lwpolyline (
forms.translate (forms.box (4, 2.5), origin),
close=True

Add an x-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_x_dim(

lower left corner

feature_location=origin + (0, 0), # feature location in the WCS

offset=(0, -2), # end of leader, relative to the feature location

origin=origin,
) .render ()
msp.add_ordinate_x_dim(

(continues on next page)

230 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(0, -2),
origin=origin,
) .render ()

Add an y-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_y_dim(
lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(2, 0),
origin=origin,
) .render ()
msp.add_ordinate_y_dim(
upper right corner
feature_location=origin + (4, 2.5), # feature location in the WCS
offset=(2, 0),
origin=origin,
) .render ()

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

doc.saveas ("ord_global_ features.dxf")

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

400 200 |
" J-lype ordinate dimension
50

\ offset

LGS origin o e ordinate dimension
\oﬁsef
= ojfset offset
v %
WCS origin S
o 1/ 200 X-type ordinate dimension AN x-type ordinate dimension

1

9.5. Tutorials 231

ezdxf Documentation, Release 1.2.0

Local Feature Location

The previous examples shows that the calculation of the global feature location is cumbersome and it gets even more
complicated for a rotated LCS.

This example shows how to use a render UCS for using locale coordinates to define the feature locations:

import ezdxf
from ezdxf.math import Vec3, UCS
from ezdxf.render import forms

doc = ezdxf.new (setup=True)
msp = doc.modelspace ()

Create a special DIMSTYLE for "vertical" centered measurement text:
dimstyle = doc.dimstyles.duplicate_entry ("EZDXEF", "ORD_CENTER")
dimstyle.dxf.dimtad = 0 # "vertical” centered measurement text

Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3),
rotated about 30 degrees:
origin = Vec3(2, 3)
msp.add_lwpolyline (
forms.translate (forms.rotate (forms.box (4, 2.5), 30), origin),
close=True

-

Define the rotated local render UCS.

The origin is the lower-left corner of the rectangle and the axis are
aligned to the rectangle edges:

The y-axis "uy" is calculated automatically by the right-hand rule.
ucs = UCS (origin, ux=Vec3.from_deg_angle(30), uz=(0, 0, 1))

#
#
#
#

Add a x-type ordinate DIMENSION with local feature locations:
the origin is now the origin of the UCS, which is (0, 0) the default value of
"origin" and the feature coordinates are located in the UCS:
msp.add_ordinate_x_dim(

lower left corner

feature_location=(0, 0), # feature location in the UCS

offset=(0.25, -2), # # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!

msp.add_ordinate_x_dim(
lower right corner
feature_location=(4, 0), # feature location in the UCS

offset=(0.25, -2), # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!

Add a y-type ordinate DIMENSION with local feature coordinates:
msp.add_ordinate_y_dim(
lower right corner
feature_location= (4, 0), # feature location in the UCS
offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!
msp.add_ordinate_y_dim(
upper right corner
feature_location=(4, 2.5), # feature location in the UCS
(continues on next page)

232 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!
doc.saveas ("ord_local_features.dxf")

/
<

e

R\S

ues ongm/

Placing Measurement Text

The ezdxf ordinate DIMENSION renderer places the measurement text always at the default location, because the location
of the leader end point is given by the argument offset in the factory methods, which provides a flexible way to place the
measurement text, overriding the text location by an explicit user location is not supported, also the user text rotation is
not supported, the text is always aligned to the local coordinate system x- and y-axis.

See also:

* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

* Source code file standards.py shows how to create your own DIMSTYLES.

9.5. Tutorials 233

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py

ezdxf Documentation, Release 1.2.0

¢ The Script dimension_ordinate.py shows examples for angular dimensions.

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Text Rotation

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

9.5.29 Tutorial for the Geo Add-on

This tutorial shows how to load a GPS track into a geo located DXF file and also the inverse operation, exporting geo
located DXF entities as GeoJSON files.

Please read the section Intended Usage in the documentation of the ezdxf . addons . geo module first.

Warning: TO ALL BEGINNERS!

If you are just learning to work with geospatial data, using DXF files is not the way to go! DXF is not the first choice
for storing data for spatial data analysts. If you run into problems I cannot help you as I am just learning myself.

The complete source code and test data for this tutorial are available in the github repository:
https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo

Setup Geo Location Reference

The first step is setting up the geo location reference, which is not doable with ezdxf yet - this feature may come in
the future - but for now you have to use a CAD application to do this. If the DXF file has no geo location reference

the projected 2D coordinates are most likely far away from the WCS origin (0, 0), use the CAD command “ZOOM
EXTENDS” to find the data.

Load GPX Data

The GPX format stores GPS data in a XML format, use the Element Tree class to load the data:

def load_gpx_track(p: Path) —-> Iterable[Tuple[float, float]]:
"""Toad all track points from all track segments at once.'"""
gpx = ET.parse (p)
root = gpx.getroot ()
for track_point in root.findall(".//gpx:trkpt", GPX_NS):
data = track_point.attrib
Elevation is not supported by the geo add-on.
yield float (data["lon"]), float (data["lat"])

234 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_ordinate.py
https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo

ezdxf Documentation, Release 1.2.0

The loaded GPS data has a WSG84 EPSG:4326 projection as longitude and latitude in decimal degrees. The next step is
to create a GeoProxy object from this data, the GeoProxy.parse () method accepts a __geo_interface_
mapping or a Python object witha __geo_interface_ attribute/property. In this case as simple “LineString” object
for all GPS points is sufficient:

def add_gpx_track (msp, track_data, layer: str):
geo_mapping = {

"type": "LineString",
"coordinates": track_data,
}
geo_track = geo.GeoProxy.parse (geo_mapping)

Transform the data from the polar representation EPSG:4326 into a 2D cartesian map representation EPSG:3395 called
“World Mercator”, this is the only projection supported by the add-on, without the need to write a custom transformation
function:

geo_track.globe_to_map ()

The data is now transformed into 2D cartesian coordinates in meters and most likely far away from origin (0, 0), the data
stored in the GEODATA entity helps to transform the data into the DXF WCS in modelspace units, if the DXF file has
no geo location reference you have to stick with the large coordinates:

Load geo data information from the DXF file:
geo_data = msp.get_geodata ()
if geo_data:
Get the transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation ()
else:
Identity matrix for DXF files without a geo location reference:
m = Matrix44 ()
epsg = 3395
Check for compatible projection:
if epsg == 3395:
Transform CRS coordinates into DXF WCS:
geo_track.crs_to_wcs (m)
Create DXF entities (LWPOLYLINE)
for entity in geo_track.to_dxf_entities (dxfattribs={"layer": layer}):
Add entity to the modelspace:
msp.add_entity(entity)
else:
print (f"Incompatible CRS EPSG: {epsg}")

We are ready to save the final DXF file:

doc.saveas (str (out_path))

In BricsCAD the result looks like this, the underlying images were added by the BricsCAD command MAPCONNECT
and such a feature is not planned for the add-on:

9.5. Tutorials 235

ezdxf Documentation, Release 1.2.0

Export DXF Entities as GeoJSON

This will only work with a proper geo location reference, the code shown accepts also WCS data from DXF files without
a GEODATA object, but the result is just unusable - but in valid GeoJSON notation.

First get epsg code and the CRS transformation matrix:

Get the geo location information from the DXF file:
geo_data = msp.get_geodata ()
if geo_data:
Get transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation ()
else:
Identity matrix for DXF files without geo reference data:
m = Matrix44 ()

Query the DXF entities to export:

for track in msp.query ("LWPOLYLINE") :
export_geojson (track, m)

236 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Create a GeoProxy object from the DXF entity:

def export_geojson(entity, m):
Convert DXF entity into a GeoProxy object:
geo_proxy = geo.proxy (entity)

Transform DXF WCS coordinates in modelspace units into the CRS coordinate system by the transformation matrix m:

Transform DXF WCS coordinates into CRS coordinates:
geo_proxy.wcs_to_crs (m)

The next step assumes a EPSG:3395 projection, everything else needs a custom transformation function:

Transform 2D map projection EPSG:3395 into globe (polar)
representation EPSG:4326
geo_proxy.map_to_globe ()

Use the json module from the Python standard library to write the GeoJSON data, provided by the GeoProxy.
__geo_interface__ property:

Export GeoJSON data:

name = entity.dxf.layer + ".geojson"

with open (TRACK_DATA / name, "wt", encoding="utf8") as fp:
json.dump (geo_proxy.__geo_interface_ , fp, indent=2)

The content of the GeoJSON file looks like this:

"type": "LineString",
"coordinates": [
[
15.430999,
47.06503
]I
[
15.431039,
47.064797
]I
[
15.431206,
47.064582
]I
[
15.431283,
47.064342
]I

9.5. Tutorials 237

ezdxf Documentation, Release 1.2.0

Custom Transformation Function

This sections shows how to use the GDAL package to write a custom transformation function. The example reimplements
the builtin transformation from unprojected WGS84 coordinates to 2D map coordinates EPSG:3395 “World Mercator”:

from osgeo import osr
from ezdxf.math import Vec3

GPS track in WGS84, load _gpx_track () code see above
gpx_points = list (load_gpx_track ('trackl.gpx'))

Create source coordinate system:
src_datum = osr.SpatialReference ()
src_datum. SetWellKnownGeoCS ('WGS84 ")

Create target coordinate system:
target_datum = osr.SpatialReference ()
target_datum.SetWellKnownGeoCS ('EPSG:3395")

Create transformation object:
ct = osr.CoordinateTransform(src_datum, target_datum)

Create GeoProxy () object:
geo_proxy = GeoProxy.parse ({
'type': 'LineString',

'coordinates': gpx_points

H)

Apply a custom transformation function to all coordinates:
geo_proxy.apply (lambda v: Vec3(ct.TransformPoint (v.x, v.y)))

The same example with the pyproj package:

from pyproj import Transformer
from ezdxf.math import Vec3

GPS track in WGS84, load gpx_track() code see above
gpx_points = list (load_gpx_track('trackl.gpx'))

Create transformation object:
ct = Transformer.from_crs ('EPSG:4326', 'EPSG:3395"'")

Create GeoProxy () object:
geo_proxy = GeoProxy.parse ({
'type': 'LineString',

'coordinates': gpx_points

H)

Apply a custom transformation function to all coordinates:
geo_proxy.apply (lambda v: Vec3(ct.transform(v.x, v.y)))

238 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Polygon Validation by Shapely

Ezdxf tries to avoid to create invalid polygons from HATCH entities like a hole in another hole, but not all problems are
detected by ezdxf, especially overlapping polygons. For a reliable and robust result use the Shapely package to check for
valid polygons:

import ezdxf
from ezdxf.addons import geo
from shapely.geometry import shape

Load DXF document including HATCH entities.
doc = ezdxf.readfile('hatch.dxf')
msp = doc.modelspace ()

Test a single entity
Get the first DXF hatch entity:
hatch_entity = msp.query ('HATCH'") .first

Create GeoProxy () object:
hatch_proxy = geo.proxy (hatch_entity)

Shapely supports the __geo_interface
shapely_polygon = shape (hatch_proxy)

if shapely_polygon.is_valid:

else:
print (f'Invalid Polygon from {str (hatch_entity) }.")

Remove invalid entities by a filter function
def validate (geo_proxy: geo.GeoProxy) —-> bool:
Multi-entities are divided into single entities:
e.g. MultiPolygon is verified as multiple single Polygon entities.
if geo_proxy.geotype == 'Polygon':
return shape (geo_proxy) .is_valid
return True

The gfilter () function let only pass compatible DXF entities
msp_proxy = geo.GeoProxy.from dxf_entities(geo.gfilter (msp))

remove all mappings for which validate () returns False
msp_proxy.filter (validate)

Interface to GDAL/OGR

The GDAL/OGR package has no direct support for the __geo_interface__, but has builtin support for the Geol-
SON format:

from osgeo import ogr

from ezdxf.addons import geo

from ezdxf.render import random_2d_path
import json

P = geo.GeoProxy ({'type': 'LineString', 'coordinates': list (random_2d_path(20)) })
Create a GeoJSON string from the _ _geo_interface _ object by the json
module and feed the result into ogr:
(continues on next page)

9.5. Tutorials 239

ezdxf Documentation, Release 1.2.0

(continued from previous page)

line_string = ogr.CreateGeometryFromJson (json.dumps (p.__geo_interface_))

Parse the GeoJSON string from ogr by the json module and feed the result
into a GeoProxy () object:
P2 = geo.GeoProxy.parse(json.loads (line_string.ExportToJdson()))

9.5.30 Storing Custom Data in DXF Files

This tutorial describes how to store custom data in DXF files using standard DXF features.

Saving data in comments is not covered in this section, because comments are not a reliable way to store information in
DXF files and ezdxf does not support adding comments to DXF files. Comments are also ignored by ezdxf and many
other DXF libraries when loading DXF files, but there is a ezdx . comment s module to load comments from DXF
files.

The DXF data format is a very versatile and flexible data format and supports various ways to store custom data. This
starts by setting special header variables, storing XData, AppData and extension dictionaries in DXF entities and objects,
storing XRecords in the OBJECTS section and ends by using proxy entities or even extending the DXF format by user
defined entities and objects.

This is the common prolog for all Python code examples shown in this tutorial:

import ezdxf

doc ezdxf.new ()

msp = doc.modelspace ()

Retrieving User Data

Retrieving the is a simple task by ezdxf, but often not possible in CAD applications without using the scripting features
(AutoLISP) or even the SDK.

AutoLISP Resources

* Autodesk Developer Documentation
e AfralLISP

* Lee Mac Programming

Warning: [have no experience with AutoLISP so far and I created this scripts for AutoLISP while writing this
tutorial. There may be better ways to accomplish these tasks, and feedback on this is very welcome. Everything is
tested with BricsCAD and should also work with the full version of AutoCAD.

240 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/
https://www.afralisp.net/index.php
http://www.lee-mac.com

ezdxf Documentation, Release 1.2.0

Header Section

The HEADER section has tow ways to store custom data.

Predefined User Variables

There are ten predefined user variables, five 16-bit integer variables called SUSERI1 up to SUSERIS5 and five floating
point variables (reals) called SUSERR1 up to SUSERRS. This is very limited and the data maybe will be overwritten by
the next application which opens and saves the DXF file. Advantage of this methods is, it works for all supported DXF
versions starting at R12.

Settings the data:
doc.header["SUSERI1I"] = 4711
doc.header["$SUSERR1"] = 3.141592

Getting the data by ezdxf:

il = doc.header["SUSERI1"]
rl = doc.header["SUSERR1"]

Getting the data in BricsCAD at the command line:

USERI1
New current value for USERI1 (-32768 to 32767) <4711>:

Getting the data by AutoLISP:

(getvar 'USERI1)
4711

Setting the value by AutoLISP:

(setvar 'USERI1 1234)
1234

Custom Document Properties

This method defines custom document properties, but requires at least DXF R2004. The custom document properties are
stored in a CustomVars instance in the cust om_vars attribute of the HeaderSect i on object and supports only
string values.

Settings the data:

doc.header.custom_vars.append ("MyFirstVar", "First Value")

Getting the data by ezdxf:

my_first_var = doc.header.custom_vars.get ("MyFirstVar", "Default Value")

The document property MyFirstVar is available in BricsCAD as FIELD variable:

9.5. Tutorials 241

ezdxf Documentation, Release 1.2.0

B Field ? it

Field names: CustomDP,MyFirstVar:

-- Date & Time
= Document
- Buthor

- Comments

| First Value |

Format:

(one) |

UPPERCASE

- Filename
lowercase

... Filesi
I ES‘ZF'? First capital
- HyperlinkBase Title Case

- Keywords

- LastSavedBy

- MyFirstVar

- RevisionMumber
- Subject

... Title

[=- Linked

Hyperlink

= Objects

‘- BlockPlaceholder
Formula

f#l- Plot
- Varia bles
i i-DieselExpression b

Field expression:

%o <\AcVar CustomDP.MyFirstVar =%

0K Cancel

AutoLISP script for getting the custom document properties:

(defun C:CUSTOMDOCPROPS (/ Info Num Index Custom)
(vl-load-com)
(setq acadObject (vlax—get—acad-object))
(setq acadDocument (vla-get-ActiveDocument acadObject))

;;Get the SummaryInfo
(setq Info (vlax—-get-Property acadDocument 'SummaryInfo))
(setqg Num (vla-NumCustomInfo Info))
(setq Index 0)
(repeat Num
(vla-getCustomByIndex Info Index 'ID 'Value)
(setq Custom (cons (cons ID Value) Custom))
(setq Index (1+ Index))
) ; repeat

(if Custom (reverse Custom))

Running the script in BricsCAD:

242 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(load "customdocprops.lsp")
C:CUSTOMDOCPROPS
: CUSTOMDOCPROPS
(("MyFirstvar" . "First Value"))

Meta Data

Starting with version v0.16.4 ezdxf stores some meta data in the DXF file and the AppID EZDXF will be created. Two
entries will be added to the MetaDat a instance, the CREATED_BY_EZDXF for DXF documents created by ezdxf and
the entry WRITTEN_BY_EZDXF if the DXF document will be saved by ezdxf. The marker string looks like this "0 .
17b0 @ 2021-09-18T05:14:37.921826+00:00" and contains the ezdxf version and an UTC timestamp in
ISO format.

You can add your own data to the Met aDat a instance as a string with a maximum of 254 characters and choose a good
name which may never be used by ezdxf in the future.

metadata = doc.ezdxf_metadata ()
metadata["MY_UNIQUE_KEY"] = "my additional meta data"

print (metadata.get ("CREATED_BY_EZDXE"))
print (metadata.get ("MY_UNIQUE_KEY"))

The data is stored as XDATA in then BLOCK entity of the model space for DXF R12 and for DXF R2000 and later as
a DXF Dictionary in the root dictionary by the key EZDXF_META. See following chapters for accessing such data
by AutoLISP.

XDATA

Extended Data (XDATA) is a way to attach arbitrary data to DXF entities. Each application needs a unique AppID
registered in the AppID table to add XDATA to an entity. The AppID ACAD is reserved and by using ezdxf the AppID
EZDXF is also registered automatically. The total size of XDATA for a single DXF entity is limited to 16kB for AutoCAD.
XDATA is supported by all DXF versions and is accessible by AutoLISP.

The valid group codes for extended data are limited to the following values, see also the internals of Extended Data:

Group Code Description

1000 Strings up to 255 bytes long

1001 (fixed) Registered application name up to 31 bytes long

1002 (fixed) An extended data control string '{ "' or '} '

1004 Binary data

1005 Database Handle of entities in the drawing database

1010 3D point, in the order X, Y, Z that will not be modified at any transformation of the entity
1011 A WCS point that is moved, scaled, rotated and mirrored along with the entity

1012 A WCS displacement that is scaled, rotated and mirrored along with the entity, but not moved
1013 A WCS direction that is rotated and mirrored along with the entity but not moved and scaled.
1040 A real value

1041 Distance, a real value that is scaled along with the entity

1042 Scale Factor, a real value that is scaled along with the entity

1070 A 16-bit integer (signed or unsigned)

1071 A 32-bit signed (long) integer

Group codes are not unique in the XDATA section and can be repeated, therefore tag order matters.

9.5. Tutorials 243

ezdxf Documentation, Release 1.2.0

register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add (APPID)

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

setting the data
line.set_xdata (APPID, [
basic types
(1000, "custom text"),
(1040, 3.141592),
(1070, 4711), # 16bit
(1071, 1_048_576), # 32bit
points and vectors
(1010, (10, 20, 30)),
(1011, (11, 21, 31)),
(1012, (12, 22, 32)),
(1013, (13, 23, 33)),
scaled distances and factors
(1041, 10),
(1042, 10),
1)

getting the data
if line.has_xdata (APPID) :
tags = line.get_xdata (APPID)
print (f"{str(line) } has {len(tags)} tags of XDATA for AppID {APPID/r}")
for tag in tags:
print (tag)

AutoLISP script for getting XDATA for AppID YOUR_UNIQUE_ID:

(defun C:SHOWXDATA (/ entity_list xdata_list)
(setq entity_list (entget (car (entsel)) ' ("YOUR_UNIQUE_ID")))
(setqg xdata_list (assoc -3 entity_list))
(car (cdr xdata_list))

Script output:

SHOWXDATA
Select entity: ("YOUR_UNIQUE_ID" (1000 . "custom text") (1040 . 3.141592)

See also:
¢ AfralLISP XDATA tutorial
e Extended Data (XDATA) Reference

244 Chapter 9. Contents

https://www.afralisp.net/autolisp/tutorials/extended-entity-data-part-1.php

ezdxf Documentation, Release 1.2.0

XDATA Helper Classes

The XDataUserList and XDataUserDict are helper classes to manage XDATA content in a simple way.

Both classes store the Python types int, float and str and the ezdxf type Vec3. As the names suggests has the
XDataUserList a list-like interface and the XDataUserDict a dict-like interface. This classes can not contain
additional container types, but multiple lists and/or dicts can be stored in the same XDATA section for the same ApplID.

These helper classes uses a fixed group code for each data type:

1001 strings (max. 255 chars)

1040 floats
1071 32-bit ints
1010 Vec3

Additional required imports for these examples:

from ezdxf.math import Vec3
from ezdxf.entities.xdata import XDataUserDict, XDataUserList

Example for XDataUserDict:

Each XDataUserDict has a unique name, the default name is “DefaultDict” and the default AppID is EZDXF. If you
use your own ApplD, don’t forget to create the requited ApplID table entry like doc.appids.new ("MyAppID"),
otherwise AutoCAD will not open the DXF file.

doc ezdxf.new ()
msp = doc.modelspace (

)
line = msp.add_line((0, 0), (1, 0))

with XDataUserDict.entity(line) as user_dict:

user_dict ["CreatedBy"] = "mozman"
user_dict["Float"] = 3.1415
user_dict["Int"] = 4711
user_dict["Point"] = Vec3 (1, 2, 3)

If you modify the content of without using the context manager entity (), you have to call commit () by yourself,
to transfer the modified data back into the XDATA section.

Getting the data back from an entity:

with XDataUserDict.entity(line) as user_dict:
print (user_dict)
acts like any other dict ()
storage = dict (user_dict)

Example for XDataUserList:

This example stores the data in a XDataUserList named “AppendedPoints”, the default name is “DefaultList” and
the default AppID is EZDXF.

with XDataUserList.entity(line, name="AppendedPoints") as user_list:
user_list.append(Vec3 (1, 0, 0))
user_list.append(Vec3(0, 1, 0))
user_list.append(Vec3 (0, 0, 1))

Now the content of both classes are stored in the same XDATA section for AppID EZDXF. The XDataUserDict is
stored by the name “DefaultDict” and the XDataUserList is stored by the name “AppendedPoints”.

9.5. Tutorials 245

ezdxf Documentation, Release 1.2.0

Getting the data back from an entity:

with XDataUserList.entity(line, name="AppendedPoints") as user_list:
print (user_list)
storage = list (user_list)

print (f"Copy of XDataUserList: {storage}")

See also:
e XDataUserList class

e XDataUserDict class

Extension Dictionaries
Extension dictionaries are another way to attach custom data to any DXF entity. This method requires DXF R13/14 or
later. I will use the short term XDICT for extension dictionaries in this tutorial.

The Extension Dictionary is a regular DXF Dict i onary which can store (key, value) pairs where the key is a string and
the value is a DXF object from the OBJECTS section. The usual objects to store custom data are DictionaryVar to
store simple strings and XRecord to store complex data.

Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity!

This example shows how to manage the XDICT and to store simple strings as Dict ionaryVar objects in the XDICT,
to store more complex data go to the next section XRecord.

1. Get or create the XDICT for an entity:

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

if line.has_extension_dict:
get the extension dictionary
xdict = line.get_extension_dict ()
else:
create a new extension dictionary
xdict = line.new_extension_dict ()

2. Add strings as DictionaryVar objects to the XDICT. No AppIDs required, but existing keys will be overridden,
so be careful by choosing your keys:

xdict.add_dictionary_var ("DATA1", "Your custom data string 1")
xdict.add_dictionary_var ("DATA2", "Your custom data string 2")

3. Retrieve the strings from the XDICT as DictionaryVar objects:

print (£"DATA1l is '{xdict['DATA1l'].value}'")
print (f"DATA2 is '{xdict['DATA2'].value}'")

The AutoLISP access to DICTIONARIES is possible, but it gets complex and I'm only referring to the Afral.ISP Dic-
tionaries and XRecords tutorial.

See also:
¢ AfralLISP Dictionaries and XRecords Tutorial

e Extension Dictionary Reference

246 Chapter 9. Contents

https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php

ezdxf Documentation, Release 1.2.0

e DXF Dictionary Reference

e DictionaryVar Reference

XRecord

The XRecord object can store arbitrary data like the XDATA section, but is not limited by size and can use all group
codes in the range from 1 to 369 for DXF Tags. The XRecord can be referenced by any DXF Dictionary, other
XRecord objects (tricky ownership!), the XDATA section (store handle by group code 1005) or any other DXF object
by adding the XRecord object to the Extension Dictionary of the DXF entity.

It is recommend to follow the DXF reference to assign appropriate group codes to DXF Tags. My recommendation is
shown in the table below, but all group codes from 1 to 369 are valid. I advice against using the group codes 100 and 102
(structure tags) to avoid confusing generic tag loaders. Unfortunately, Autodesk doesn’t like general rules and uses DXF
format exceptions everywhere.

1 strings (max. 2049 chars)

2 structure tags as strings like "{" and "} "
10 points and vectors

40 floats

90 integers

330 handles

Group codes are not unique in XRecord and can be repeated, therefore tag order matters.

This example shows how to attach a XRecord object to a LINE entity by Extension Dictionary:

0),
2)

line =
line2 =

msp.add_line ((

0,)
msp.add_line ((O, (1, 2

if line.has_extension_dict:

xdict = line.get_extension_dict ()
else:

xdict = line.new_extension_dict ()
xrecord = xdict.add_xrecord ("DATAL")
xrecord.reset ([

(1, "textl"), # string

(40, 3.141592), # float

(90, 256), # 32-bit int

(10, (1, 2, 0)), # points and vectors

(330, line2.dxf.handle) # handles

1)

print (xrecord.tags)

Script output:
[DXFTag (1, 'textl'),
DXFTag (40, 3.141592),
DXFTag (90, 256),
DXFVertex (10, (1.0, 2.0, 0.0)),
DXFTag (330, '30'")]

Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity! To
react to entity modifications by a CAD applications it is possible to write event handlers by AutoLISP, see the Afral.LISP

9.5. Tutorials 247

https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php

ezdxf Documentation, Release 1.2.0

Reactors Tutorial for more information. This is very advanced stuft!
See also:

e AfralLISP Dictionaries and XRecords Tutorial

* AfralLISP Reactors Tutorial

* XRecord Reference

* helper functions: ezdxf.lldxf.types.dxftag() and ezdxf.l1lldxf.types.
tuples_to_tags()

XRecord Helper Classes

The UserRecord and BinaryRecord are helper classes to manage XRECORD content in a simple way. The
UserRecord manages the data as plain Python types: dict, 1ist, int, float, str and the ezdxf types Vec2
and Vec3. The top level type for the UserRecord.data attribute has to be a 1ist. The BinaryRecord stores
arbitrary binary data as BLOB. These helper classes uses fixed group codes to manage the data in XRECORD, you have
no choice to change them.

Additional required imports for these examples:

from pprint import pprint

import ezdxf

from ezdxf.math import Vec3

from ezdxf.urecord import UserRecord, BinaryRecord
from ezdxf.entities import XRecord

import zlib

Example 1: Store entity specific data in the Extension Dictionary:

line = msp.add_line((0, 0), (1, 0))
xdict = line.new_extension_dict ()
xrecord = xdict.add_xrecord("MyData")

with UserRecord(xrecord) as user_record:
user_record.data = [# top level has to be a list!
"MyString",
4711,
3.1415,
Vec3(1, 2, 3),
{
"MyIntList": [1, 2, 3],
"MyFloatList": [4.5, 5.6, 7.81,
}I

Example 1: Get entity specific data back from the Extension Dictionary:

if line.has_extension_dict:
xdict = line.get_extension_dict ()
xrecord = xdict.get ("MyData")
if isinstance (xrecord, XRecord):
user_record = UserRecord(xrecord)
pprint (user_record.data)

If you modify the content of UserRecord.data without using the context manager, you have to call commit () by
yourself, to store the modified data back into the XRECORD.

248 Chapter 9. Contents

https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://en.wikipedia.org/wiki/Binary_large_object

ezdxf Documentation, Release 1.2.0

Example 2: Store arbitrary data in DICTIONARY objects. The XRECORD is stored in the named DICTIONARY,
called rootdict in ezdxf. This DICTIONARY is the root entity for the tree-like data structure stored in the OBJECTS
section, see also the documentation of the ezdxf. sect ions.object s module.

Get the existing DICTIONARY object or create a new DICTIONARY object:
my_dict = doc.objects.rootdict.get_required_dict ("MyDict")

Create a new XRECORD object, the DICTIONARY object is the owner of this
new XRECORD:

xrecord = my_dict.add_xrecord("MyData")

This example creates the user record without the context manager.
user_record = UserRecord(xrecord)

Store user data:

user_record.data = [
"Just another user record",
4711,
3.1415,

]
Store user data in associated XRECORD:
user_record.commit ()

Example 2: Get user data back from the DICTIONARY object

my_dict = doc.rootdict.get_required_dict ("MyDict")
entity = my_dict["MyData"]
if isinstance (entity, XRecord):

user_record = UserRecord(entity)

pprint (user_record.data)

Example 3: Store arbitrary binary data

my_dict = doc.rootdict.get_required_dict ("MyDict")
xrecord = my_dict.add_xrecord("MyBinaryData")
with BinaryRecord(xrecord) as binary_record:
The content is stored as hex strings (e.g. ABBAFEFE...) 1in one or more
group code 310 tags.
A preceding group code 160 tag stores the data size in bytes.
data = b"Store any binary data, even line breaks\r\n" * 20
compress data if required
binary_record.data = zlib.compress (data, level=9)

Example 3: Get binary data back from the DICTIONARY object

entity = my_dict["MyBinaryData"]

if isinstance (entity, XRecord):
binary_record = BinaryRecord(entity)
print ("\ncompressed data:")
pprint (binary_record.data)

print ("\nuncompressed data:")
pprint (zlib.decompress (binary_record.data))

Hint: Don’t be fooled, the ability to save any binary data such as images, office documents, etc. in the DXF file doesn’t
impress AutoCAD, it simply ignores this data, this data only has a meaning for your application!

9.5. Tutorials 249

ezdxf Documentation, Release 1.2.0

See also:
e urecord module
e UserRecord class

e BinaryRecord class

AppData

Application-Defined Data (AppData) was introduced in DXF R13/14 and is used by AutoCAD internally to store the
handle to the Extension Dictionary and the Reactors in DXF entities. Ezdxf supports these kind of data storage for any
AppID and the data is preserved by AutoCAD and BricsCAD, but I haven’t found a way to access this data by AutoLISP
or even the SDK. So I don’t recommend this feature to store application defined data, because Extended Data (XDATA)
and the Extension Dictionary are well documented and safe ways to attach custom data to entities.

register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add (APPID)

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

setting the data
line.set_app_data (APPID, [(300, "custom text"), (370, 4711), (460,

getting the data
if line.has_app_data (APPID) :
tags = line.get_app_data (APPID)

3.141592)1])

print (f" {str(line) } has {len(tags)} tags of AppData for AppID {APPID ")

for tag in tags:
print (tag)

Printed output:

LINE (#30) has 3 tags of AppData for AppID 'YOUR_UNIQUE_ID'
(300, 'custom text')

(370, 4711)

(460, 3.141592)

9.5.31 Tutorial for External References

* Introduction

* Supported Entities
o Environment Setup
* Attach a DXF File
* Attach a DWG File
* Detach an XREF

e Embed an XREF

* Load Modelspace

250

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

* Load Paperspace

» Write Block

* Conflict Policies
— ConflictPolicy. KEEP
— ConflictPolicy. XREF_PREFIX
— ConflictPolicy. NUM_PREFIX

Load Table Resources

Introduction

This tutorial uses the ezdx . xref module to work with external references (XREF).

Attached XREFs are links to the modelspace of a specified drawing file. Changes made to the referenced drawing are
automatically reflected in the current drawing when it’s opened or if the XREF is reloaded.

Important: AutoCAD can only display DWG files as attached XREFs. Any DXF file attached as an XREF to a
DXF document must be converted to DWG in order to be viewed in AutoCAD. Fortunately, other CAD applications are
more cooperative, BricsCAD has no problem displaying DXF files as XREFs.

The drawing add-on included in ezdxf does not display external references at all!

There are some example files included in the examples/xref folder of the repository:
e attach_dxf_dwg_xref.py
e detach_block_as_xref.py
e embed_dxf_dwg_xref.py

* load_table_resources.py

Supported Entities
All operations which move entities between layouts and XREFs copy these entities, therefore only entities which are
copyable can be transferred. The following entities are not copyable:

¢ All entities which are not documented by the DXF reference.

e ACAD_TABLE

* ACAD_PROXY_ENTITY

* OLE2FRAME

¢ ACIS based entities: BODY, 3DSOLID, REGION, ...

» Custom entities from applications on top of AutoCAD like Map 3D, Civil 3D or Architecture. The vertical inte-
gration stack is not documented by the DXF reference.

Unsupported entities are ignored and do not raise exceptions.

9.5. Tutorials 251

https://github.com/mozman/ezdxf/tree/master/examples/xref

ezdxf Documentation, Release 1.2.0

Environment Setup

Required imports to follow this tutorial:

import ezdxf

from ezdxf.
from ezdxf.

from ezdxf

from ezdxf.

DXFVERSION

addons import odafc
document import Drawing
import xref, units, colors
render import forms

"R2013"

Function to create a simple DXF file as XREF, the insertion point of the XREF is set to (5, 5):

def make_dxf_xref_ document (name: str) -> Drawing:

ref_doc

= ezdxf.new (DXFVERSION, units=units.M)

ref_doc.layers.add("GEAR", color=colors.YELLOW)

msp =
gear =

16,

)

ref_doc.modelspace ()

forms.gear (
top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5

msp.add_lwpolyline (

forms.translate (gear, (5, 5)), close=True, dxfattribs={"layer": "GEAR"}
)
ref_doc.header["$SINSBASE"] = (5, 5, 0)
ref_doc.saveas (name)
return ref doc
Create the DXF file:

make_dxf_xref document ("xref.dxf")

The XREF looks like this:

252

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Attach a DXF File

Create a host document to which the XREF will be attached:

host_doc = ezdxf.new (DXFVERSION, units=units.M)

Attach the XREF by the ezdxf.xref.attach () function and save the host DXF file:

xref.attach (host_doc, block_name="dxf xref", insert=(0, 0), filename="attached_xref.
—dxf")

host_doc.set_modelspace_vport (height=10, center=(0, 0))
host_doc.saveas ("attach _host_dxf.dxf")

The attach () function is meant to simply attach an XREF once without any overhead, therefore the attach ()
function creates the required block definition automatically and raises an XrefDefinitionError exception if the
block definition already exist. To attach additional XREF references use the method add_blockref ():

msp.add_blockref ("dxf_xref", insert=another_location)

The attached DXF file in BricsCAD:

9.5. Tutorials 253

ezdxf Documentation, Release 1.2.0

Important: AutoCAD can not display DXF files as attached XREFs.

Attach a DWG File

Export the DXF file as DWG by the oda fc add-on:

It's not required to save the DXF file!
doc = make_dxf_ xref document ("attached xref.dxf")
try:

odafc.export_dwg (doc, "attached_ xref.dwg", replace=True)
except odafc.ODAFCError as e:
print (str(e))

Attach the DWG file by the ezdxf . xref.attach () function and save the host DXF file:

host_doc = ezdxf.new (DXFVERSION, units=units.M)

xref.attach (host_doc, block_name="dwg_xref", filename="attached xref.dwg", insert=(0, .
—0))

host_doc.set_modelspace_vport (height=10, center=(0, 0))

host_doc.saveas ("attached_dwg.dxf")

Attached DWG file in Autodesk DWG TrueView 2023:

254 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Detach an XREF

The detach () function writes the content of a block definition into the modelspace of a new DXF document and
convert the block to an external reference (XREF). The new DXF document has to be written/exported by the caller. The
function does not create any block references. These references should already exist and do not need to be changed since
references to blocks and XREFs are the same.

host_doc = ezdxf.new/()

make_block (host_doc, "GEAR™)

block_layout = host_doc.blocks.get ("GEAR")

detached_block_doc = xref.detach(block_layout, xref_ filename="detached gear.dxf")
detached_block_doc.saveas ("detached_gear.dxf")
host_doc.set_modelspace_vport (height=10, center=(0, 0))

host_doc.saveas ("detach_host_dxf xref.dxf")

Important: Save the host document after detaching the block! Detaching a block definition modifies the host document.

The detach () function returns a Drawing instance, so it’s possible to convert the DXF document to DWG by the
oda fc add-on if necessary (e.g. for Autodesk products). It’s important that the argument xref_ filename match the

9.5. Tutorials 255

ezdxf Documentation, Release 1.2.0

filename of the exported DWG file:

host_doc = ezdxf.new/()
make_block (host_doc, "GEAR")
block_layout = host_doc.blocks.get ("GEAR")
detached_block_doc = xref.detach (block_layout, xref_ filename="detached_gear.dwg")
try:
odafc.export_dwg (detached_block_doc, "detached_gear.dwg", replace=True)
except odafc.ODAFCError as e:
print (str(e))
host_doc.set_modelspace_vport (height=10, center=(0, 0))
host_doc.saveas ("detach_host_dwg_xref.dxf")

It’s recommended to clean up the entity database of the host document afterwards:

host_doc.entitydb.purge ()

For understanding, this is the make_block () function:

def make_block (doc: Drawing, name: str) —> None:
blk = doc.blocks.new(name, base_point=(5, 5, 0))
doc.layers.add ("GEAR", color=colors.YELLOW)
gear = forms.gear (
16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
blk.add_lwpolyline (
forms.translate (gear, (5, 5)), close=True, dxfattribs={"layer": "GEAR"}
)
doc.modelspace () .add_blockref (name, (0, 0))

Embed an XREF

The embed () function loads the content of the XREF into the block definition, this is the reverse operation of detaching
an XREF.

For loading the content of DWG files is a loading function required, which loads the DWG file as Drawing document.
The oda fc add-on module provides such a function: readrfile ().

This example embeds the XREF “attached_xref.dwg” of the first example as content of the block definition “GEAR”, the
“attach_host_dwg.dxf” file is the host DXF document:

import ezdxf

from ezdxf.addons import odafc
doc = ezdxf.readfile("attach_host_dwg.dxf")
gear_xref = doc.blocks.get ("GEAR")

try:

xref.embed (gear_xref, load_fn=odafc.readfile)
except FileNotFoundError as e:

print (str(e))

The default loading function for DXF files is the ezdx . readfile () function and doesn’t have to be specified. For
the loading function from the recover module use a lambda function:

import ezdxf
from ezdxf import recover

(continues on next page)

256 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

doc = ezdxf.readfile("attach host dxf.dxf")
gear_xref = doc.blocks.get ("GEAR")

try:

xref.embed (gear_xref, load_fn=lambda f: recover.readfile(f) [0])
except FileNotFoundError as e:

print (str(e))

Load Modelspace

The ezdxf.xref.load_modelspace () function loads the content of the modelspace of the source document into
a layout of the target document, the modelspace of the target document is the default target layout.

Hint: Use this function to combine multiple existing DXF files. If the goal is just to add new entities to an existing
document, rather load the source document as a template by ezdxf. readfile (), add your content and save the
document as a new DXF file with the saveas () method.

Merge multiple DXF files:

import ezdxf

from ezdxf import colors, transform, xref
from ezdxf.math import Matrix44

from ezdxf.render import forms

def make_gear (name: str) —-> None:
doc = ezdxf.new/()
doc.layers.add ("GEAR", color=colors.YELLOW)
msp = doc.modelspace ()
gear = forms.gear (
16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
msp.add_lwpolyline (gear, close=True, dxfattribs={"layer": "GEAR"})
doc.saveas (name)

make_gear ("gear.dxf")

merged_doc = ezdxf.new()

for index in range (3):
sdoc = ezdxf.readfile("gear.dxf") # this could be different DXF files
transform.inplace (sdoc.modelspace (), Matrix44.translate(index * 10, 0, 0))
xref.load_modelspace (sdoc, merged_doc)

merged_doc.saveas ("merged.dxf")

9.5. Tutorials 257

ezdxf Documentation, Release 1.2.0

Load Paperspace

The function ezdxf.xref.load paperspace () loads a paperspace layout as a new paperspace layout into the
target document. To be clear this function loads only the content of the paperspace layout, the content of the modelspace
isn’t loaded, therefore the loaded VIEWPORT entities show the content of the target modelspace.

Write Block

The function ezdxf.xref.write_block () writes the given entities into the modelspace of a new DXF document,
this document can be, but doesn’t have to be used as an external referenced block.

Conflict Policies

Resources are definitions of layers, linetypes, text-, dimension-, mline- and mleader styles, materials and blocks.

A resource conflict occurs when the source and target documents contain elements such as layers, linetypes, text styles
and so on that share the same name.

Many of the functions shown above support an argument to define the ezdxf. xref.ConflictPolicy, that gives
you the choice how to handle resource name conflicts.

ConflictPolicy.KEEP

Keeps the existing resource name of the target document and ignore the resource from the source document. The loaded
entities from the source document use the resources defined in the target document and may alter their visual appearance,
when the resources are different.

258 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

ConflictPolicy.XREF_PREFIX

This policy handles the resource import like CAD applications by always renaming the loaded resources to
<xref>$03<name>, where xref is the name of source document, the 0 part is a number to create a unique resource
name and <name> is the name of the resource itself.

Important: This policy ALWAYS renames the resource, even if the loaded resource doesn’t have a conflict in the target
document.

ConflictPolicy.NUM_PREFIX

This policy renames the loaded resources to $03<name> only if the resource <name> already exists. The 0 prefix is a
number to create a unique resource name and <name> is the name of the resource itself.

Important: This policy renames the resource ONLY when the loaded resource has a conflict in the target document.

Load Table Resources

Resources are definitions of layers, linetypes, text-, dimension-, mline- and mleader styles, materials and blocks.

The Loader class is the low level tool to build a loading operation from simple loading commands. Study the source
code of the xre f module, most of loading commands used above are build upon the Loader class. This example shows
how to import layer, linetype, text- and dimension style definitions:

import ezdxf
from ezdxf import xref

sdoc = ezdxf.new(setup=True)
tdoc ezdxf.new()

The default conflict policy is ConflictPolicy.KEEP
loader = xref.Loader (sdoc, tdoc)

Load all layers:
loader.load_layers([layer.dxf.name for layer in sdoc.layers])

Load specific linetypes:
loader.load_linetypes (["CENTER", "DASHED", "DASHDOT"])

Load specific text style:
loader.load_text_styles (["OpenSans", "LiberationMono"])

Load all DIMENSION styles, this command loads also the dependent text styles:
loader.load_dim_styles ([dimstyle.dxf.name for dimstyle in sdoc.dimstyles])

execute all loading commands:
loader.execute ()
tdoc.saveas ("target.dxf")

9.5. Tutorials 259

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/xref.py
https://github.com/mozman/ezdxf/blob/master/src/ezdxf/xref.py

ezdxf Documentation, Release 1.2.0

Note: Loading a layer does not load the entities which do reference this layer, a layer is not an entity container, it’s just
an DXEF attribute, see also Basic Concepts: Layers.

9.5.32 Tutorial for Image Export

o [ntroduction

o Common Basics

Frontend Configuration

Page Layout

Autodetect Page Size

Scaling Content

Limit Page Size
* SVG Export
e PDF Export
* PNG Export
e PLT/HPGL?2 Export
o DXF Export

e Recorder Backend

Introduction

This tutorial shows how to export DXF content of the modelspace or a paperspace as images by the drawing add-on.
The tutorial covers the new added backends in ezdxf version 1.1:

* ezdxf.addons.drawing.pdf.SVGBackend class for SVG export

e ezdxf.addons.drawing.pymupdf.PyMuPdfBackend class for PDF and PNG export

e ezdxf.addons.drawing.hpglZ2.PlotterBackend class for PLT/HPGL2 export

* ezdxf.addons.drawing.dxf.DXFBackend class for flattened DXF export

The tutorial does not cover the MatplotlibBackend and PyQtBackend, for information about these backends
see:

* Howtos for the Drawing Add-on

* FAQs at github: https://github.com/mozman/ezdxf/discussions/550

260 Chapter 9. Contents

https://github.com/mozman/ezdxf/discussions/550

ezdxf Documentation, Release 1.2.0

Common Basics

The rendering process is divided into multiple steps. The frontend resolves the DXF properties and breaks down complex
DXF entities into simple drawing primitives which are send to the backend that renders the output format.

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext, svg, layout

def example_doc () :

doc = ezdxf.new()

msp = doc.modelspace ()

x0, y0, x1, y1 =0, 0, 10, 10

start = (x0, yO0)

end = (x0 + 1, y0)

for color in range(l, 6):
msp.add_lwpolyline (

[start, (x0, vy1), (x1, y1), (x1, y0), end], dxfattribs={"color": color}

)
x0 +=
x1l —=
y0 +=
yl —=
start = end
end = (x0 + 1, yO0)

return doc

[= SN

def export (doc):
msp = doc.modelspace ()
1. create the render context
context = RenderContext (doc)
2. create the backend
backend = svg.SVGBackend ()
3. create the frontend
frontend = Frontend(context, backend)
4. draw the modelspace
frontend.draw_layout (msp)
5. create an A4 page layout, not required for all backends
page = layout.Page (210, 297, layout.Units.mm, margins=layout.Margins.all (20))
6. get the SVG rendering as string — this step is backend dependent
svg_string = backend.get_string (page)
with open ("output.pdf", "wt", encoding="utf8") as fp:
fp.write (svg_string)

if name == "__main_ ":
export (example_doc())

The exported SVG shows a spiral centered on an A4 page with a margin of 20mm, notice the background has a dark
color like the usual background of the modelspace:

9.5. Tutorials 261

ezdxf Documentation, Release 1.2.0

Frontend Configuration

The Configuration object configures the rendering process. This example changes the background color from dark
grey to white and renders all lines black.

Add the config module to imports:

from ezdxf.addons.drawing import Frontend, RenderContext, svg, layout, config

Create a new configuration and override the background and color policy between the 2nd and the 3rd step:

2. create the backend

backend = svg.SVGBackend ()

create a new configuration for a white background and and a black foreground.

—color

cfg = config.Configuration (
background_policy=config.BackgroundPolicy.WHITE,
color_policy=config.ColorPolicy.BLACK,

)

3. create the frontend

frontend = Frontend(context, backend, config=cfq)

The new exported SVG has a white background and all lines are black:

262 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

There are many configuration options:

LineweightPolicy - relative, absolute or relative fixed lineweight
LinePolicy - solid or accurate linetypes

HatchPolicy - normal, ignore, only outlines or always solid fill
ColorPolicy - color, black, white, monochrome, ...
BackgroundPolicy - default, black, white, off (transparent) and custom
TextPolicy - filling, outline, ignore, ...

ProxyGraphicPolicy -ignore, show, prefer

lineweight scaling factor

minimal lineweight

max_flattening_distance for curve approximation

and more ...

All configuration options are documented here: Configuration.

9.5. Tutorials

263

ezdxf Documentation, Release 1.2.0

Page Layout

The Page object defines the output page for some backends (SVG, PDF, PNG, PLT).
A page is defined by width and height in a given length unit. The supported length units are millimeters (mm), inch (in),
point (1 ptis 1/72 in) and pixels (1 px is 1/96 in).

It’s possible to autodetect the page size from the content or fit the content onto the page. In both cases the margin values
are used to create space between the content and the page borders. The content is centered in the remaining space without
margins.

Important: None of the backends crop the content automatically, the margin values are just calculation values!

Autodetect Page Size

The required page size is auto-detected by setting the width and/or height to 0. By default the scaling factor is 1, so 1
drawing unit is 1 page unit. The content is fit to page by default and the outcome is shown in the previous examples.

This example shows the output when the scale should be 1:1, 1 drawing unit is 1 page unit (mm):

auto-detect page size and 2mm margins on all sides
page = layout.Page (0, 0, layout.Units.mm, margins=layout.Margins.all(2))
scale content by 1, do not fit content to page
svg_string = backend.get_string(
page, settings=layout.Settings(scale=1, fit_page=False)
)

The page has a size of 14x14mm, a content size of 10x10mm and 2mm margins on all sides.

264 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Scaling Content

Scaling the content by factor 10 means, 10 page units represent 1 drawing unit, which is a scale of 10:1 and only uniform
scaling is supported.

def export_2 (doc):
backend = make_backend (doc)
auto-detect page size and 2mm margins on all sides
page layout.Page (0, 0, layout.Units.mm, margins=layout.Margins.all (2))
scale content by 10, do not fit content to page
svg_string = backend.get_string(

The page has a size of 104x104mm, a content size of 100x100mm and 2mm margins on all sides.

9.5. Tutorials 265

ezdxf Documentation, Release 1.2.0

Limit Page Size
The page arguments max_width and max_height can limit the page size in auto-detection mode, e.g. most plotter devices
can only print upto a width of 900mm.
See also:
e Page class
* Margins class

e Settings class

266 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

SVG Export

The steps to export a SVG by the SVGBackend are show in the first example, the configuration of the frontend and the
page setup are shown in the previous sections.

1.

A

Create the render context

Create the backend

Create and configure the frontend
Draw the content

Setup the page layout

Create the SVG output string

This is the same code as for the first example:

def

export (doc) :
msp = doc.modelspace ()
1. create the render context
context = RenderContext (doc)
2. create the backend
backend = svg.SVGBackend ()
3. create the frontend
frontend = Frontend (context, backend)
4. draw the modelspace
frontend.draw_layout (msp)
5. create an A4 page layout, not required for all backends
page = layout.Page (210, 297, layout.Units.mm, margins=layout.Margins.all (20))
6. get the SVG rendering as string — this step is backend dependent
svg_string = backend.get_string (page)
with open ("output.pdf", "wt", encoding="utf8") as fp:
fp.write (svg_string)

The SVG backend flips the coordinates along the y-axis and transforms the content into a compact integer coordinate
space and produces therefore a small file size but therefore the output coordinates are different to the DXF coordinates.

PDF Export

The PDF export requires the the PyMuPdf package to be installed.

The steps to export a PDF are very similar to SVG, except for the PyMuPdfBackend class and the backend returns
bytes and not a string:

1.

A

6.

Create the render context

Create the backend

Create and configure the frontend
Draw the content

Setup the page layout

Create the SVG output string

Import the pymupdf backend module:

from ezdxf.addons.drawing import Frontend, RenderContext, pymupdf, layout, config

9.5.

Tutorials 267

https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.2.0

The export function:

def export_dark_bg(doc) :

msp = doc.modelspace ()

1. create the render context

context = RenderContext (doc)

2. create the backend

backend = pymupdf.PyMuPdfBackend ()

3. create the frontend

frontend = Frontend(context, backend)

4. draw the modelspace

frontend.draw_layout (msp)

5. create an A4 page layout

page = layout.Page (210, 297, layout.Units.mm, margins=layout.Margins.all (20))

6. get the PDF rendering as bytes

pdf_bytes backend.get_pdf_bytes (page)

with open ("pdf_dark_bg.pdf", "wb") as fp:
fp.write (pdf_bytes)

The PDF has is dark background for the modelspace by default and color index 7 is white. Create a frontend configuration
and override the BackgroundPolicy to get a white background:

3. create and configure the frontend
cfg = config.Configuration (background_policy=config.BackgroundPolicy.WHITE)
frontend = Frontend (context, backend, config=cfqg)

Now the exported PDF has a white background and color index 7 is black:

268 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

PNG Export

The PNG export is done by the PyMuPdfBackend class and differs only in the method to get the PNG data bytes:

6. get the PNG rendering as bytes
png_bytes = backend.get_pixmap_bytes (page, fmt="png", dpi=96)
with open("png_white_bg.png", "wb") as fp:

fp.write (png_bytes)

The pymupdf backend supports multiple image formats:

png Portable Network Graphics
ppm Portable Pixmap (no alpha channel)
pbm Portable Bitmap (no alpha channel)

9.5. Tutorials 269

ezdxf Documentation, Release 1.2.0

PLT/HPGL2 Export

The P1otterBackend creates HPGL/2 plot files for output on raster plotters. The PlotterBackend is designed
to print on white paper, so the background color is always white and color index 7 is black by default.

Warning: The plot files are only tested by the plot file viewer ViewCompanion Standard but not on real hardware -
please use with care and give feedback.

The PLT/HPGL2 export is very similar to the SVG export:

from ezdxf.addons.drawing import Frontend, RenderContext, hpgl2, layout

def export (doc) :

msp = doc.modelspace ()

1. create the render context

context = RenderContext (doc)

2. create the backend

backend = hpgl2.PlotterBackend/()

3. create the frontend

frontend = Frontend(context, backend)

4. draw the modelspace

frontend.draw_layout (msp)

5. create an A4 page layout

page = layout.Page (210, 297, layout.Units.mm, margins=layout.Margins.all (20))

6. get the HPGL2 rendering as bytes

plt_bytes = backend.get_bytes (page)

with open ("output_01.plt", "wb") as fp:
fp.write (plt_bytes)

270 Chapter 9. Contents

http://www.softwarecompanions.com/

ezdxf Documentation, Release 1.2.0

‘4% Fle Edit View Tools Window Help -8 X
B-HFEQLYO BRSR&AM D, [renr QA QEIEGCELR @ & E D

Workspace - X

E--! Dieser PC
- System (C:)
[#]-=mm Daten (O4)
[+]-wmm Office (O:)
i Al (Z)

(B Explorer | B Project | 4% output_01.pht “r X

Press F1 for Help 202.14 -6 .

The HPGL/2 viewer does not show the margins around the content, but most construction drawings draw the page borders
around the content.

The PlotterBackend has some quality preset methods to get the HPGL/2 data:
* compatible ()
e low_quality/()
e normal_quality () (default)
e high_quality/()

The difference are mostly the floating point precision and the usage of Bézier curves, but the Bézier curves are approx-

9.5. Tutorials 271

ezdxf Documentation, Release 1.2.0

imated by plotter drivers (even by HP drivers), so there is no real quality improvement, but curves need less space than
approximated polylines so the file size is smaller.

Very old plotter may not support Bézier curves and floating point coordinates, for these plotters the compatible ()
method exports only polylines and integer coordinates.

Usage:

6. get the HPGL2 rendering as bytes
plt_bytes = backend.high_quality (page)

DXF Export

The DXFBackend exports the content as DXF primitives: POINT, LINE, LWPOLYLINE, SPLINE and HATCH. All
blocks are exploded, text is rendered as filled polygons represented by the HATCH entity and arcs are represented by
SPLINE entities (internal Bezier curve representation).

This backend was added to convert HPGL/2 files to DXEF files, because the hpgl2 add-on reuses the backends of the
drawing add-on for export. Maybe it is useful for other tasks too.

This backend works different than the previous. There is no page setup and everything is rendered into a given layout of
a DXF document:

from ezdxf.addons.drawing import Frontend, RenderContext, dxf

def export (doc):
export_doc = ezdxf.new ()
msp = doc.modelspace ()
1. create the render context
context = RenderContext (doc)
2. create the backend
backend = dxf.DXFBackend (export_doc.modelspace ())
3. create the frontend
frontend = Frontend(context, backend)
4. draw the modelspace
frontend.draw_layout (msp)
5. save or return DXF document
export_doc.saveas ("output_01.dxf")

Recorder Backend

The Recorder backend is an intermediate layer to record the drawing commands of the Frontend class. The
Player object can replay this records on any other backend class but also provides some additional features like bound-
ing box detection, content transformation and cropping.

The SVG/PDF/PLT backends use this intermediate layer internally to transform and place the content.

272 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

9.6 External References (XREF)

New in version 1.1.

Attached XREFs are links to the modelspace of a specified drawing file. Changes made to the referenced drawing are
automatically reflected in the current drawing when it’s opened or if the XREF is reloaded.

XREFs can be nested within other XREFs: that is, you can attach an XREF that contains another XREF. You can attach
as many copies of an XREF as you want, and each copy can have a different position, scale, and rotation.

You can also overlay an XREF on your drawing. Unlike an attached XREF, an overlaid XREF is not included when the
drawing is itself attached or overlaid as an XREF to another drawing.

9.6.1 DXF Files as Attached XREFs

Important: AutoCAD can only display DWG files as attached XREFs but ezdxf can only create DXF files. Conse-
quently, any DXF file attached as an XREF to a DXF document must be converted to DWG in order to be viewed in
AutoCAD. Fortunately, other CAD applications are more cooperative, BricsCAD has no problem displaying DXF files
as XREFs, although it is not possible to attach a DXF file as an XREF in the BricsCAD application itself.

The ezdxf . xref module provides an interface for working with XREFs.
e attach () - attach a DXF/DWG file as XREF
e detach () - detach a BLOCK definition as XREF
* embed () - embed an XREF as a BLOCK definition
e dxf_info () -scans a DXF file for basic settings and properties

For loading the content of DWG files is a loading function required, which loads the DWG file as Drawing document.
The oda fc add-on module provides such a function: readfile ()

See also:

e Tutorial for External References

9.6.2 XREF Structures

An XREF is a normal block definition located in the BLOCKS section with special flags set and a filename to the referenced
DXF/DWG file and without any content, the block content is the modelspace of the referenced file. An XREF can be
referenced (inserted) by one or multiple INSERT entities.

Find block definitions in the BLOCKS section:

for block_layout in doc.blocks:
block = block_layout.block # the BLOCK entity
if block.is_xref:
handle_xref (block_layout)
elif block.is_xref_overlay:
handle_xref_overlay (block_layout)

Find XREEF references in modelspace:

9.6. External References (XREF) 273

ezdxf Documentation, Release 1.2.0

for insert in msp.query ("INSERT") :
if insert.is_xref:
handle_xref_reference (insert)
... or get the XREF definition
block_layout = insert.block()
if block_layout is not None:
handle_xref_definition (block_layout)

Use the helper function define () to create your own XREF definition, the attach () creates this definition auto-
matically and raises an exception if the block already exists.

9.6.3 Supported Entities

The current implementation supports only copyable and transformable DXF entities, these are all basic entity types as
LINE, CIRCLE, ... and block references and their associated required table entries and objects from the OBJECTS
section.

Unsupported are all ACIS based entities, the ACAD_TABLE entity, preserved unknown entities wrapped in a DXF -
TagStorage class, proxy entities and objects. Support for these entities may be added in a later version of ezdxf.
Unsupported entities are ignored and do not raise exceptions.

Most document features stored in the HEADER and OBJECTS sections are not supported by this module like GROUPS,
LAYER_FILTER, GEODATA, SUN.

9.6.4 Importing Data and Resources

The ezdxf . xref module replaces the Tmporter add-on.

The basic functionality of the e zdx . xre f module is loading data from external files including their required resources,
which is an often requested feature by users for importing data from other DXF files into the current document.

The Importer add-on was very limited and removed many resources, where the e zdx £ . x re £ module tries to preserve
as much information as possible.

e Joad_modelspace () -loads the modelspace content from another DXF document
e Jload _paperspace () -loads a paperspace layout from another DXF document
e write_block () - writes entities into the modelspace of a new DXF document

e Loader - low level loading interface

9.6.5 High Level Functions

ezdxf.xref.attach (doc: Drawing, *, block_name: str, filename: str, insert: UVec = (0, 0, 0), scale: float = 1.0,
rotation: float = 0.0, overlay=False) — Insert

Attach the file filename to the host document as external reference (XREF) and creates a default block reference for
the XREF in the modelspace of the document. The function raises an XrefDefinitionError exception if the
block definition already exist, but an XREF can be inserted multiple times by adding additional block references:

msp.add_blockref (block_name, insert=another_location)

Important: If the XREF has different drawing units than the host document, the scale factor between these units
must be applied as a uniform scale factor to the block reference! Unfortunately the XREF drawing units can only

274 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

be detected by scanning the HEADER section of a document by the function dxf_info () and is therefore not
done automatically by this function. Advice: always use the same units for all drawings of a project!

Parameters
* doc — host DXF document
* block_name — name of the XREF definition block
* filename - file name of the XREF
* insert — location of the default block reference
* scale - uniform scaling factor
* rotation - rotation angle in degrees
* overlay - creates an XREF overlay if True and an XREF attachment otherwise

Returns
default block reference for the XREF

Return type
Insert

Raises
XrefDefinitionError — block with same name exist
New in version 1.1.

ezdxf.xref.define (doc: Drawing, block_name: str, filename: str, overlay=False) — None

Add an external reference (xref) definition to a document.
XREF attachment types:

« attached: the XREF that’s inserted into this drawing is also present in a document to which this document is
inserted as an XREF.

« overlay: the XREF that’s inserted into this document is not present in a document to which this document is
inserted as an XREF.
Parameters
* doc - host document
* block_name — name of the xref block
» filename — external reference filename
* overlay - creates an XREF overlay if True and an XREF attachment otherwise
Raises
XrefDefinitionError - block with same name exist
New in version 1.1.

ezdxf.xref.detach (block: BlockLayout, *, xref_filename: str | PathLike, overlay=False) — Drawing

Write the content of block into the modelspace of a new DXF document and convert block to an external reference
(XREF). The new DXF document has to be written by the caller: xref_doc.saveas (xref_filename).
This way it is possible to convert the DXF document to DWG by the oda ¢ add-on if necessary:

9.6. External References (XREF) 275

ezdxf Documentation, Release 1.2.0

xref_doc = xref.detach(my_block, "my_block.dwg")
odafc.export_dwg (xref_doc, "my_block.dwg")

It’s recommended to clean up the entity database of the host document afterwards:

doc.entitydb.purge ()

The function does not create any block references. These references should already exist and do not need to be
changed since references to blocks and XREFs are the same.

Parameters
* block - block definition to detach
* xref_filename —name of the external referenced file
* overlay - creates an XREF overlay if True and an XREF attachment otherwise
New in version 1.1.

ezdxf.xref.dxf_info (filename: str | PathLike) — DXFInfo
Scans the HEADER section of a DXF document and returns a DXF Info object, which contains information about
the DXF version, text encoding, drawing units and insertion base point.

Raises
IOError —not a DXF file or a generic 1O error

ezdxf.xref.embed (xref: BlockLayout, *, load_fn: Callable[[str], Drawing] | None = None, search_paths:
Iterable[Path | str] = tuple(), conflict_policy=ConflictPolicy. XREF _PREFIX) — None

Loads the modelspace of the XREF as content into a block layout.

The loader function loads the XREF as Drawing object, by default the function ezdxf. readfile () is used to
load DXF files. To load DWG files use the readfile () function from the ezdxf.addons. odafc add-on.
The ezdxf.recover.readfile () function is very robust for reading DXF files with errors.

If the XREEF path isn’t absolute the XREF is searched in the folder of the host DXF document and in the search_path

folders.

Parameters
* xref — BlockLayout of the XREF document
* load_£n - function to load the content of the XREF as Drawing object
* search_paths - list of folders to search for XREFS, default is the folder of the host doc-

ument or the current directory if no filepath is set

e conflict_policy - how to resolve name conflicts

Raises

* XrefDefinitionError — argument xref is not a XREF definition
* FileNotFoundError — XREF file not found

* DXFVersionError — cannot load a XREF with a newer DXF version than the host docu-
ment, try the oda £ ¢ add-on to downgrade the XREF document or upgrade the host document

New in version 1.1.

ezdxf.xref.load_modelspace (sdoc: Drawing, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None =
None, conflict_policy=ConflictPolicy. KEEP) — None

Loads the modelspace content of the source document into the modelspace of the target document. The filter
function filter_fn gets every source entity as input and returns True to load the entity or False otherwise.

276 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Parameters
* sdoc - source document
* tdoc - target document
» filter_£n - optional function to filter entities from the source modelspace
e conflict_policy — how to resolve name conflicts
New in version 1.1.

ezdxf.xref.load_paperspace (psp: Paperspace, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None
= None, conflict_policy=ConflictPolicy. KEEP) — None

Loads the paperspace layout psp into the target document. The filter function filter_fn gets every source entity as
input and returns True to load the entity or False otherwise.

Parameters
* psp — paperspace layout to load
* tdoc - target document
» filter_£n - optional function to filter entities from the source paperspace layout
e conflict_policy — how to resolve name conflicts
New in version 1.1.

ezdxf.xref.write_block (entities: Sequencel DXFEntity], *, origin: UVec = (0, 0, 0)) — Drawing
Write entities into the modelspace of a new DXF document.

This function is called “write_block” because the new DXF document can be used as an external referenced block.
This function is similar to the WBLOCK command in CAD applications.

Virtual entities are not supported, because each entity needs a real database- and owner handle.
Parameters
* entities — DXF entities to write

* origin - block origin, defines the point in the modelspace which will be inserted at the insert
location of the block reference

Raises
EntityError - virtual entities are not supported

New in version 1.1.

9.6.6 Conflict Policy

class ezdxf.xref.ConflictPolicy (value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

These conflict policies define how to handle resource name conflicts.
New in version 1.1.

KEEP

Keeps the existing resource name of the target document and ignore the resource from the source document.

9.6. External References (XREF) 277

ezdxf Documentation, Release 1.2.0

XREF_PREFIX

This policy handles the resource import like CAD applications by always renaming the loaded resources to
<xref>$08<name>, where xref is the name of source document, the 0 part is a number to create a unique
resource name and <name> is the name of the resource itself.

NUM_PREFIX

This policy renames the loaded resources to $08<name> only if the resource <name> already exists. The 0
prefix is a number to create a unique resource name and <name> is the name of the resource itself.

9.6.7 Low Level Loading Interface

The Loader class is the basic building block for loading entities and resources. The class manages a list of loading
commands which is executed at once by calling the Loader.execute () method. It is important to execute the
commands at once to get a consistent renaming of resources when using resource name prefixes otherwise the loaded
resources would get a new unique name at each loading process even when the resources are loaded from the same
document.

class ezdxf.xref.Loader (sdoc: Drawing, tdoc: Drawing, conflict_policy=ConflictPolicy. KEEP)

Load entities and resources from the source DXF document sdoc into the target DXF document.
Parameters
* sdoc - source DXF document
* tdoc — target DXF document
e conflict_policy - ConflictPolicy

load_modelspace (farget_layout: BaseLayout | None = None, filter_fn: Callable[[DXFEntity], bool] | None
= None) — None

Loads the content of the modelspace of the source document into a layout of the target document, the mod-
elspace of the target document is the default target layout. The filter function filfer_fn is used to skip source
entities, the function should return False for entities to ignore and True otherwise.

Parameters

* target_layout - target layout can be any layout: modelspace, paperspace layout or
block layout.

e filter_£n - function to filter source entities

load_paperspace_layout (psp: Paperspace, filter_fn: Callable[[DXFEntity], bool] | None = None) —
None

Loads a paperspace layout as a new paperspace layout into the target document. If a paperspace layout with
same name already exists the layout will be renamed to “<layout name> (2)” or “<layout name> (3)” and so
on. The filter function filter_fn is used to skip source entities, the function should return False for entities
to ignore and True otherwise.

The content of the modelspace which may be displayed through a VIEWPORT entity will not be loaded!
Parameters
* psp - the source paperspace layout
e filter_f£fn — function to filter source entities

load_paperspace_layout_into (psp: Paperspace, target_layout: BaseLayout, filter_fn:
Callable[[DXFEntity], bool] | None = None) — None

278 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Loads the content of a paperspace layout into an existing layout of the target document. The filter function
filter_fn is used to skip source entities, the function should return False for entities to ignore and True
otherwise.

The content of the modelspace which may be displayed through a VIEWPORT entity will not be loaded!
Parameters
* psp — the source paperspace layout

* target_layout - target layout can be any layout: modelspace, paperspace layout or
block layout.

e filter_£n - function to filter source entities

load_block_1layout (block_layout: BlockLayout) — None

Loads a block layout (block definition) as a new block layout into the target document. If a block layout with
the same name exists the conflict policy will be applied. This method cannot load modelspace or paperspace
layouts.

Parameters
block_layout - the source block layout
load_block_layout_into (block_layout: BlockLayout, target_layout: BaseLayout) — None
Loads the content of a block layout (block definition) into an existing layout of the target document. This
method cannot load the content of modelspace or paperspace layouts.
Parameters

¢ block_layout — the source block layout

* target_layout - target layout can be any layout: modelspace, paperspace layout or
block layout.

load_layers (names: Sequence[str]) — None
Loads the layers defined by the argument names into the target document. In the case of a name conflict the
conflict policy will be applied.

load_linetypes (names: Sequence[str]) — None
Loads the linetypes defined by the argument names into the target document. In the case of a name conflict
the conflict policy will be applied.

load_text_styles (names: Sequence[str]) — None
Loads the TEXT styles defined by the argument names into the target document. In the case of a name conflict
the conflict policy will be applied.

load_dim_styles (names: Sequence[str]) — None
Loads the DIMENSION styles defined by the argument names into the target document. In the case of a
name conflict the conflict policy will be applied.

load_mline_styles (names: Sequence[str]) — None
Loads the MLINE styles defined by the argument names into the target document. In the case of a name
conflict the conflict policy will be applied.

load_mleader_styles (names: Sequence[str]) — None

Loads the MULTILEADER styles defined by the argument names into the target document. In the case of a
name conflict the conflict policy will be applied.

9.6.

External References (XREF) 279

ezdxf Documentation, Release 1.2.0

load_materials (names: Sequence[str]) — None

Loads the MATERIALS defined by the argument names into the target document. In the case of a name
conflict the conflict policy will be applied.

execute (xref_prefix: str = ") — None

Execute all loading commands. The xref_prefix string is used as XREF name when the conflict policy
ConflictPolicy.XREF_PREFIX is applied.

9.7 Howto

The Howto section show how to accomplish specific tasks with ezdxf in a straight forward way without teaching basics or
internals, if you are looking for more information about the ezdxf internals look at the Reference section or if you want
to learn how to use ezdxf go to the Tutorials section or to the Basic Concepts section.

9.7.1 General Document

General preconditions:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_file.dxf")
except IOError:
print (f"Not a DXF file or a generic I/O error.")
sys.exit (1)
except ezdxf.DXFStructureError:
print (f"Invalid or corrupted DXF file.")
sys.exit (2)
msp = doc.modelspace ()

This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or
major flaws look at the ezdx . recover module.

Load DXF Files with Structure Errors

If you know the files you will process have most likely minor or major flaws, use the ezdxf . recover module:

import sys
from ezdxf import recover

try: # low level structure repair:
doc, auditor = recover.readfile (name)

except IOError:
print (f"Not a DXF file or a generic I/O error.")
sys.exit (1)

except ezdxf.DXFStructureError:
print (f"Invalid or corrupted DXF file: {name}.")
sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
(continues on next page)

280 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)
if auditor.has_errors:
print (f"Found unrecoverable errors in DXF file: name }.")
auditor.print_error_report ()

For more loading scenarios follow the link: ezdxf. recover

Set/Get Header Variables

ezdxf has an interface to get and set HEADER variables:

doc.header ["VarName"] = value
value = doc.header["VarName"]
See also:

HeaderSect ion and online documentation from Autodesk for available header variables.

Set DXF Drawing Units

The header variable SINSUNITS defines the drawing units for the modelspace and therefore for the DXF document if no
further settings are applied. The most common units are 6 for meters and 1 for inches.

Use this HEADER variables to setup the default units for CAD applications opening the DXF file. This setting is not
relevant for ezdxf API calls, which are unitless for length values and coordinates and decimal degrees for angles (in most
cases).

Sets drawing units:

doc.header["SINSUNITS"] = 6

For more information see section DXF' Units.

Create More Readable DXF Files (DXF Pretty Printer)

DXF files are plain text files, you can open this files with every text editor which handles bigger files. But it is not really
easy to get quick the information you want.

Create a more readable HTML file (DXF Pretty Printer):

Call as executable script from the command line:
ezdxf pp FILE [FILE ...]

Call as module on Windows:
py —m ezdxf pp FILE [FILE ...]

Call as module on Linux/Mac
python3 -m ezdxf pp FILE [FILE ...]

This creates a HTML file with a nicer layout than a plain text file, and handles are links between DXF entities, this
simplifies the navigation between the DXF entities.

9.7. Howto 281

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 1.2.0

usage: ezdxf pp [-h] [-o] [-r] [-x] [-1] FILE [FILE ...]

positional arguments:
FILE DXF files pretty print

optional arguments:

-h, --help show this help message and exit

-0, ——open open generated HTML file with the default web browser

-r, —-raw raw mode - just print tags, no DXF structure interpretation

-x, ——nocompile don't compile points coordinates into single tags (only in
raw mode)

-1, —--legacy legacy mode - reorders DXF point coordinates

Important: This does not render the graphical content of the DXF file to a HTML canvas element.

Calculate Extents for the Modelspace

Since ezdxf v0.16 exist a ezdx . bbox module to calculate bounding boxes for DXF entities. This module makes the
extents calculation very easy, but read the documentation for the bbox module to understand its limitations.

import ezdxf
from ezdxf import bbox

doc = ezdxf.readfile("your.dxf")
msp doc.modelspace ()

extents = bbox.extents (msp)

The returned extents is a ezdxf.math.BoundingBox object.

Set Initial View/Zoom for the Modelspace

To show an arbitrary location of the modelspace centered in the CAD application window, setthe ' *Active' VPORT to
this location. The DXF attribute dx f . center defines the location in the modelspace, and the dxf . height specifies
the area of the modelspace to view. Shortcut function:

doc.set_modelspace_vport (height=10, center=(10, 10))

See also:
The ezdxf. zoom module is another way to set the initial modelspace view.

Setting the initial view to the extents of all entities in the modelspace:

import ezdxf
from ezdxf import zoom

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace ()
zoom.extents (msp)

Setting the initial view to the extents of just some entities:

282 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

lines = msp.query ("LINES")
zoom.objects (lines)

The zoom module also works for paperspace layouts.

Important: The zoom module uses the bbox module to calculate the bounding boxes for DXF entities. Read the
documentation for the bbox module to understand its limitations and the bounding box calculation for large documents
can take a while!

Hide the UCS Icon

The visibility of the UCS icon is controlled by the DXF ucs_ i con attribute of the VPort entity:
¢ bit O: O=hide, 1=show
* bit 1: O=display in lower left corner, 1=display at origin

The state of the UCS icon can be set in conjunction with the initial VPort of the model space, this code turns off the
UCS icon:

doc.set_modelspace_vport (10, center=(10, 10), dxfattribs={"ucs_icon": 0})

Alternative: turn off UCS icons for all VPort entries in the active viewport configuration:

for vport in doc.viewports.get_config("*Active") :
vport.dxf.ucs_icon = 0

Show Lineweights in DXF Viewers

By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable SLWDISPLAY
to 1 the DXF viewer should display lineweights, if supported by the viewer.

doc.header["SLWDISPLAY"] = 1

Add ezdxf Resources to Existing DXF Document

Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:

import ezdxf
from ezdxf.tools.standards import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing (doc, topics="all")

9.7. Howto 283

ezdxf Documentation, Release 1.2.0

Set Logging Level of ezdxf

Set the logging level of the ezdxf package to a higher level to minimize logging messages from ezdxf. At level ERROR
only severe errors will be logged and WARNING, INFO and DEBUG messages will be suppressed:

import logging

logging.getLogger ("ezdxf") .setLevel (logging.ERROR)

9.7.2 DXF Viewer

A360 Viewer Problems

AutoDesk web service A360 seems to be more picky than the AutoCAD desktop applications, may be it helps to use the
latest DXF version supported by ezdxf, which is DXF R2018 (AC1032) in the year of writing this lines (2018).

DXF Entities Are Not Displayed in the Viewer

ezdxf does not automatically locate the main viewport of the modelspace at the entities, you have to perform the “Zoom
to Extends” command, here in TrueView 2020:

And here in the Autodesk Online Viewer:

284 Chapter 9. Contents

https://a360.autodesk.com/viewer/

ezdxf Documentation, Release 1.2.0

a By 4+ O Q 7 74

Start Anpassen Zoom Messen Markierung

Add this line to your code to relocate the main viewport, adjust the center (in modelspace coordinates) and the height (in
drawing units) arguments to your needs:

doc.set_modelspace_vport (height=10, center=(0, 0))

Show IMAGES/XREFS on Loading in AutoCAD

If you are adding XREFS and IMAGES with relative paths to existing drawings and they do not show up in AutoCAD
immediately, change the HEADER variable $SPROJECTNAME="" to (not really) solve this problem. The ezdxf templates
for DXF R2004 and later have $SPROJECTNAME="" as default value.

Thanks to David Booth:

If the filename in the IMAGEDEEF contains the full path (absolute in AutoCAD) then it shows on loading,
otherwise it won’t display (reports as unreadable) until you manually reload using XREF manager.

A workaround (to show IMAGES on loading) appears to be to save the full file path in the DXF or save it as
a DWG.

Thanks to Zac Luzader:

Has anyone else noticed that very short simple image file names seem to avoid this problem? Once I ensured
that the image file’s name was short and had no special characters (letters, numbers and underscores only)
the problem seemed to go away. I didn’t rigorously analyze the behavior as its very time consuming.

Also: You can safely put the image in a subdirectory and use a relative path. The name of the subdirectory
does not seem to trigger this problem, provided that the image file name itself is very short and simple.

Also pro tip: The XRef manager exists in DWG TrueView 2023, but access to it is only possible if you have
a completely broken reference. Create a DXF with a reference to a non-existent file, then the error dialog
will let you open the XRef Manager. Once it is open you can pin it and it will be open next time, even if you
have no broken references.

See also:

Discussion on github: Images don’t show in AutoCAD until ...

9.7. Howto 285

https://github.com/worlds6440
https://github.com/luzader
https://github.com/mozman/ezdxf/discussions/845

ezdxf Documentation, Release 1.2.0

Set Initial View/Zoom for the Modelspace

See section “General Document”: Set Initial View/Zoom for the Modelspace

Show Lineweights in DXF Viewers

By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable SLWDISPLAY
to 1 the DXF viewer should display lineweights, if supported by the viewer.

doc.header ["SLWDISPLAY"] = 1

9.7.3 DXF Content

General preconditions:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_ file.dxf")

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file.')
sys.exit (2)

msp = doc.modelspace ()

Get/Set Entity Color

The entity color is stored as ACI (AutoCAD Color Index):

aci = entity.dxf.color

Default value is 256 which means BYLAYER:

layer = doc.layers.get (entity.dxf.layer)
aci = layer.get_color ()

The special get_color () method is required, because the color attribute Layer .dxf.color is misused as layer
on/off flag, a negative color value means the layer is off.

ACI value 0 means BYBLOCK, which means the color from the block reference (INSERT entity).

Set color as ACI value as int in range [0, 256]:

entity.dxf.color = 1

The ACI value 7 has a special meaning, it is white on dark backgrounds and white on light backgrounds.

286 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Get/Set Entity RGB Color

RGB true color values are supported since DXF R13 (AC1012), the 24-bit RGB value is stored as integer in the DXF
attribute t rue_color:

24 bit binary value: ObRRRRRRRRGGGGGGGGBBBBBBBB or hex value: 0xRRGGBB
set true color value to red
entity.dxf.true_color = O0xFF0000

Use the helper functions from the ezdxf . colors module for RGB integer value handling:

from ezdxf import colors

entity.dxf.true_color = colors.rgb2int ((0xFF, 0, 0))
r, g, b = colors.int2rgb(entity.dxf.true_color)

The RGB values of the AutoCAD default colors are not officially documented, but an accurate translation table is included
in ezdxf:

Warning: ACI value 256 (BYLAYER) raises an IndexError!
rgb24 = colors.DXF_DEFAULT_COLORS[aci]

print (f"RGB Hex Value: #{rgb24:06X}")

r, g, b = colors.int2rgb (rgb24)

print (f"RGB Channel Values: R={r:02X} G={g:02X} b={b:02X}")

If color and true_color values are set, BricsCAD and AutoCAD use the t rue_color value as display color for
the entity.

Get/Set True Color as RGB-Tuple

Get/Set the true color value as (r, g, b)-tuple by the rgb property of the DXFGraphi c entity:

set true color value to red
entity.rgb = (0OxFF, 0, 0)

get true color values
r, g, b = entity.rgb

Get/Set Block Reference Attributes

Block references (Insert) can have attached attributes (At ¢t rib), these are simple text annotations with an associated
tag appended to the block reference.

Iterate over all appended attributes:

get all INSERT entities with entity.dxf.name == "Partl2"
blockrefs = msp.query ('INSERT [name=="Partl12"]")
if len(blockrefs):
entity = blockrefs[0] # process first entity found
for attrib in entity.attribs:
if attrib.dxf.tag == "diameter": # identify attribute by tag
attrib.dxf.text = "17mm" # change attribute content

Get attribute by tag:

9.7. Howto 287

ezdxf Documentation, Release 1.2.0

diameter = entity.get_attrib('diameter')
if diameter is not None:
diameter.dxf.text = "17mm"

Adding XDATA to Entities

Adding XDATA as list of tuples (group code, value) by set_xdata (), overwrites data if already present:

doc.appids.new ('YOUR_APPID") # IMPORTANT: create an APP ID entry

circle = msp.add_circle((10, 10), 100)
circle.set_xdata (
'YOUR_APPID',
[
1000, 'your_web_link.org'),

(

(1002, '{"),

(1000, 'some text'),
(1002, '{"),

(1071, 1),

(1002, '"r"),

(1002, '}")

1)

For group code meaning see DXF reference section DXF Group Codes in Numerical Order Reference, valid group codes
are in the range 1000 - 1071.

Method get_xdata () returns the extended data for an entity as Tags object.
See also:

Tutorial: Storing Custom Data in DXF Files

Get Overridden DIMSTYLE Values from DIMENSION

In general the Dimension styling and config attributes are stored in the Dimstyle entity, but every attribute can be
overridden for each DIMENSION entity individually, get overwritten values by the DimstyleOverride object as
shown in the following example:

for dimension in msp.query ('DIMENSION') :
dimstyle_override = dimension.override () # requires v0.12
dimtol = dimstyle_override['dimtol"']
if dimtol:
print (f'{str (dimension) has tolerance values:')
dimtp = dimstyle_override['dimtp']
dimtm = dimstyle_override['dimtm']
print (f'Upper tolerance: {dimtp}')
print (f'Lower tolerance: {dimtm}')

The DimstyleOverride object returns the value of the underlying DIMSTYLE objects if the value in DIMENSION
was not overwritten, or None if the value was neither defined in DIMSTYLE nor in DIMENSION.

288 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3F0380A5-1C15-464D-BC66-2C5F094BCFB9

ezdxf Documentation, Release 1.2.0

Override DIMSTYLE Values for DIMENSION

Same as above, the DimstyleOverride object supports also overriding DIMSTYLE values. But just overriding this
values have no effect on the graphical representation of the DIMENSION entity, because CAD applications just show
the associated anonymous block which contains the graphical representation on the DIMENSION entity as simple DXF
entities. Call the render method of the DimstyleOverride object to recreate this graphical representation by
ezdxf, but ezdxf does not support all DIMENSION types and DIMVARS yet, and results will differ from AutoCAD or
BricsCAD renderings.

dimstyle_override = dimension.override ()
dimstyle_override.set_tolerance(0.1)

delete associated geometry block
del doc.blocks[dimension.dxf.geometry]

recreate geometry block
dimstyle_override.render ()

How to Change the HATCH Pattern Origin Point

This code sets the origin of the first pattern line to the given origin and the origins of all remaining pattern lines relative
to the first pattern line origin.

from ezdxf.entities import Hatch, Pattern
from ezdxf.math import Vec2

def shift_pattern_origin (hatch: Hatch, offset: Vec2):
if isinstance (hatch.pattern, Pattern):
for pattern_line in hatch.pattern.lines:
pattern_line.base_point += offset

def reset_pattern_origin_of_ first_pattern_line (hatch: Hatch, origin: Vec2):
if isinstance (hatch.pattern, Pattern) and len (hatch.pattern.lines):
first_pattern_line = hatch.pattern.lines[0]
offset = origin - first_pattern_line.base_point
shift_pattern_origin (hatch, offset)

See also:
¢ Discussion #769
How to Get the Length of a Spline or Polyline

There exist no analytical function to calculate the length of a B-spline, you have to approximate the curve and calculate
the length of the polyline. The construction tool ezdxf.math.ConstructionPolyline is may be useful for that.

import ezdxf
from ezdxf.math import ConstructionPolyline

doc = ezdxf.new()
msp = doc.modelspace ()
fit_points = [(O, O, O0), (750, 500, O), (1750, 500, 0), (2250, 1250, 0)]

spline = msp.add_spline (fit_points)
Adjust the max. sagitta distance to your needs or run the calculation in a loop
(continues on next page)

9.7. Howto 289

https://github.com/mozman/ezdxf/discussions/769
https://en.wikipedia.org/wiki/B-spline

ezdxf Documentation, Release 1.2.0

(continued from previous page)

reducing the distance until the difference to the previous run is smaller
than your expected precision:

polyline = ConstructionPolyline(spline.flattening(distance=0.1))

print (f"approximated length = {polyline.length:.2f}")

How to Resolve DXF Properties
Graphical properties of DXF entities (color, lineweight, ...) are sometimes hard to resolve because of the complex pos-
sibilities to inherit properties from layers or blocks, or overriding them by c1b files.

The drawing add-on provides the RenderContext class that can be used to resolve properties of entities in the
context of their use:

import ezdxf
from ezdxf.addons.drawing.properties import RenderContext

doc = ezdxf.new()
doc.layers.add ("LINE", color=ezdxf.colors.RED)

msp = doc.modelspace ()

line = msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "LINE"})
ctx = RenderContext (doc)

ctx.set_current_layout (msp)

print (f"resolved RGB value: {ctx.resolve_color(line) }")

Output:

resolved RGB value: #1ff0000

This works in most simple cases, resolving properties of objects in viewports or nested blocks requires additional infor-
mation that is beyond the scope of a simple guide.

How to Find XREF Definitions

XREFs are normal block definitions and can be found in the BLOCKS section:

for block_layout in doc.blocks:
block = block_ layout.block # the BLOCK entity
if block.is_xref:
handle_xref (block_layout)
elif block.is_xref_ overlay:
handle_xref_overlay (block_layout)

See also:
¢ documentation of the ezdx . xref module

* ezdxf.layouts.BlockLayout

290 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

How to Find XREF References

An XREF reference is a block reference (INSERT entity) to the block definition of the XREF:

for insert in msp.query ("INSERT") :
if insert.is_xref:
handle_xref_reference (insert)
... or get the XREF definition
block_layout = insert.block ()
if block_layout is not None:
block = block_layout.block
if block.is_xref:
handle_xref (block_layout)
elif block.is_xref_ overlay:
handle_xref_overlay (block_layout)

Like any normal block, an XREF can be inserted multiple times.
See also:
* documentation of the ezdxf . xref module

* ezdxf.layouts.BlockLayout

9.7.4 Fonts

Rendering SHX Fonts

The SHX font format is not documented nor supported by many libraries/packages like Matplotlib and Qt, therefore only
SHX fonts which have corresponding TTF-fonts can be rendered by these backends. The mapping from/to SHX/TTF
fonts is hard coded in the source code file: fonts.py

Since ezdxf vl1.1 is the rendering of SHX fonts supported if the path to these fonts is added to the support_dirs in
the Config Files.

Rebuild Font Manager Cache

If you wanna use new installed fonts which are not included in the current cache file of ezdxf you have to rebuild the cache
file:

import ezdxf
from ezdxf.fonts import fonts

fonts.build_system_font_cache ()

or call the ezdxf launcher to do that:

ezdxf ——fonts

9.7. Howto 291

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/fonts/fonts.py

ezdxf Documentation, Release 1.2.0

9.7.5 Drawing Add-on

This section consolidates the FAQ about the drawing add-on from the github forum.

All Backends

How to Set Background and Foreground Colors

Override the default background and foreground colors. The foreground color is the AutoCAD Color Index (ACI) 7, which
is white/black depending on the background color. If the foreground color is not specified, the foreground color is white
for dark backgrounds and black for light backgrounds. The required color format is a hex string “4RRGGBBAA”.

from ezdxf.addons.drawing.properties import LayoutProperties
—X-X-X Snip -X-X-X-—

fig: plt.Figure = plt.figure()
ax: plt.Axes = fig.add_axes((0, 0, 1, 1))
ctx = RenderContext (doc)

get the modelspace properties
msp_properties = LayoutProperties.from_layout (msp)

set light gray background color and black foreground color
msp_properties.set_colors ("#eaecaea")
out = MatplotlibBackend (ax)

override the layout properties and render the modelspace
Frontend (ctx, out) .draw_layout (

msp,

finalize=True,

layout_properties=msp_properties,
)

fig.savefig ("image.png")

A light background “#eaeaea” has a black foreground color by default:

292 Chapter 9. Contents

https://github.com/mozman/ezdxf/discussions/550

ezdxf Documentation, Release 1.2.0

A dark background “#0a0a0a” has a white foreground color by default:

—-X-X-X sSnip —-x—-x—-x—
msp_properties.set_colors ("#0a0ala")

—Xx—-x—-X Snip —-x—-X—X-—

9.7. Howto 293

ezdxf Documentation, Release 1.2.0

How to Set a Transparent Background Color

The override color include an alpha transparency “4RRGGBBAA” value. An alpha value of “00” is opaque and “ff” is
fully transparent. A transparent background color still defines the foreground color!

Hint: The savefig () function of the matplotlib backend requires the fransparent argument to be set to True to
support transparency.

A light and fully transparent background “#eaeaeaff” has a black foreground color by default:

—X—-x—-X Snip —-x—-X—-X-—
msp_properties.set_colors ("#eacacaff")
—Xx—-X—-x sSnip —-x—-x-X

fig.savefig("image.png", transparent=True)

294 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

A dark and fully transparent background “#0a0a0aft” has a white foreground color by default:

—-x—x-X Snip —-X—-X—X—
msp_properties.set_colors ("#0al0alaff")
—Xx—-X—-Xx Snip —-x-x-X-—

fig.savefig("image.png", transparent=True)

9.7. Howto 295

ezdxf Documentation, Release 1.2.0

How to Exclude DXF Entities from Rendering

« If all unwanted entities are on the same layer switch off the layer.
* If the document is not saved later, you can delete the entities or set them invisible.
« Filter the unwanted entities by a filter function.

The argument filter_func of the Frontend.draw_layout () method expects a function which takes a graphical
DXEF entity as input and returns True if the entity should be rendered or False to exclude the entity from rendering.

This filter function excludes all DXF entities with an ACI color value of 2:

from ezdxf.entities import DXFGraphic

def my_filter(e: DXFGraphic) -> bool:
return e.dxf.color != 2

—xX—-X-X Snip —-X—-X—-X—

Frontend(ctx, out) .draw_layout (msp, finalize=True, filter_func=my_filter)

Important: Not all attributes have a default value if the attribute does not exist. If you are not sure about this, use the
get () method:

296 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

def my_filter(e: DXFGraphic) -> bool:
return e.dxf.get ("color", 7) != 2

How to Override Properties of DXF Entities

Create a custom Frontend class and override the the override_properties () method:

class MyFrontend (Frontend) :
def override_properties(self, entity: DXFGraphic, properties: Properties) —-> None:
remove alpha channel from all entities, "#RRGGBBAA"
properties.color = properties.color[:7]

—X-x-X Snip -X-X-X-—

MyFrontend (ctx, out) .draw_layout (msp, finalize=True)

See also:

* ezdxf.addons.drawing.properties.Properties

Matplotlib Backend

See also:
* Matplotlib package: https://matplotlib.org/stable/api/matplotlib_configuration_api.html
e Figure API: https://matplotlib.org/stable/api/figure_api.html
* Axes API: https://matplotlib.org/stable/api/axis_api.html

How to Get the Pixel Coordinates of DXF Entities

See also:
* Source: https://github.com/mozman/ezdxf/discussions/219

Transformation from modelspace coordinates to image coordinates:

import matplotlib.pyplot as plt
from PIL import Image, ImageDraw

import ezdxf

from ezdxf.math import Matrix44

from ezdxf.addons.drawing import RenderContext, Frontend

from ezdxf.addons.drawing.matplotlib import MatplotlibBackend

def get_wcs_to_image_transform(
ax: plt.Axes, image_size: tuple[int, int]
) —> Matrix44:
""'"Returns the transformation matrix from modelspace coordinates to image

coordinates.
mrrn

x1, x2 = ax.get_xlim()
(continues on next page)

9.7. Howto 297

https://matplotlib.org/stable/api/matplotlib_configuration_api.html
https://matplotlib.org/stable/api/figure_api.html
https://matplotlib.org/stable/api/axis_api.html
https://github.com/mozman/ezdxf/discussions/219

ezdxf Documentation, Release 1.2.0

(continued from previous page)
vl, y2 = ax.get_ylim()
data_width, data_height = x2 - x1, y2 - vyl
image_width, image_height = image_size
return (
Matrix44.translate (-x1, -y1, 0)
@ Matrix44.scale (
image_width / data_width, -image_height / data_height, 1.0
)
+1 to counteract the effect of the pixels being flipped in y
@ Matrix44.translate (0, image_height + 1, 0)

create the DXF document

doc = ezdxf.new()

msp = doc.modelspace ()

msp.add_lwpolyline([(O, O), (1, 0), (1, 1), (0, 1)1, close=True)
msp.add_line ((0, 0), (1, 1))

export the pixel image

fig: plt.Figure = plt.figure()

ax: plt.Axes = fig.add_axes ([0, O, 1, 11)

ctx = RenderContext (doc)

out = MatplotlibBackend (ax)

Frontend(ctx, out) .draw_layout (msp, finalize=True)
fig.savefig("cad.png")

plt.close (fiqg)

reload the pixel image by Pillow (PIL)
img = Image.open ("cad.png")
draw = ImageDraw.Draw (img)

add some annotations to the pixel image by using modelspace coordinates
m = get_wcs_to_image_transform(ax, img.size)
a, b, ¢ = (
(v.x, Vv.y) # draw.line () expects tuple[float, float] as coordinates
transform modelspace coordinates to image coordinates
for v in m.transform vertices([(0.25, 0.75), (0.75, 0.25), (1, 1)1)
)
draw.line([a, b, c, al], fill=(255, 0, 0))

show the image by the default image viewer
img.show ()

How to Get Modelspace Coordinates from Pixel Coordinates

This is the reverse operation of the previous how-to: How to Get the Pixel Coordinates of DXF Entities
See also:
* Full example script: wcs_to_image_coordinates.py

* Source: https://github.com/mozman/ezdxf/discussions/269

def get_image_to_wcs_transform(
ax: plt.Axes, image_size: tuple[int, int]
) —> Matrix44:

(continues on next page)

298 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/wcs_to_image_coodinates.py
https://github.com/mozman/ezdxf/discussions/269

ezdxf Documentation, Release 1.2.0

(continued from previous page)

m = get_wcs_to_image_transform(ax, image_size)
m.inverse ()
return m

—X-X-X sSnip —-x—-x—X—

img2wcs = get_image_to_wcs_transform(ax, img.size)

print (£"0.25, 0.75 == {img2wcs.transform(a).round(2) }")
print (£"0.75, 0.25 == {img2wcs.transform(b) .round(2) }")
print (£"1.00, 1.00 == {img2wcs.transform(c) .round(2) /")

How to Export a Specific Area of the Modelspace

This code exports the specified modelspace area from (5, 3) to (7, 8) as a 2x5 inch PNG image to maintain the aspect
ratio of the source area.

Use case: render only a specific area of the modelspace.
See also:
¢ Full example script: export_specific_area.py

* Source: https://github.com/mozman/ezdxf/discussions/451

—xX—-X-X Snip —-X—-X—-X—

export the pixel image

fig: plt.Figure = plt.figure()

ax: plt.Axes = fig.add_axes ([0, O, 1, 11)

ctx = RenderContext (doc)

out = MatplotlibBackend (ax)

Frontend(ctx, out) .draw_layout (msp, finalize=True)

setting the export area:
xmin, xmax = 5, 7

ymin, ymax = 3, 8
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)

set the output size to get the expected aspect ratio:
fig.set_size_inches (xmax - xmin, ymax - ymin)
fig.savefig ("x5y3_to_x7y8.png")

plt.close (fiqg)

How to Render Without Margins

To remove the empty space at the image borders set the margins of the Axes object to zero:

ax.margins (0)
fig.savefig("image_without_margins.png")
plt.close (fiqg)

See also:

* Matplotlib docs about margins

9.7. Howto 299

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/export_specific_area.py
https://github.com/mozman/ezdxf/discussions/451
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.margins.html

ezdxf Documentation, Release 1.2.0

How to Set the Pixel Count per Drawing Unit

This code exports the modelspace with an extent of 5 x 3 drawing units with 100 pixels per drawing unit as a 500 x 300

pixel image.

Use case: render the content with a fixed number of pixels for a drawing unit, e.g. a drawing unit of 1 inch should be

rendered by 100 pixels.
See also:
* Full example script: export_image_pixel_size.py

 Source: https://github.com/mozman/ezdxf/discussions/357

—xX—-X-X Snip —-X—-X—-X—

def set_pixel density(fig: plt.Figure, ax: plt.Axes, ppu: int):
"""Argument ‘ppu’ 1s pixels per drawing unit."""
xmin, xmax = ax.get_xlim()
width = xmax - xmin
ymin, ymax = ax.get_ylim()
height = ymax - ymin
dpi = fig.dpi
width_inch = width * ppu / dpi
height_inch = height * ppu / dpi
fig.set_size_inches (width_inch, height_inch)

—X-Xx-X Snip —-X-X-X-—

export image with 100 pixels per drawing unit = 500x300 pixels
set_pixel_density(fig, ax, 100)

fig.savefig("box_500x300.png")

plt.close (fiqg)

How to Export a Specific Image Size in Pixels

This code exports the modelspace with an extent of 5 x 3 drawing units as a 1000 x 600 pixel Image.
Use case: render the content with a fixed image size in pixels.
See also:

* Full example script: export_image_pixel_size.py

* Source: https://github.com/mozman/ezdxf/discussions/357

—X—-X—X Snip —X—-X—X—

def set_pixel_size(fig: plt.Figure, size: tuple[int, int]):
X, y = size
fig.set_size_inches(x / fig.dpi, y / fig.dpi)

—X—-X—-X Snip —-X-X—-X-—

export image with a size of 1000x600 pixels
set_pixel_size(fig, (1000, 600))
fig.savefig("box_1000x600.png")

plt.close (fiqg)

300 Chapter 9

. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/export_image_pixel_size.py
https://github.com/mozman/ezdxf/discussions/357
https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/export_image_pixel_size.py
https://github.com/mozman/ezdxf/discussions/357

ezdxf Documentation, Release 1.2.0

How to Set the Page Size in Inches

The page- or image size in inches is set by the set_size_inches () method of the Figure class. The content
within the Axe s limits will be scaled to fill the page.

Use case: render the whole content to a PDF document with a specific paper size without worrying about scale.

fig.set_size_inches (8, 11)

How to Render at a Specific Scale

This code exports the modelspace at a specific scale and paper size.
Use case: render the content to a PDF document with a specific paper size and scale, but not all content may be rendered.
See also:

* Full example script: render_to_scale.py

* Source: https://github.com/mozman/ezdxf/discussions/665

—X—-xX-X Snip —-x—-X—-X-—

def render_limits(
origin: tuple[float, float],
size_in_inches: tuple[float,
scale: float,

) —> tuple[float, float, float, float]:
""'"Returns the final render limits in drawing units.

float],

Args:
origin: lower left corner of the modelspace area to render

size_in_inches: paper size in inches

scale: e.g. scale=100 means 1:100,

rendered as 0.0lm or lcm on paper

render scale, Im is

mn

min_x, min_y = origin
max_x = min_x + size_in_inches[0] * scale
max_y = min_y + size_in_inches[1] * scale
return min_x, min_y, max_x, max_y

def export_to_scale(
paper_size: tuple[float, float] = (8.5, 11),
origin: tuple[float, float] (0, 0),
scale: float = 1,
dpi: int = 300,

"""Render the modelspace content with to a specific paper size and scale.

Args:
paper_size: paper size in inches
origin:
scale:

lower left corner of the modelspace area to render
render scale, e.g. scale=100 means 1:100,
rendered as 0.0lm or Icm on paper

Im is

dpi: pixel density on paper as dots per inch

(continues on next page)

9.7. Howto 301

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/render_to_scale.py
https://github.com/mozman/ezdxf/discussions/665

ezdxf Documentation, Release 1.2.0

mn

—X-X—X Snip —X—-X—-X-—

ctx = RenderContext (doc)
fig: plt.Figure = plt.figure (dpi=dpi)
ax: plt.Axes = fig.add_axes ([0, 0, 1, 11)

disable all margins
ax.margins (0)

get the final render limits in drawing units:
min_x, min_y, max_x, max_y = render_limits(
origin, paper_size, scale

ax.set_xlim(min_x, max_x)
ax.set_ylim(min_y, max_y)

out = MatplotlibBackend (ax)
finalizing invokes auto-scaling by default!

Frontend(ctx, out) .draw_layout (msp, finalize=False)

set output size in inches:
fig.set_size_inches (paper_size[0], paper_size[l],

fig.savefig(f"image_scale_1_<{scale}.pdf", dpi=dpi)
plt.close (fig)

forward=True)

(continued from previous page)

How to Control the Line Width

The DXF lineweight attribute defines the line width as absolute width on the output medium (e.g. 25 = 0.25mm)
and therefore depends only on the DPI (dots per inch) setting of the Figure class and the savefig () method.

There are two additional settings in the Configuration class which influences the line width:

e min_lineweight sets the minimum line width in 1/300 inch - a value of 300 is a line width of 1 inch

e lineweight_scaling, multiply the line width by a this factor

The following table shows the line width in pixels for all valid DXF lineweights for a resolution of 72, 100, 200 and 300

dpi:

302

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Line Width in Pixels

Output Resolution [dpi] 72 100 200 300
Lineweight
1/100 mm mm

5 0,05 0,1 0.2 0,4 0,6
9 0,09 0,3 0.4 0,7 11
13 0,13 04 0.5 1,0 15
15 0,15 04 0.6 1,2 1,8
18 0,18 0,5 0.7 1.4 21
20 0,20 0,6 0.8 16 24
25 0,25 0,7 1.0 2,0 3,0
30 0,30 0,9 12 24 35
35 0,35 1,0 1.4 2,8 41
40 0,40 1,1 1.6 31 4,7
50 0,50 14 2,0 3.9 59
53 0,53 15 21 4,2 6,3
60 0,60 1,7 2.4 4.7 71
70 0,70 2,0 2.8 5,5 8,3
80 0,80 2,3 31 6,3 9,4
90 0,90 2,6 3.5 71 10,6
100 1,00 2,8 3.9 7,9 11,8
106 1,06 3,0 42 8,3 12,5
120 1,20 34 4.7 9.4 14,2
140 1,40 4,0 5.5 11,0 16,5
158 1,58 4.5 6.2 12,4 18,7
200 2,00 5.7 7.9 15,7 23,6
211 211 6,0 8.3 16,6 249

9.7. Howto

303

ezdxf Documentation, Release 1.2.0

See also:

Discussion: https://github.com/mozman/ezdxf/discussions/797

9.8 FAQ

These are the old FAQ until late 2023, new FAQs will only be added to the Knowledge Graph.

9.8.1 What is the Relationship between ezdxf, dxfwrite and dxfgrabber?

In 2010 I started my first Python package for creating DXF documents called dxfwrite, this package can’t read DXF files
and writes only the DXF R12 (AC1009) version. While dxfwrite works fine, I wanted a more versatile package, that can
read and write DXF files and maybe also supports newer DXF formats than DXF R12.

This was the start of the ezdxf package in 2011, but the progress was so slow, that I created a spin off in 2012 called
dxfgrabber, which implements only the reading part of ezdxf, which I needed for my work and I wasn’t sure if ezdxf will
ever be usable. Luckily in 2014 the first usable version of ezdxf could be released. The ezdxf package has all the features
of dxfwrite and dxfgrabber and much more, but with a different API. So ezdxf is not a drop-in replacement for dxfgrabber
or dxfwrite.

Since ezdxf can do all the things that dxfwrite and dxfgrabber can do, I focused on the development of ezdxf, dxfwrite and
dxfgrabber are in maintenance-only mode and will not get any new features, just bugfixes.

There are no advantages of dxfwrite over ezdxf, dxfwrite has a smaller memory footprint, but the r12writer add-on
does the same job as dxfwrite without any in-memory structures by writing direct to a stream or file and there is also no
advantage of dxfgrabber over ezdxf for ordinary DXF files, the smaller memory footprint of dxfgrabber is not noticeable
and for really big files the iterdxf add-on does a better job.

9.8.2 Imported ezdxf package has no content. (readfile, new)

1. AttributeError: partially initialized module ‘ezdxf” has no attribute ‘readfile’ (most likely due to a circular import)

Did you name your file/script “ezdxf.py”? This causes problems with circular imports. Renaming your file/script
should solve this issue.

2. AttributeError: module ‘ezdxf’ has no attribute ‘readfile’

This could be a hidden permission error, for more information about this issue read Petr Zemeks article: https:
//blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/

9.8.3 How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?

The BODY, 3DSOLID, SURFACE, REGION and so on, are stored as ACIS data embedded in the DXF file. The
ACIS data is stored as SAT (text) format in the entity itself for DXF R2000-R2010 and as SAB (binary) format in the
ACDSDATA section for DXF R2013+. Ezdxf can read SAT and SAB data, but only write SAT data.

The ACIS data is a proprietary format from Spatial Inc., and there exist no free available documentation or open source
libraries to create or edit SAT or SAB data, and also ezdxf provides no functionality for creating or editing ACIS data.

The ACIS support provided by ezdxf is only useful for users which have access to the ACIS SDK from Spatial Inc..

304 Chapter 9. Contents

https://github.com/mozman/ezdxf/discussions/797
https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/
https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/
https://www.spatial.com/products/3d-acis-modeling
https://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 1.2.0

9.8.4 Are OLE/OLE2 entities supported?

TLDR; NO!

The Wikipedia definition of OLE: Object Linking & Embedding (OLE) is a proprietary technology developed by Mi-
crosoft that allows embedding and linking to documents and other objects. For developers, it brought OLE Control
Extension (OCX), a way to develop and use custom user interface elements. On a technical level, an OLE object is any
object that implements the IO1leObject interface, possibly along with a wide range of other interfaces, depending on
the object’s needs.

Therefore ezdxf does not support this entities in any way, this only work on Windows and with the required editing
application installed. The binary data stored in the OLE objects cannot be used without the editing application.

In my opinion, using OLE objects in a CAD drawing is a very bad design decision that can and will cause problems opening
these files in the future, even in AutoCAD on Windows when the required editing application is no longer available or the
underlying technology is no longer supported.

All of this is unacceptable for a data storage format that should be accessed for many years or decades (e.g. construction
drawings for buildings or bridges).

9.8.5 Rendering SHX fonts

The SHX font format is not documented nor supported by many libraries/packages like Matplotlib and Qt, therefore only
SHX fonts which have corresponding TTF-fonts can be rendered by these backends. See also how-tos about Fonts

9.8.6 Drawing Add-on

There is a dedicated how-to section for the Drawing Add-on.

9.8.7 Is the AutoCAD command XYZ available?

TLDR; Would you expect Photoshop features from a JPG library?

The package is designed as an interface to the DXF format and therefore does not offer any advanced features of interactive
CAD applications. First, some tasks are difficult to perform without human guidance, and second, in complex situations,
it’s not that easy to tell a “headless” system what exactly to do, so it’s very likely that not many users would ever use
these features, despite the fact that a lot of time and effort would have to be spent on development, testing and long-term
support.

9.9 Reference

The DXF Reference is online available at Autodesk.
Quoted from the original DXF 12 Reference which is not available on the web:

Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes significantly as
new features are added to AutoCAD, we do not document its format and do not recommend that you attempt
to write programs to read it directly. To assist in interchanging drawings between AutoCAD and other
programs, a Drawing Interchange file format (DXF) has been defined. All implementations of AutoCAD
accept this format and are able to convert it to and from their internal drawing file representation.

9.9. Reference 305

https://en.wikipedia.org/wiki/Object_Linking_and_Embedding
http://docs.autodesk.com/ACD/2014/ENU/index.html?url=files/GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3.htm,topicNumber=d30e652301
http://usa.autodesk.com/

ezdxf Documentation, Release 1.2.0

9.9.1 DXF Document

Document Management

Create New Drawings

ezdxf .new (dxfversion='AC1027', setup="False, units=6) — Drawing

Create a new Drawing from scratch, dxfversion can be either “AC1009” the official DXF version name or “R12”

the AutoCAD release name.

new () can create drawings for following DXF versions:

Version

AutoCAD Release

AC1009
ACI1015
AC1018
AC1021
AC1024
AC1027
AC1032

AutoCAD R12

AutoCAD R2000
AutoCAD R2004
AutoCAD R2007
AutoCAD R2010
AutoCAD R2013
AutoCAD R2018

The units argument defines th document and modelspace units. The header variable SMEASUREMENT will be set
according to the given units, O for inch, feet, miles, ... and 1 for metric units. For more information go to module

ezdxf.units

Parameters

* dxfversion — DXF version specifier as string, default is “AC1027” respectively “R2013”

* setup — setup default styles, False for no setup, True to setup everything or a list of topics

G«

as strings, e.g. [“linetypes”, “styles”] to setup only some topics:

Topic

Description

linetypes
styles
dimstyles
visualstyles

setup line types

setup text styles

setup default ezdxf dimension styles
setup 25 standard visual styles

* units — document and modelspace units, default is 6 for meters

Open Drawings

Open DXF drawings from file system or text stream, byte stream usage is not supported.

DXEF files prior to R2007 requires file encoding defined by header variable SDWGCODEPAGE, DXF R2007 and later

requires an UTF-8 encoding.

ezdxf supports reading of files for following DXF versions:

306

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Version Release Encoding Remarks

< AC1009 $DWGCODEPAGE pre AutoCAD R12 upgraded to AC1009
AC1009 R12 $DWGCODEPAGE AutoCAD R12

AC1012 R13 $DWGCODEPAGE AutoCAD R13 upgraded to AC1015
AC1014 R14 $DWGCODEPAGE AutoCAD R14 upgraded to AC1015

ACI1015 R2000 $DWGCODEPAGE AutoCAD R2000
AC1018 R2004 $DWGCODEPAGE AutoCAD R2004

AC1021 R2007 UTF-8 AutoCAD R2007
AC1024 R2010 UTF-8 AutoCAD R2010
AC1027 R2013 UTF-8 AutoCAD R2013
AC1032 R2018 UTF-8 AutoCAD R2018

ezdxf .readfile (filename: str | PathLike, encoding: str | None = None, errors: str = 'surrogateescape') — Drawing

Read the DXF document filename from the file-system.

This is the preferred method to load existing ASCII or Binary DXF files, the required text encoding will be detected
automatically and decoding errors will be ignored.

Override encoding detection by setting argument encoding to the estimated encoding. (use Python encoding names
like in the open () function).

If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover.readfile () function to load this corrupt DXF document.

Parameters
e filename - filename of the ASCII- or Binary DXF document

* encoding — use None for auto detect (default), or set a specific encoding like “utf-8”, ar-
gument is ignored for Binary DXF files

» errors — specify decoding error handler
— “surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* IOError - not a DXF file or file does not exist
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.read (stream: TextlO) — Drawing

Read a DXF document from a text-stream. Open stream in text mode (mode="rt ') and set correct text encoding,
the stream requires at least a readline () method.

Since DXF version R2007 (ACI1021) file encoding is always “utf-8”, wuse the helper function
dxf_stream_info () to detect the required text encoding for prior DXF versions. To preserve possi-
ble binary data in use errors="'surrogateescape"' as error handler for the import stream.

If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover. read () function to load this corrupt DXF document.

Parameters
stream — input text stream opened with correct encoding

9.9. Reference 307

ezdxf Documentation, Release 1.2.0

Raises
DXFStructureError — for invalid or corrupted DXF structures

ezdxf.readzip (zipfile: str | PathLike, filename: str | None = None, errors: str = 'surrogateescape') — Drawing

Load a DXF document specified by filename from a zip archive, or if filename is None the first DXF document in
the zip archive.

Parameters
* zipfile — name of the zip archive

* filename - filename of DXF file, or None to load the first DXF document from the zip
archive.

* errors — specify decoding error handler
— 7surrogateescape” to preserve possible binary data (default)
— “ignore” to use the replacement char U+FFFD “€” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* IOError - not a DXF file or file does not exist or if filename is None - no DXF file found
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError —if errors is “strict” and a decoding error occurs

ezdxf .decode_base64 (data: bytes, errors: str = 'surrogateescape') — Drawing

Load a DXF document from base64 encoded binary data, like uploaded data to web applications.
Parameters
* data — DXF document base64 encoded binary data
* errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— Yignore” to use the replacement char U+FFFD “€” for invalid data
— ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures

* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

Hint: This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with
minor or major flaws look at the ezdx . recover module.

308 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Save Drawings

Save the DXF document to the file system by Drawing methods save () or saveas (). Write the DXF document
to a text stream with write (), the text stream requires at least a write () method. Get required output encoding for
text streams by property Drawing.output_encoding

Drawing Settings

The HeaderSection stores meta data like modelspace extensions, user name or saving time and current application
settings, like actual layer, text style or dimension style settings. These settings are not necessary to process DXF data and
therefore many of this settings are not maintained by ezdxf automatically.

Header variables set at new

$ACADVER DXF version
$TDCREATE date/time at creating the drawing
$FINGERPRINTGUID every drawing gets a GUID

Header variables updated at saving

$TDUPDATE actual date/time at saving
$HANDSEED next available handle as hex string
$DWGCODEPAGE encoding setting

$VERSIONGUID every saved version gets a new GUID

See also:
e Howto: Set/Get Header Variables

* Howto: Set DXF Drawing Units

Ezdxf Metadata

Store internal metadata like ezdxf version and creation time for a new created document as metadata in the DXF file.
Only standard DXF features are used to store meta data and this meta data is preserved by Autodesk products, BricsCAD
and of course ezdxf. Other 3rd party DXF libraries may remove this meta data.

For DXF R12 the meta data is stored as XDATA by AppID EZDXF in the model space BLOCK entity in the BLOCKS
section.

For DXF R2000+ the meta data is stored in the “root” DICTIONARY in the OBJECTS section as a DICTIONARY
object by the key EZDXF_META.

The MetaData object has a dict-like interface and can also store custom metadata:

metadata = doc.ezdxf_metadata ()

set data
metadata["MY_CUSTOM_META_DATA"] = "a string with max. length of 254"
(continues on next page)

9.9. Reference 309

ezdxf

Documentation, Release 1.2.0

get
value

get
value

del

(continued from

data, raises a KeyError() if key not exist
= metadata["MY_CUSTOM_META_DATA"]

data, returns an empty string if key not exist
= metadata.get ("MY_CUSTOM_META_DATA")

ete entry, raises a KeyError() if key not exist

del metadata["MY CUSTOM _META DATA"]

discard entry, does not raise a KeyError () if key not exist
metadata.discard ("MY_CUSTOM_META_DATA")

previous page)

Keys and values are limited to strings with a max. length of 254 characters and line ending \n will be replaced by \P.

Keys used by ezdxf:

* WRITTEN_BY_EZDXF: ezdxf version and UTC time in ISO format

CREATED_BY_EZDXEF: ezdxf version and UTC time in ISO format

Example of the ezdxf marker string: 0.16.4b1 @ 2021-06-12T07:35:34.898808+00:00

class ezdxf.document .MetaData

abstract MetaData.__contains__ (key: str) — bool
Returns key in self.

abstract MetaData.__getitem__ (key: str) — str

Returns the value for self[key].

Raises
KeyError — key does not exist

MetaData.get (key: str, default: str =") — str
Returns the value for key. Returns default if key not exist.
abstract MetaData.__setitem__ (key: str, value: str) — None
Set self[key] to value.
abstract MetaData.__delitem__ (key: str) — None
Delete self[key].

Raises
KeyError — key does not exist

MetaData.discard (key: str) — None

Remove key, does not raise an exception if key not exist.

310

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

Export/Load JSON Encoded Tags

JSON encoded DXF tags look like this:

[

[0, "SECTION"],
[2, "HEADER"],
[9, "SACADVER"],
[1, "AC1027"7],

[0, "... more tags"],

[O, "EOFH]

The expected format is a list of [group—code, value] pairs where each pair is an 1:1 representation of a DXF tag.
The group-code has to be an integer and the value has to be a string.

ezdxf.document .export_Jjson_tags (doc: Drawing) — str
Export a DXF document as JSON formatted tags.

ezdxf.document .load_json_tags (data: Sequence[Any]) — Drawing
Load DXF document from JSON formatted tags.

The expected JSON format is a list of [group-code, value] pairs where each pair is an 1:1 representation of a DXF
tag. The group-code has to be an integer and the value has to be a string.

Parameters
data - JSON data structure as a sequence of [group-code, value] pairs

Drawing Class
The Drawing class is the central management structure of a DXF document.
Access Layouts

* Drawing.modelspace ()

* Drawing.paperspace ()

Access Resources

e Application ID Table: Drawing. appids

Block Definition Table: Drawing.blocks

e Dimension Style Table: Drawing.dimstyles

e Layer Table: Drawing. layers

e Linetype Table: Drawing. linetypes

e MLeader Style Table: Drawing.mleader_styles
e MLine Style Table: Drawing.mline_styles

e Material Table: Drawing.materials

9.9. Reference 311

ezdxf Documentation, Release 1.2.0

e Text Style Table: Drawing. styles

e UCS Table: Drawing.ucs

e VPort Table: Drawing. viewports

e View Table: Drawing.views

¢ Classes Section: Drawing.classes

* Object Section: Drawing.objects

* Entity Database: Drawing.entitydb
* Entity Groups: Drawing.groups

e Header Variables: Drawing. header

Drawing Class

class ezdxf.document .Drawing

The Drawing class is the central management structure of a DXF document.

dxfversion
Actual DXF version like 'AC1009',setby ezdxf.new () or ezdxf.readfile ().
For supported DXF versions see Document Management

acad_release
The AutoCAD release name like 'R12 "' or 'R2000 "' for actual dxfversion.

encoding

Text encoding of Drawing, the default encoding for new drawingsis ' cp1252'. Starting with DXF R2007
(AC1021), DXEF files are written as UTF-8 encoded text files, regardless of the attribute encoding. The
text encoding can be changed to encodings listed below.

see also: DXF File Encoding

supported encodings

'cp874' Thai
'cp932! Japanese
'gbk' UnifiedChinese

'cp949' Korean
'cp950" TradChinese
'cpl250"' CentralEurope
'cpl251' Cyrillic
'cpl252' WesternEurope
'cpl1253' Greek
'cpl254' Turkish
'cpl255' Hebrew
'cpl256' Arabic
'cp1257' Baltic
'cpl258' Vietnam

output_encoding

Returns required output encoding for saving to filesystem or encoding to binary data.

312 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

filename

Drawing filename, if loaded by ezdx . readfile () else None.

rootdict
Reference to the root dictionary of the OBJECTS section.

header

Reference to the HeaderSection, get/set drawing settings as header variables.

entities

Reference to the EntitySection of the drawing, where all graphical entities are stored, but only from
modelspace and the active paperspace layout. Just for your information: Entities of other paperspace layouts
are stored as Bl ockLayout inthe BlocksSection.

objects
Reference to the objects section, see also ObjectsSection.

blocks
Reference to the blocks section, see also Bl ocksSection.

tables
Reference to the tables section, see also TablesSection.

classes
Reference to the classes section, see also ClassesSection.

layouts
Reference to the layout manager, see also Layouts.

groups
Collection of all groups, see also GroupCollection.

requires DXF R13 or later

layers

Shortcut for Drawing.tables.layers
Reference to the layers table, where you can create, get and remove layers, see also Table and Layer

styles
Shortcut for Drawing.tables.styles

Reference to the styles table, see also Textstyle.

dimstyles
Shortcut for Drawing.tables.dimstyles

Reference to the dimstyles table, see also DimStyle.

linetypes
Shortcut for Drawing.tables.linetypes

Reference to the linetypes table, see also Linetype.

views

Shortcut for Drawing.tables.views

Reference to the views table, see also View.

9.9. Reference 313

ezdxf Documentation, Release 1.2.0

viewports

Shortcut for Drawing.tables.viewports

Reference to the viewports table, see also VPort.
ucs

Shortcut for Drawing.tables.ucs

Reference to the ucs table, see also UCSTableEntry.
appids

Shortcut for Drawing.tables.appids

Reference to the appids table, see also AppID.
materials

MaterialCollectionof allMaterial objects.
mline_styles

MLineStyleCollection of all MLineStyle objects.
mleader_styles

MLeaderStyleCollection of all MLeaderStyle objects.

units
Get and set the document/modelspace base units as enum, for more information read this: DXF Units. Re-
quires DXF R2000 or newer.

get_abs_filepath = <function Drawing.get_abs_filepath>

save (encoding: str | None = None, fmt: str = 'asc') — None

Write drawing to file-system by using the i 1 ename attribute as filename. Override file encoding by argu-
ment encoding, handle with care, but this option allows you to create DXF files for applications that handle
file encoding different from AutoCAD.

Parameters
* encoding - override default encoding as Python encoding string like 'ut £-8"
e fmt — 'asc' for ASCII DXF (default) or 'bin' for Binary DXF

saveas (filename: PathLike | str, encoding: str | None = None, fmt: str = 'asc’) — None

Set Drawing attribute £ilename to filename and write drawing to the file system. Override file encoding
by argument encoding, handle with care, but this option allows you to create DXF files for applications that
handles file encoding different than AutoCAD.

Parameters
¢ filename - file name as string
* encoding - override default encoding as Python encoding string like 'ut £-8"
e fmt — 'asc' for ASCII DXF (default) or 'bin"' for Binary DXF

write (stream: TextlO | BinarylO, fmt: str = 'asc') — None

Write drawing as ASCII DXF to a text stream or as Binary DXF to a binary stream. For DXF
R2004 (AC1018) and prior open stream with drawing encoding and mode="wt '. For DXF R2007
(AC1021) and later use encoding="utf-8", or better use the later added Drawing property out —
put_encoding which returns the correct encoding automatically. The correct and required error handler
iSerrors="dxfreplace'!

314 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

If writingtoa St ringIO stream, use Drawing.encode () toencode the result string from St ringIO.
get_value():

binary doc.encode (stream.get_value ())

Parameters
* stream - output text stream or binary stream

e fmt — “asc” for ASCII DXF (default) or “bin” for binary DXF

encode_base64 () — bytes
Returns DXF document as base64 encoded binary data.

encode (s: str) — bytes
Encode string s with correct encoding and error handler.
query (query: str = '*') — EntityQuery

Entity query over all layouts and blocks, excluding the OBJECTS section and the resource tables of the
TABLES section.

Parameters
query — query string

See also:
Entity Query String and Retrieve entities by query language
groupby (dxfattrib=", key=None) — dict

Groups DXF entities of all layouts and blocks (excluding the OBJECTS section) by a DXF attribute or a key
function.

Parameters
e dxfattrib - grouping DXF attribute like “layer”

* key - key function, which accepts a DXFEnt ity as argument and returns a hashable group-
ing key or None to ignore this entity.

See also:
groupby () documentation

modelspace () — Modelspace

Returns the modelspace layout, displayed as “Model” tab in CAD applications, defined by block record named
“*Model_Space”.

paperspace (name: str = "') — Paperspace
Returns paperspace layout name or the active paperspace if no name is given.

Parameters
name — paperspace name or empty string for the active paperspace

Raises
KeyError — if the modelspace was acquired or layout name does not exist

layout (name: str = ") — Layout
Returns paperspace layout name or the first layout in tab-order if no name is given.

Parameters
name — paperspace name or empty string for the first paperspace in tab-order

9.9.

Reference 315

ezdxf Documentation, Release 1.2.0

Raises
KeyError — layout name does not exist

active_layout () — Paperspace
Returns the active paperspace layout, defined by block record name “*Paper_Space”.

layout_names () — Iterable[str]

Returns all layout names in arbitrary order.

layout_names_in_taborder () — Iterable[str]
Returns all layout names in tab-order, “Model” is always the first name.
new_layout (name, dxfattribs=None) — Paperspace

Create a new paperspace layout name. Returns a Paperspace object. DXF R12 (AC1009) supports only
one paperspace layout, only the active paperspace layout is saved, other layouts are dismissed.

Parameters
* name — unique layout name
e dxfattribs — additional DXF attributes for the DXFLayout entity

Raises
DXFValueError — paperspace layout name already exist

page_setup (name: str = 'Layoutl’, fmt: str = 'ISO A3', landscape=True) — Paperspace

Creates a new paperspace layout if name does not exist or reset the existing layout. This method requires
DXF R2000 or newer. The paper format name fmt defines one of the following paper sizes, measures in
landscape orientation:

Name Units Width Height

ISO A0 mm 1189 841
ISO A1 mm 841 594
ISO A2 mm 594 420
ISO A3 mm 420 297
ISO A4 mm 297 210

ANSI A inch 11 8.5
ANSI B inch 17 11
ANSIC inch 22 17
ANSI D inch 34 22
ANSI E inch 44 34
ARCHC inch 24 18
ARCHD inch 36 24
ARCHE inch 48 36
ARCHEI1 inch 42 30
Letter inch 11 8.5
Legal inch 14 8.5

The layout uses the associated units of the paper format as drawing units, has no margins or offset defined
and the scale of the paperspace layout is 1:1.

Parameters
* name - paperspace layout name
e fmt — paper format

* landscape — True for landscape orientation, False for portrait orientation

316 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

delete_layout (name: str) — None

Delete paper space layout name and all entities owned by this layout. Available only for DXF R2000 or later,
DXF R12 supports only one paperspace, and it can’t be deleted.

add_image_def (filename: str, size_in_pixel: tuple[int, int], name=None)

Add an image definition to the objects section.

Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (X, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.

Absolute image paths works best for AutoCAD but not perfect, you have to update external references man-
ually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also have
touse: set_raster _variables().

Parameters
* filename — image file name (absolute path works best for AutoCAD)
* size_in_pixel - image size in pixel as (X, y) tuple
* name — image name for internal use, None for using filename as name (best for AutoCAD)
See also:
Tutorial for Image and ImageDef

set_raster_variables (frame: int = 0, quality: int = 1, units: str = 'm’)

Set raster variables.
Parameters
e frame — 0 = do not show image frame; 1 = show image frame
* quality — 0 =draft; 1 = high

* units — units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm Millimeter

cm Centimeter

m Meter (ezdxf default)
km Kilometer

in Inch
ft Foot
yd Yard
mi Mile

set_wipeout_variables (frame=0)
Set wipeout variables.
Parameters
frame — 0 = do not show image frame; 1 = show image frame
add_underlay_def (filename: str, fmt: str = 'ext’, name: str | None = None)

Add an UnderlayDef entity to the drawing (OBJECTS section). The filename is the underlay file name
as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to create an
underlay reference.

9.9.

Reference 317

ezdxf Documentation, Release 1.2.0

Parameters
e filename — underlay file name

» fmt — file format as string “pdf”1”dwf”|”dgn” or “ext” for getting file format from filename
extension

* name - pdf format = page number to display; dgn format = “default”; dwf: 77?7
See also:
Tutorial for Underlay and UnderlayDefinition
add_xref_def (filename: str, name: str, flags: int = BLK_XREF | BLK_FEXTERNAL)

Add an external reference (xref) definition to the blocks section.
Parameters
» filename - external reference filename
* name — name of the xref block
e flags - block flags

layouts_and_blocks () — Iterator[GenericLayoutType]

Iterate over all layouts (modelspace and paperspace) and all block definitions.

chain_layouts_and_blocks () — Iterator[DXFEntity]

Chain entity spaces of all layouts and blocks. Yields an iterator for all entities in all layouts and blocks.
reset_fingerprint_guid()
Reset fingerprint GUID.

reset_version_guid()
Reset version GUID.

set_modelspace_vport (height, center=(0, 0), *, dxfattribs=None) — VPort

Set initial view/zoom location for the modelspace, this replaces the current “* Active” viewport configuration
(VPort) and reset the coordinate system to the WCS.

Parameters
* height — modelspace area to view
* center — modelspace location to view in the center of the CAD application window.
e dxfattribs — additional DXF attributes for the VPORT entity

audit () — Auditor
Checks document integrity and fixes all fixable problems, not fixable problems are stored in Auditor.
errors.

If you are messing around with internal structures, call this method before saving to be sure to export valid
DXF documents, but be aware this is a long-running task.

validate (print_report=True) — bool

Simple way to run an audit process. Fixes all fixable problems, return False if not fixable errors occurs.
Prints a report of resolved and unrecoverable errors, if requested.

Parameters
print_report — print report to stdout

Returns: False if unrecoverable errors exist

318 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

ezdxf_metadata () — MetaData

Returns the ezdxf ezdxf.document . MetaData object, which manages ezdxf and custom metadata in

DXEF files. For more information see: Ezdxf Metadata.

Recover

This module provides functions to “recover” ASCII DXF documents with structural flaws, which prevents the regular
ezdxf.read () and ezdxf.readfile () functions to load the document.

The read () and readfile () functions will repair as much flaws as possible and run the required audit process

automatically afterwards and return the result of this audit process:

import sys
import ezdxf
from ezdxf import recover

try:
doc, auditor = recover.readfile("messy.dxf")
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file.')
sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe just

a problem when saving the recovered DXF file.
if auditor.has_errors:
auditor.print_error_report ()

The loading functions also decode DXF-Unicode encoding automatically e.g. “\U+00FC” -> “ii”. All these efforts cost
some time, loading the DXF document with ezdxf. read () or ezdxf.readfile () is faster.

ignored.

with care!

able.

Warning: This module will load DXF files which have decoding errors, most likely binary data stored in XRECORD
entities, these errors are logged as unrecoverable AuditError.DECODE_ERRORS in the Auditor.errors
attribute, but no DXFStructureError exception will be raised, because for many use cases this errors can be

Writing such files back with ezdxf may create invalid DXF files, or at least some information will be lost - handle

To avoid this problem use recover.readfile (filename, errors='strict') which raises an Uni-
codeDecodeError exception for such binary data. Catch the exception and handle this DXF files as unrecover-

9.9. Reference

319

ezdxf Documentation, Release 1.2.0

Loading Scenarios
1. It will work

Mostly DXF files from AutoCAD or BricsCAD (e.g. for In-house solutions):

try:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

2. DXF file with minor flaws

DXF files have only minor flaws, like undefined resources:

try:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

auditor = doc.audit ()
if auditor.has_errors:
auditor.print_error_report ()

3. Try Hard

From trusted and untrusted sources but with good hopes, the worst case works like a cache miss, you pay for the first try
and pay the extra fee for the recover mode:

try: # Fast path:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

Catch all DXF errors:

except ezdxf.DXFError:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile (name)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}."'")

sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:
(continues on next page)

320 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

(continued from previous page)

print (f'Found unrecoverable errors in DXF file: {name}."')
auditor.print_error_report ()

4. Just use the slow recover module

Untrusted sources and expecting many invalid or corrupted DXF files, you always pay an extra fee for the recover mode:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:
print (f'Found unrecoverable errors in DXF file: {name}/.")
auditor.print_error_report ()

5. Unrecoverable Decoding Errors

If files contain binary data which can not be decoded by the document encoding, it is maybe the best to ignore these files,
this works in normal and recover mode:

try:
doc, auditor = recover.readfile (name, errors='strict')
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)
except UnicodeDecodeError:
print (f'Decoding error in DXF file: {name}.')
sys.exit (3)

6. Ignore/Locate Decoding Errors

Sometimes ignoring decoding errors can recover DXF files or at least you can detect where the decoding errors occur:

try:
doc, auditor = recover.readfile (name, errors='ignore')
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)
(continues on next page)

9.9. Reference 321

ezdxf Documentation, Release 1.2.0

(continued from previous page)

if auditor.has_errors:
auditor.print_report ()

The error messages with code AuditError.DECODING_ERROR shows the approximate line number of the decoding
error: “Fixed unicode decoding error near line: xxx.”

Hint: This functions can handle only ASCII DXEF files!

ezdxf.recover.readfile (filename: str | Path, errors: str = 'surrogateescape') — tuple[Drawing, Auditor]

Read a DXF document from file system similar to ezdxf. readfile (), but this function will repair as many
flaws as possible, runs the required audit process automatically the DXF document and the Auditor.

Parameters
* filename —file-system name of the DXF document to load
» errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.recover.read (stream: BinarylO, errors: str = 'surrogateescape') — tuple[Drawing, Auditor]

Read a DXF document from a binary-stream similar to ezdxf . read (), but this function will detect the text
encoding automatically and repair as many flaws as possible, runs the required audit process afterwards and returns
the DXF document and the Auditor.

Parameters
* stream - data stream to load in binary read mode
» errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “€” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError —if errors is “strict” and a decoding error occurs

ezdxf.recover.explore (filename: str | Path, errors: str = 'ignore') — tuple[Drawing, Auditor]

Read a DXF document from file system similar to readfile (), but this function will use a special tag loader,
which tries to recover the tag stream if invalid tags occur. This function is intended to load corrupted DXF files
and should only be used to explore such files, data loss is very likely.

Parameters
» filename - file-system name of the DXF document to load

» errors — specify decoding error handler

322 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

— 7surrogateescape” to preserve possible binary data (default)
— ignore” to use the replacement char U+FFFD “€” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures

* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ri2strict

New in version 1.1.

Due to ACAD release 14 the resource names, such as layer-, linetype, text style-, dimstyle- and block names, were limited
to 31 characters in length and all names were uppercase.

Names can include the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign " $", underscore "_",
hyphen "-" and the asterix "*" as first character for special names like anonymous blocks. Most applications do not
care about that and work fine with longer names and any characters used in names for some exceptions, but of course
Autodesk applications are very picky about that.

The function make_acad_compatible () makes DXF R12 drawings to 100% compatible to Autodesk products and
does everything at once, but the different processing steps can be called manually.

Important: This module can only process DXF R12 file and will throw a DXFVersionError otherwise. For ex-
porting any DXF document as DXF R12 use the ezdxf.addons.rl12export add-on.

Usage

import ezdxf
from ezdxf import rl2strict

doc = ezdxf.readfile("rl2sloppy.dxf")
rl2strict.make_acad_compatible (doc)
doc.saveas ("rl2strict.dxf")

Functions
make_acad_compatible Apply all DXF R12 requirements, so Autodesk products
will load the document.
translate _names Translate table and block names into strict DXF R12
names.
clean Removes all features that are not supported for DXF R12
by Autodesk products.

ezdxf.rl2strict.make_acad_compatible (doc: Drawing) — None

Apply all DXF R12 requirements, so Autodesk products will load the document.

9.9. Reference 323

ezdxf Documentation, Release 1.2.0

ezdxf.rl2strict.translate_names (doc: Drawing) — None

Translate table and block names into strict DXF R12 names.

ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names can include
the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($), underscore (_), hyphen (-) and
the asterix (*) as first character for special names like anonymous blocks.

Most applications do not care about that and work fine with longer names and any characters used in names for
some exceptions, but of course Autodesk applications are very picky about that.

Note: This is a destructive process and modifies the internals of the DXF document.

ezdxf.rl2strict.clean (doc: Drawing) — None

Removes all features that are not supported for DXF R12 by Autodesk products.

class ezdxf.rl2strict.R12NameTranslator

Translate table and block names into strict DXF R12 names.

ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names can include
the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($), underscore (_), hyphen (-) and
the asterix (*) as first character for special names like anonymous blocks.

reset () — None

translate (name: str) — str

9.9.2 DXF Structures

Sections

Header Section

The drawing settings are stored in the HEADER section, which is accessible by the heade r attribute of the Drawing
object. See the online documentation from Autodesk for available header variables.

See also:

DXF Internals: HEADER Section

class ezdxf.sections.header.HeaderSection

custom_vars

Stores the custom drawing properties in a Cust omVars object.
len__ () —int

Returns count of header variables.
__contains___ (key) — bool

Returns True if header variable key exist.
varnames () — KeysView

Returns an iterable of all header variable names.
get (key: str, default: Any = None) — Any

Returns value of header variable key if exist, else the default value.

324

Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 1.2.0

__getitem__ (key: str) — Any

Get header variable key by index operator like: drawing.header [' $ACADVER']
__setitem__ (key: str, value: Any) — None

Set header variable key to value by index operator like: drawing.header ['$ANGDIR'] = 1

__delitem__ (key: str) — None
Delete header variable key by index operator like: del drawing.header['SANGDIR']

reset_wes ()
Reset the current UCS settings to the WCS.

class ezdxf.sections.header.CustomVars
The CustomVars class stores custom properties in the DXF header as SCUSTOMPROPERTYTAG and $CUS-
TOMPROPERTY values. Custom properties require DXF R2004 or later, ezdxf can create custom properties for
older DXF versions as well, but AutoCAD will not show that properties.
properties

A list of custom header properties, stored as string tuples (tag, value). Multiple occurrence of the same
custom tag is allowed, but not well supported by the interface. This is a standard Python list and it’s safe to
modify this list as long as you just use tuples of strings.

len__ () —int

Count of custom properties.

__iter__ () — lIterator[tuple[str, str]]

Iterate over all custom properties as (tag, value) tuples.

clear () — None

Remove all custom properties.

get (tag: str, default: str | None = None)

Returns the value of the first custom property fag.

has_tag (tag: str) — bool

Returns True if custom property tag exist.

append (tag: str, value: str) — None
Add custom property as (tag, value) tuple.

replace (fag: str, value: str) — None

Replaces the value of the first custom property fag by a new value.
Raises DXFValueError if fag does not exist.

remove (tag: str, all: bool = False) — None

Removes the first occurrence of custom property fag, removes all occurrences if all is True.

Raises :class:'DXFValueError if tag does not exist.

9.9. Reference 325

ezdxf Documentation, Release 1.2.0

Classes Section

The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in Lay —
out objects. As usual package user there is no need to bother about CLASSES.

See also:
DXF Internals: CLASSES Section
class ezdxf.sections.classes.ClassesSection

classes

Storage of all DXF'C1ass objects, they are not stored in the entities database, because CLASS instances do
not have a handle attribute.

register ()
add_class (name: str)
Register a known class by name.

get (name: str) — DXFClass
Returns the first class matching name.

Storage key is the (name, cpp_class_name) tuple, because there are some classes with the same
name but different cpp_class_names.

add_required_classes (dxfversion: str) — None
Add all required CLASS definitions for the specified DXF version.

update_instance_counters () — None

Update CLASS instance counter for all registered classes, requires DXF R2004+.

class ezdxf.entities.DXFClass

Information about application-defined classes.

dxf .name

Class DXF record name.

dxf.cpp_class_name

C++ class name. Used to bind with software that defines object class behavior.

dxf .app_name

Application name. Posted in Alert box when a class definition listed in this section is not currently loaded.
dxf.flags

Proxy capabilities flag

326 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

0 No operations allowed (0)

1 Erase allowed (0x1)

2 Transform allowed (0x2)

4 Color change allowed (0x4)

8 Layer change allowed (0x8)

16 Linetype change allowed (0x10)

32 Linetype scale change allowed (0x20)

64 Visibility change allowed (0x40)

128 Cloning allowed (0x80)

256 Lineweight change allowed (0x100)

512 Plot Style Name change allowed (0x200)

895 All operations except cloning allowed (0x37F)
1023 All operations allowed (0x3FF)

1024 Disables proxy warning dialog (0x400)

32768 R13 format proxy (0x8000)

dxf.instance_count

Instance count for a custom class.

dxf.was_a_proxy

Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise.

dxf.is_an_entity
Set to 1 if class was derived from the DXFGraphic class and can reside in layouts. If 0, instances may
appear only in the OBJECTS section.

key

Unique name as (name, cpp_class_name) tuple.

Tables Section

The TABLES section is the home of all TABLE objects of a DXF document.
See also:
DXEF Internals: TABLES Section
class ezdxf.sections.tables.TablesSection
layers
LayerTable maintaining the Layer objects

linetypes
LinetypeTable maintaining the Linet ype objects

styles
TextstyleTable maintaining the Text sty le objects

dimstyles

DimStyleTable maintaining the DimSty e objects
appids

AppIDTable maintaining the AppID objects

9.9. Reference 327

ezdxf Documentation, Release 1.2.0

ucs
UCSTable maintaining the UCSTable objects

views

ViewTable maintaining the View objects

viewports

Viewport Table maintaining the VPort objects

block_records

BlockRecordTable maintaining the Bl ockRecord objects

Blocks Section

The BLOCKS section is the home all block definitions (Bl ockLayout) of a DXF document.

Warning: Blocks are an essential building block of the DXF format. Most blocks are referenced are by name, and
renaming or deleting a block is not as easy as it seems, since there is no overall index where all block references appear,
and such block references can also reside in custom data or even custom entities, therefore renaming or deleting block
definitions can damage a DXF file!

See also:
DXEF Internals: BLOCKS Section and Block Management Structures
class ezdxf.sections.blocks.BlocksSection
__iter__ () — Iterator[BlockLayout]
Iterable of all Bl ockLayout objects.

__contains___ (name: str) — bool

Returns True if BlockLayout name exist.

__getitem__ (name: str) — BlockLayout

Returns Bl ockLayout name, raises DXFKeyError if name not exist.

__delitem__ (name: str) — None

Deletes B1ockLayout name and all of its content, raises DXFKeyError if name not exist.

get (name: str, default=None) — BlockLayout

Returns Bl ockLayout name, returns default if name not exist.

new (name: str, base_point: UVec = NULLVEC, dxfattribs=None) — BlockLayout
Create and add a new BlockLayout, name is the BLOCK name, base_point is the insertion point of the
BLOCK.

new_anonymous_block (type_char: str = 'U’, base_point: UVec = NULLVEC) — BlockLayout

Create and add a new anonymous Bl ockLayout, type_char is the BLOCK type, base_point is the insertion
point of the BLOCK.

328 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

type_char Anonymous Block Type

g’ ' *U#4# ' anonymous BLOCK

'E! '*E#4#4# ' anonymous non-uniformly scaled BLOCK
'X! ' *X##4# ' anonymous HATCH graphic

'D' ' *D##4# ' anonymous DIMENSION graphic

'A’ ' *A### ' anonymous GROUP

09p 0 ' *T#4#4 "' anonymous block for ACAD_TABLE content

rename_block (old_name: str, new_name: str) — None

Rename BlockLayout old_name to new_name

Warning: This is a low-level tool and does not rename the block references, so all block references to
old_name are pointing to a non-existing block definition!

delete_block (name: str, safe: bool = True) — None

Delete block. Checks if the block is still referenced if safe is True.
Parameters
¢ name — block name (case insensitive)
* safe — check if the block is still referenced or a special block without explicit references
Raises
* DXFKeyError — if block not exists
e DXFBlockInUseError —if block is still referenced, and safe is True
delete_all_blocks () — None

Delete all blocks without references except modelspace- or paperspace layout blocks, special arrow- and
anonymous blocks (DIMENSION, ACAD_TABLE).

Warning: There could exist references to blocks which are not documented in the DXF reference,

hidden in extended data sections or application defined data, which could invalidate a DXF document if
these blocks will be deleted.

Entities Section

The ENTITIES section is the home of all entities of the Mode 1 space and the active Paperspace layout. This is a
real section in the DXF file but in ezdxf the Ent it ySectionis just a linked entity space of these two layouts.

See also:

DXF Internals: ENTITIES Section

class ezdxf.sections.entities.EntitySection

__iter__ () — Iterator[DXFEntity]
Returns an iterator for all entities of the modelspace and the active paperspace.
len__ () —int

Returns the count of all entities in the modelspace and the active paperspace.

9.9.

Reference 329

ezdxf Documentation, Release 1.2.0

Objects Section

The OBJECTS section is the home of all none graphical objects of a DXF document. The OBJECTS section is accessible
by the Drawing.objects attribute.

Convenience methods of the Drawing object to create essential structures in the OBJECTS section:
e IMAGEDEF: add_image_def ()
e UNDERLAYDEF: add_underlay_ def ()

¢ RASTERVARIABLES: set_raster variables ()

e WIPEOUTVARIABLES: set_wipeout_variables ()

See also:

DXEF Internals: OBJECTS Section

class ezdxf.sections.objects.ObjectsSection

rootdict
Returns the root DICTIONARY, or as AutoCAD calls it: the named DICTIONARY.

len__ () —int
Returns the count of all DXF objects in the OBJECTS section.

__iter__ () — Iterator[DXFObject]

Returns an iterator of all DXF objects in the OBJECTS section.
__getitem__ (index) — DXFObject

Get entity at index.

The underlying data structure for storing DXF objects is organized like a standard Python list, therefore index
can be any valid list indexing or slicing term, like a single index objects [—-1] to get the last entity, or an

index slice objects [:10] to get the first 10 or fewer objects as 1ist [DXFObject].

__contains___ (entity)
Returns True if entity stored in OBJECTS section.

Parameters
entity - DXFObject or handle as hex string

query (query: str = '*') — EntityQuery
Get all DXF objects matching the Entity Query String.

add_dictionary (owner: str = '0', hard_owned: bool = True) — Dictionary

Add new Dictionary object.
Parameters
* owner - handle to owner as hex string.
¢ hard_owned — True to treat entries as hard owned.

add_dictionary_with_default (owner="0', default="0', hard_owned: bool = True) —
DictionaryWithDefault

Addnew DictionaryWithDefault object.
Parameters

* owner — handle to owner as hex string.

330

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

¢ default - handle to default entry.
* hard_owned - True to treat entries as hard owned.
add_dictionary_var (owner: str = '0', value: str = ") — DictionaryVar
Add anew DictionaryVar object.
Parameters
¢ owner - handle to owner as hex string.
* value - value as string

add_geodata (owner: str = '0', dxfattribs=None) — GeoData

Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OBJECTS
section and NOT in the layout entity space, and it is linked to the layout by an extension dictionary located in
BLOCK_RECORD of the layout.

The GEODATA entity requires DXF version R2010+. The DXF Reference does not document if other
layouts than model space supports geo referencing, so getting/setting geo data may only make sense for the
model space layout, but it is also available in paper space layouts.

Parameters
¢ owner - handle to owner as hex string
e dxfattribs — DXF attributes for GeoDat a entity
add_image_def (filename: str, size_in_pixel: tuple[int, int], name: str | None = None) — ImageDef
Add an image definition to the objects section.

Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (X, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.

Absolute image paths works best for AutoCAD but not really good, you have to update external references
manually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also
have touse: set raster variables /().

Parameters
* filename — image file name (absolute path works best for AutoCAD)
* size_in_pixel - image size in pixel as (X, y) tuple
* name - image name for internal use, None for using filename as name (best for AutoCAD)

add_placeholder (owner: str = 0') — Placeholder
Add anew Placeholder object.

Parameters
owner — handle to owner as hex string.

add_underlay_def (filename: str, fmt: str = 'pdf’, name: str | None = None) — UnderlayDefinition

Add an UnderlayDefinition entity to the drawing (OBJECTS section). filename is the underlay file
name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to
create an underlay reference.

Parameters
¢ filename — underlay file name

e fmt — file format as string 'pdf"' | 'dwf' | 'dgn’

9.9.

Reference 331

ezdxf Documentation, Release 1.2.0

* name - pdf format = page number to display; dgn format = 'default'; dwf: 77?7

add_xrecord (owner: str = '0') — XRecord

Add a new XRecord object.

Parameters
owner — handle to owner as hex string.

set_raster_variables (frame: int = 0, quality: int = 1, units: str = 'm') — None

Set raster variables.
Parameters
e frame — 0 = do not show image frame; 1 = show image frame
* quality — 0 =draft; 1 = high

* units — units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm Millimeter

cm Centimeter

m Meter (ezdxf default)
km Kilometer

in Inch
ft Foot
yd Yard
mi Mile

none None

(internal API), public interface set_raster_variables ()

set_wipeout_variables (frame: int = 0) — None

Set wipeout variables.

Parameters
frame — 0 = do not show image frame; 1 = show image frame

(internal API)

Tables

Table Classes

Generic Table Class

class ezdxf.sections.table.Table

Generic collection of table entries. Table entry names are case insensitive: “Test” == “TEST”.

static key (name: str) — str
Unified table entry key.

has_entry (name: str) — bool

Returns True if a table entry name exist.

332 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

__contains___ (name: str) — bool

Returns True if a table entry name exist.

len () —int
Count of table entries.

__iter__ () — Iterator[T]
Iterable of all table entries.

new (name: str, dxfattribs=None) — T

Create a new table entry name.
Parameters
* name — name of table entry
e dxfattribs — additional DXF attributes for table entry

get (name: str) — T
Returns table entry name.

Parameters
name — name of table entry, case-insensitive

Raises
DXFTableEntryError — table entry does not exist

remove (name: str) — None

Removes table entry name.

Parameters
name — name of table entry, case-insensitive

Raises
DXFTableEntryError — table entry does not exist

duplicate_entry (name: str, new_name: str) — T

Returns a new table entry new_name as copy of name, replaces entry new_name if already exist.
Parameters
¢ name — name of table entry, case-insensitive
* new_name — name of duplicated table entry

Raises
DXFTableEntryError — table entry does not exist

Layer Table

class ezdxf.sections.table.LayerTable
Subclass of Table.
Collection of Layer objects.

add (name: str, *, color: int = const. BYLAYER, true_color: int | None = None, linetype: str = 'Continuous’,
lineweight: int = const. LINEWEIGHT BYLAYER, plot: bool = True, transparency: float | None = None,
dxfattribs=None) — Layer

Add anew Layer.

Parameters

9.9. Reference 333

ezdxf Documentation, Release 1.2.0

* name (str) - layer name
e color (int)— AutoCAD Color Index (ACI) value, default is BYLAYER

e true_color (int) — true color value, use ezdxf.rgb2int () to create int values
from RGB values

e linetype (str) - line type name, default is “Continuous”
* lineweight (int) - line weight, default is BYLAYER
* plot (bool) - plot layer as bool, default is True

* transparency - transparency value in the range [0, 1], where 1 is 100% transparent and
0 is opaque

e dxfattribs (dict) - additional DXF attributes

Linetype Table

class ezdxf.sections.table.LinetypeTable
Subclass of Table.

Collection of Linet ype objects.

add (name: str, pattern: Sequence[float] | str, *, description: str = ", length: float = 0.0, dxfattribs=None) —
Linetype

Add a new line type entry. The simple line type pattern is a list of floats [total_pattern_length,
eleml, elem2, ...] wherean element> 0 is a line, an element < O is a gap and an element == 0.0
is a dot. The definition for complex line types are strings, like: 'A, .5, -.2, ["GAS", STANDARD, S=.
1,U=0.0,X=-0.1,Y=-.05],—.25" similar to the line type definitions stored in the line definition .lin
files, for more information see the tutorial about complex line types. Be aware that not many CAD applications
and DXF viewers support complex linetypes.

See also:

e Tutorial for simple line types

e Tutorial for complex line types

Parameters
* name (str) — line type name
* pattern - line type pattern as list of floats or as a string
* description (str) - line type description, optional
* length (float) - total pattern length, only for complex line types required

e dxfattribs (dict) - additional DXF attributes

334 Chapter 9. Contents

https://ezdxf.mozman.at/docs/tutorials/linetypes.html
https://ezdxf.mozman.at/docs/tutorials/linetypes.html#tutorial-for-complex-linetypes

ezdxf Documentation, Release 1.2.0

Style Table

class ezdxf.sections.table.TextstyleTable
Subclass of Table.

Collection of Text st yle objects.

add (name: str, *, font: str, dxfattribs=None) — Textstyle

Add a new text style entry for TTF fonts. The entry must not yet exist, otherwise an DXFTableEntryEr—
ror exception will be raised.

Finding the TTF font files is the task of the DXF viewer and each viewer is different (hint: support files).
Parameters
* name (str) — text style name

e font (str)-TTF font file name like “Arial.ttf”, the real font file name from the file system
is required and only the Windows filesystem is case-insensitive.

e dxfattribs (dict) - additional DXF attributes

add_shx (shx_file_name: str, *, dxfattribs=None) — Textstyle

Add a new shape font (SHX file) entry. These are special text style entries and have no name. The entry must
not yet exist, otherwise an DXFTableEntryError exception will be raised.

Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is different (hint:
support files).

Parameters
¢ shx_file_name (str) - shape file name like “gdt.shx”
e dxfattribs (dict) - additional DXF attributes

get_shx (shx_file_name: str) — Textstyle
Get existing entry for a shape file (SHX file), or create a new entry.

Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is different (hint:
support files).

Parameters
shx_file_name (str) - shape file name like “gdt.shx”

find_shx (shx_file_name: str) — Textstyle | None
Find the shape file (SHX file) text style table entry, by a case-insensitive search.

A shape file table entry has no name, so you have to search by the font attribute.

Parameters
shx_file_name (str) - shape file name like “gdt.shx”

discard_shx (shx_file_name: str) — None
Discard the shape file (SHX file) text style table entry. Does not raise an exception if the entry does not exist.

Parameters
shx_file_name (str) - shape file name like “gdt.shx”

9.9. Reference 335

ezdxf Documentation, Release 1.2.0

DimStyle Table

class ezdxf.sections.table.DimStyleTable
Subclass of Table.

Collection of DimSt y1e objects.

add (name: str, *, dxfattribs=None) — DimStyle

Add a new dimension style table entry.
Parameters
* name (str)— dimension style name

e dxfattribs (dict) - DXF attributes

ApplID Table

class ezdxf.sections.table.AppIDTable
Subclass of Table.

Collection of AppID objects.

add (name: str, *, dxfattribs=None) — ApplD
Add a new appid table entry.

Parameters
* name (str)— appid name

e dxfattribs (dict) - DXEF attributes

UCS Table

class ezdxf.sections.table.UCSTable
Subclass of Table.

Collection of UCSTableEntry objects.

add (name: str, *, dxfattribs=None) — UCSTableEntry
Add a new UCS table entry.

Parameters
¢ name (str) - UCS name

e dxfattribs (dict) - DXEF attributes

336 Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

View Table

class ezdxf.sections.table.ViewTable
Subclass of Table.

Collection of View objects.

add (name: str, *, dxfattribs=None) — View
Add a new view table entry.

Parameters
* name (str)— view name

e dxfattribs (dict) - DXEF attributes

Viewport Table

class ezdxf.sections.table.ViewportTable

The viewport table stores the modelspace viewport configurations. A viewport configuration is a tiled view of
multiple viewports or just one viewport. In contrast to other tables the viewport table can have multiple entries
with the same name, because all viewport entries of a multi-viewport configuration are having the same name - the
viewport configuration name.

The name of the actual displayed viewport configuration is “* ACTIVE”.
Duplication of table entries is not supported: duplicate_entry () raises NotImplementedError

add (name: str, *, dxfattribs=None) — VPort

Add a new modelspace viewport entry. A modelspace viewport configuration can consist of multiple viewport
entries with the same name.

Parameters
* name (str)— viewport name, multiple entries possible
e dxfattribs (dict) - additional DXF attributes

get_config (self, name: str) — List[VPort]
Returns a list of VPort objects, for the multi-viewport configuration name.

delete_config (name: str) — None

Delete all VPort objects of the multi-viewport configuration name.

Block Record Table

class ezdxf.sections.table.BlockRecordTable
Subclass of Table.

Collection of B1ockRecord objects.

add (name: str, *, dxfattribs=None) — BlockRecord
Add a new block record table entry.

Parameters
¢ name (str)— block record name

e dxfattribs (dict) - DXEF attributes

9.9. Reference 337

ezdxf Documentation, Release 1.2.0

Layer

LAYER (DXF Reference) definition, defines attribute values for entities on this layer for their attributes set to BYLAYER.

Important: A layer assignment is just an attribute of a DXF entity, it’s not an entity container, the entities are stored in
layouts and blocks and the assigned layer is not important for that.

Deleting a layer entry does not delete the entities which reference this layer!

Subclass of ezdxf.entities.DXFEntity
DXF type '"LAYER'
Factory function Drawing.layers.new ()

See also:
Basic concepts of Layers and Tutorial for Layers
class ezdxf.entities.Layer
dxf.handle
DXEF handle (feature for experts)

dxf .owner

Handle to owner (LayerTable).

dxf .name

Layer name, case insensitive and can not contain any of this characters: <>/\":; 2*|=" (str)

dxf.flags
Layer flags (bit-coded values, feature for experts)

1 Layer is frozen; otherwise layer is thawed; use is_frozen (), freeze () and thaw ()

2 Layer is frozen by default in new viewports

4 Layer is locked; use is_locked (), lock (),unlock ()

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is for the benefit of AutoCAD commands. It can be ignored by most programs
that read DXEF files and need not be set by programs that write DXF files)

dxf.color
Layer color, but use property Layer. color to get/set color value, because color is negative for layer status
off (int)

dxf.true_color

Layer true color value as int, use property Layer. rgb to set/get true color value as (r, g, b) tuple.
(requires DXF R2004)

dxf.linetype
Name of line type (str)

338 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D94802B0-8BE8-4AC9-8054-17197688AFDB

ezdxf Documentation, Release 1.2.0

dxf.plot

Plot flag (int). Whether entities belonging to this layer should be drawn when the document is exported
(plotted) to pdf. Does not affect visibility inside the CAD application itself.

1 plot layer (default value)
0 don’t plot layer

dxf.lineweight

Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line weight is 200,
values outside this range prevents AutoCAD from loading the file.

ezdxf.lldxf.const.LINEWEIGHT_DEFAULT for using global default line weight.
(requires DXF R13)
dxf.plotstyle_handle
Handle to plot style name?
(requires DXF R13)

dxf.material_handle

Handle to default Material.

(requires DXF R13)
rgb
Get/set DXF attribute dxf. t rue_color as (1, g, b) tuple, returns None if attribute dxf. t rue_color
is not set.
layer.rgb = (30, 40, 50)

r, g, b = layer.rgb

This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level
attribute dxf.true color.

color

Get/set layer color, preferred method for getting the layer color, because dxf. color is negative for layer
status off.

description

Get/set layer description as string

transparency

Get/set layer transparency as float value in the range from O to 1. O for no transparency (opaque) and 1 for
100% transparency.

is_frozen () — bool

Returns True if layer is frozen.

freeze () — None
Freeze layer.

thaw () — None
Thaw layer.

is_locked () — bool
Returns True if layer is locked.

9.9. Reference 339

ezdxf Documentation, Release 1.2.0

lock () — None

Lock layer, entities on this layer are not editable - just important in CAD applications.

unlock () — None

Unlock layer, entities on this layer are editable - just important in CAD applications.

is_off () — bool

Returns True if layer is off.

is_on () — bool

Returns True if layer is on.

on () — None

Switch layer on (visible).

off () — None
Switch layer off (invisible).

get_color () — int

Use property Layer. color instead.

set_color (value: int) — None

Use property Layer. color instead.

rename (name: str) — None

Rename layer and all known (documented) references to this layer.

Warning: The DXF format is not consistent in storing layer references, the layers are mostly referenced
by their case-insensitive name, some later introduced entities do reference layers by handle, which is the
safer way in the context of renaming layers.

There is no complete overview of where layer references are stored, third-party entities are black-boxes
with unknown content and layer names could be stored in the extended data section of any DXF entity or
in XRECORD entities. Which means that in some rare cases references to the old layer name can persist,
at least this does not invalidate the DXF document.

Parameters
name — new layer name

Raises

¢ ValueError — name contains invalid characters: <>/":;?7*|="
* ValueError - layer name already exist

* ValueError —renaming of layers ' 0' and 'DEFPOINTS"' not possible

get_vp_overrides () — LayerOverrides
Returns the LayerOverrides object for this layer.

. Contents

ezdxf Documentation, Release 1.2.0

LayerOverrides

class ezdxf.entities.LayerOverrides

This object stores the layer attribute overridden in Viewport entities, where each Viewport can have individual
layer attribute overrides.

Layer attributes which can be overridden:
* ACI color
* true color (rgb)
* linetype
* lineweight
¢ transparency
Get the override object for a certain layer by the Layer.get_vp_overrides () method.

It is important to write changes back by calling commit (), otherwise the changes are lost.

Important: The implementation of this feature as DXF structures is not documented by the DXF reference, so
if you encounter problems or errors, ALWAYS provide the DXF files, otherwise it is not possible to help.

has_overrides (vp_handle: str | None = None) — bool
Returns True if attribute overrides exist for the given Viewport handle. Returns True if any attribute
overrides exist if the given handle is None.

commit () — None

Write Viewport overrides back into the Layer entity. Without a commit() all changes are lost!

get_color (vp_handle: str) — int

Returns the AutoCAD Color Index (ACI) override or the original layer value if no override exist.

set_color (vp_handle: str, value: int) — None
Override the AutoCAD Color Index (ACI).
Raises
ValueError — invalid color value
get_rgb (vp_handle: str) — RGB | None
Returns the RGB override or the original layer value if no override exist. Returns None if no true color value
is set.
set_xrgb (vp_handle: str, value: RGB | None)
Set the RGB override as (red, gree, blue) tuple or None to remove the true color setting.
Raises
ValueError — invalid RGB value
get_transparency (vp_handle: str) — float
Returns the transparency override or the original layer value if no override exist. Returns 0.0 for opaque and
1.0 for fully transparent.
set_transparency (vp_handle: str, value: float) — None
Set the transparency override. A transparency of 0.0 is opaque and 1.0 is fully transparent.

Raises
ValueError — invalid transparency value

9.9. Reference 341

ezdxf Documentation, Release 1.2.0

get_1linetype (vp_handle: str) — str
Returns the linetype override or the original layer value if no override exist.

set_linetype (vp_handle: str, value: str) — None
Set the linetype override.

Raises
ValueError - linetype without a LTYPE table entry

get_lineweight (vp_handle: str) — int
Returns the lineweight override or the original layer value if no override exist.
set_lineweight (vp_handle: str, value: int) — None

Set the lineweight override.

Raises
ValueError — invalid lineweight value

discard (vp_handle: str | None = None) — None

Discard all attribute overrides for the given Viewport handle or for all Viewport entities if the handle is
None.

Style

Important: DXF is not a layout preserving data format like PDF. It is more similar to the MS Word format. Many
applications can open MS Word documents, but the displayed or printed document does not look perfect like the result
of MS Word.

The final rendering of DXF files is highly dependent on the interpretation of DXF entities by the rendering engine, and the
DXEF reference does not provide any guidelines for rendering entities. The biggest visual differences of CAD applications
are the text renderings, therefore the only way to get the exact same result is to use the same CAD application.

The DXF format does not and can not embed TTF fonts like the PDF format!

The Text st y1e entity defines a text style (DXF Reference), and can be used by the entities: Text, Attrib, Attdef,
MText, Dimension, Leader and MultiLeader.

Example to create a new text style “Arial” and to apply this text style:

doc.styles.add ("Arial", font="Arial.ttf")
msp = doc.modelspace ()
msp.add_text ("my text", dxfattribs={"style": "Arial"})

The settings stored in the Text st y 1 e entity are the default text style values used by CAD applications if the text settings
are not stored in the text entity itself. But not all setting are substituted by the default value. The height or width
attribute must be stored in the text entities itself in order to influence the appearance of the text. It is recommended that
you do not rely on the default settings in the Text st y1e entity, set all attributes in the text entity itself if supported.

342 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EF68AF7C-13EF-45A1-8175-ED6CE66C8FC9

ezdxf Documentation, Release 1.2.0

Font Settings

Just a few settings are available exclusive by the Text sty le entity:

The most important setting is the font attribute, this attribute defines the rendering font as raw TTF file name, e.g.
“Arial.ttf” or “OpenSansCondensed-Light.ttf”, this file name is often not the name displayed in GUI application and you
have to digg down into the fonts folder e.g. (“C:\Windows\Fonts”) to get the real file name for the TTF font. Do not
include the path!

Algemein Sicherheit Detals Vorgdngerversionen

A OpenSansCondensed-Light Hf

Dateityp: True Type-Schriftartendatei ()

Cffnen mit: A Windows-Schriftartenanzeige Endem...

Ort: CWindows\Fonts

Grofe: 215 KB (220,540 Bytes)

Grole auf ‘

Datentrager: 216 KB (221.184 Bytes)

Erstellt: Sonntag, 30. Dezember 2018, 11:34:05

Geandert: Maontag, 9. Mai 2011, 01:00:00

ﬁ;tnﬁr Heute, 21. Februar 2021, vor 38 Minuten
Atribute: [] Schreibgeschiitzt Erweitert...
[] Versteckt
QK Abbrechen Dbemehmen

AutoCAD supports beyond the legacy SHX fonts only TTF fonts. The SHX font format is not documented and only
available in some CAD applications. The ezdxf drawing add-on replaces the SHX fonts by TTF fonts, which look
similar to the SHX fonts, unfortunately the license of these fonts is unclear, therefore they can not be packaged with
ezdxf. They are installed automatically if you use an Autodesk product like TrueView, or search the internet at you own
risk for these TTF fonts.

The extended font data can provide extra information for the font, it is stored in the XDATA section, not well documented
and not widely supported.

Important: The DXF format does not and can not embed TTF fonts like the PDF format!

You need to make sure that the CAD application is properly configured to have access to the system fonts. The DXF
format has no setting where the CAD application should search for fonts, and does not guarantee that the text rendering

9.9. Reference 343

https://www.autodesk.com/products/dwg/viewers

ezdxf Documentation, Release 1.2.0

on other computers or operating systems looks the same as on your current system on which you created the DXF.

The second exclusive setting is the vertical text flag in Textstyle.flags. The vertical text style is enabled for all
entities using the text style. Vertical text works only for SHX fonts and is not supported for TTF fonts (in AutoCAD) and
is works only for the single line entities Text and At trib. Most CAD applications beside AutoCAD and BricsCAD
do not support vertical text rendering and even AutoCAD and BricsCAD have problems with vertical text rendering in
some circumstances. Using the vertical text feature is not recommended.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'STYLE'
Factory function Drawing.styles.new ()

See also:

Tutorial for Text and DXF internals for DIMSTYLE Table.

class ezdxf.entities.Textstyle

property is_backward: bool
Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.

property is_upside_down: bool

Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.

property is_vertical_stacked: bool

Get/set style flag VERTICAL_STACKED, for vertical stacked text.
property is_shape_file: bool

True if entry describes a shape.
dxf.handle

DXEF handle (feature for experts).
dxf.owner

Handle to owner (TextstyleTable).
dxf .name

Style name (str)
dxf.flags

Style flags (feature for experts).

1 If set, this entry describes a shape
4 Vertical text
16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)commands. It can be ignored by most
programs that read DXF files and need not be set by programs that write DXF files)

dxf.height

Fixed height in drawing units as float value, O for not fixed.

344

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dxf.width

Width factor as float value, default value is 1.

dxf.oblique

Oblique (slanting) angle in degrees as float value, default value is O for no slanting.

dxf.generation_flags

Text generations flags as int value.

2 text is backward (mirrored along the x-axis)
4 text is upside down (mirrored about the base line)

dxf.last_height
Last height used in drawing units as float value.

dxf.font
Raw font file name as string without leading path, e.g. “Arial.ttf” for TTF fonts or the SHX font name like
“TXT” or “TXT.SHX”.

dxf.bigfont

Big font name as string, blank if none. No documentation how to use this feature, maybe just a legacy artifact.

property has_extended_font_data: bool

Returns True if extended font data is present.

get_extended_font_data () — tuple[str, bool, bool]
Returns extended font data as tuple (font-family, italic-flag, bold-flag).

132

The extended font data is optional and not reliable! Returns (“”, False, False) if extended font data is not

present.
set_extended_font_data (family: str = ", *, italic=False, bold=False) — None
Set extended font data, the font-family name family is not validated by ezdxf. Overwrites existing data.

discard_extended_font_data ()
Discard extended font data.

make_font (cap_height: float | None = None, width_factor: float | None = None) — fonts.AbstractFont

Returns a font abstraction AbstractFont for this text style. Returns a font for a cap height of 1, if the
text style has auto height (Textstyle.dxf.height is 0) and the given cap_height is None or 0. Uses
the Textstyle.dxf.width attribute if the given width_factor is None or 0, the default value is 1. The
attribute Textstyle.dxf.big_~font isignored.

Linetype

Defines a linetype (DXF Reference).

Subclass of ezdxf.entities.DXFEntity
DXF type '"LTYPE'
Factory function Drawing.linetypes.new ()

See also:

Tutorial for Creating Linetype Pattern

9.9. Reference 345

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC

ezdxf Documentation, Release 1.2.0

DXEF Internals: LTYPE Table

class ezdxf.entities.Linetype

dxf .name

Linetype name (str).

dxf .owner

Handle to owner (Table).

dxf.description

Linetype description (str).

dxf.length

Total pattern length in drawing units (float).

dxf.items

Number of linetype elements (int).

DimStyle

blue vars available in R13+
green vars available in R2007+

suppress
dimsoxd (175)

dimexe (44)

dimexo (42)

Text

color: dimclrt (178)
v-position: dimtad=1(77)
h-position: dimjust (280)

distance: 3 drawing units

&2 Definition points defined in the Dimension entity

Dimension Line SUppress
color: dimcrld (176) dimsoxd (175)
X lineweight: dimlwd (371) S)
dimdle (46) linetype: dimltype (345) = dimdle (46,)\
-+ £ - =
I ¥ - 97 I 5
g T 72
N hrrow 1 s Arrow 2 / -
block name: dimblk? (6) or dimblk(5) = block name: dimblk2 (7)
scale factor: dimasz (41) — 300 — & or dimblk(S)
color: dimclrd (176) S
on/off: dimsah (173) A
stroke instead blk: dimtsz > 0 (142) dimgap (147) _ Etension Line 2 —\
Extension Line 1 dimtad=0 (77) g suppress: dimse2 (76)
Fcolor:dimclre(177) — 1= linetype: dimltex2 (347)
suppress: dimse1 (75) 300 2 _
lineweight: dimiwe (372) dimtad=4 (77) = S5
linetype: dimtex1 (346) I S
>4 < SR =

346

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

blue vars available in R13+ measurement * (dimlfac = 100) (144)

dimrnd = 0.5 (45): rounding value
dimdec=1(271): decimal places

[] =
dimtad=1(77) /o /
dimzin =12 (78): zero suppression / / iE,
dimsep="" (278) E

dimtvp=0 (145)
/dimtad:0(77) . CI l I \
dimsd1 (281) (282)

dimsd2 (282
- - - -

dimgap (147) dimgap (147) PP
dimpost = "<>mm" (3)

suppress

DIMSTYLE (DXF Reference) defines the appearance of Dimension entities. Each of this dimension variables starting
with "dim. . ." can be overridden for any Dimension entity individually.

Subclass of ezdxf.entities.DXFEntity
DXF type "DIMSTYLE'
Factory function Drawing.dimstyles.new ()

class ezdxf.entities.DimStyle

dxf.owner

Handle to owner (Table).
dxf .name

Dimension style name.
dxf.flags

Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent XREF has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.dimpost

Prefix/suffix for primary units dimension values.

9.9. Reference 347

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F2FAD36F-0CE3-4943-9DAD-A9BCD2AE81DA

ezdxf Documentation, Release 1.2.0

dxf

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

.dimapost

Prefix/suffix for alternate units dimensions.

dimblk

Block type to use for both arrowheads as name string.

dimblkl

Block type to use for first arrowhead as name string.

dimblk2

Block type to use for second arrowhead as name string.

dimscale

Global dimension feature scale factor. (default=1)

dimasz

Dimension line and arrowhead size. (default=0.25)

dimexo

Distance from origin points to extension lines. (default imperial=0.0625, default metric=0.625)
dimdli

Incremental spacing between baseline dimensions. (default imperial=0.38, default metric=3.75)
dimexe

Extension line distance beyond dimension line. (default imperial=0.28, default metric=2.25)
dimrnd

Rounding value for decimal dimensions. (default=0)

Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to 0.25, all distances
round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer.

dimdle

Dimension line extension beyond extension lines. (default=0)

dimtp

Upper tolerance value for tolerance dimensions. (default=0)

dimtm

Lower tolerance value for tolerance dimensions. (default=0)

dimtxt

Size of dimension text. (default imperial=0.28, default metric=2.5)

dimcen

Controls placement of center marks or centerlines. (default imperial=0.09, default metric=2.5)
dimtsz

Controls size of dimension line tick marks drawn instead of arrowheads. (default=0)
dimaltf

Alternate units dimension scale factor. (default=25.4)

dimlfac

Scale factor for linear dimension values. (default=1)

dimtvp

Vertical position of text above or below dimension line if dimtad is 0. (default=0)

348

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dxf.dimtfac

Scale factor for fractional or tolerance text size. (default=1)
dxf .dimgap

Gap size between dimension line and dimension text. (default imperial=0.09, default metric=0.625)
dxf.dimaltrnd

Rounding value for alternate dimension units. (default=0)
dxf.dimtol

Toggles creation of appended tolerance dimensions. (default imperial=1, default metric=0)
dxf.dimlim

Toggles creation of limits-style dimension text. (default=0)
dxf.dimtih

Orientation of text inside extension lines. (default imperial=1, default metric=0)
dxf.dimtoh

Orientation of text outside extension lines. (default imperial=1, default metric=0)
dxf.dimsel

Toggles suppression of first extension line. (default=0)
dxf.dimse2

Toggles suppression of second extension line. (default=0)

dxf.dimtad

Sets vertical text placement relative to dimension line. (default imperial=0, default metric=1)

center

above

outside, handled like above by ezdxf
JIS, handled like above by ezdxf
below

B WO = O

dxf.dimzin

Zero suppression for primary units dimensions. (default imperial=0, default metric=8)

Values 0-3 affect feet-and-inch dimensions only.

Suppresses zero feet and precisely zero inches

Includes zero feet and precisely zero inches

Includes zero feet and suppresses zero inches

Includes zero inches and suppresses zero feet

Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)

Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)
2 Suppresses both leading and trailing zeros (for example, 0.5000 becomes .5)

— 00 N~ W = O

dxf.dimazin

Controls zero suppression for angular dimensions. (default=0)

9.9. Reference 349

ezdxf Documentation, Release 1.2.0

0 Displays all leading and trailing zeros

1 Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)

2 Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)

3 Suppresses leading and trailing zeros (for example, 0.5000 becomes .5)
dxf.dimalt

Enables or disables alternate units dimensioning. (default=0)
dxf.dimaltd

Controls decimal places for alternate units dimensions. (default imperial=2, default metric=3)
dxf.dimtofl

Toggles forced dimension line creation. (default imperial=0, default metric=1)
dxf.dimsah

Toggles appearance of arrowhead blocks. (default=0)
dxf.dimtix

Toggles forced placement of text between extension lines. (default=0)
dxf.dimsoxd

Suppresses dimension lines outside extension lines. (default=0)
dxf.dimelrd

Dimension line, arrowhead, and leader line color. (default=0)
dxf.dimeclre

Dimension extension line color. (default=0)
dxf.dimeclrt

Dimension text color. (default=0)
dxf.dimadec

Controls the number of decimal places for angular dimensions.
dxf.dimunit

Obsolete, now use DIMLUNIT AND DIMFRAC
dxf.dimdec

Decimal places for dimension values. (default imperial=4, default metric=2)
dxf.dimtdec

Decimal places for primary units tolerance values. (default imperial=4, default metric=2)
dxf.dimaltu

Units format for alternate units dimensions. (default=2)
dxf.dimalttd

Decimal places for alternate units tolerance values. (default imperial=4, default metric=2)
dxf.dimaunit

Unit format for angular dimension values. (default=0)

dxf.dimfrac

Controls the fraction format used for architectural and fractional dimensions. (default=0)

350 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dxf.dimlunit

Specifies units for all nonangular dimensions. (default=2)

dxf.dimdsep
Specifies a single character to use as a decimal separator. (default imperial = “.”, default metric = “,”) This is
an integer value, use ord (" . ") to write value.

dxf.dimtmove

Controls the format of dimension text when it is moved. (default=0)

0 Moves the dimension line with dimension text
1 Adds a leader when dimension text is moved
2 Allows text to be moved freely without a leader

dxf.dimjust

Horizontal justification of dimension text. (default=0)

Center of dimension line

Left side of the dimension line, near first extension line
Right side of the dimension line, near second extension line
Over first extension line

Over second extension line

A WD = O

dxf.dimsdl

Toggles suppression of first dimension line. (default=0)
dxf.dimsd2

Toggles suppression of second dimension line. (default=0)

dxf.dimtolj

Vertical justification for dimension tolerance text. (default=1)

0 Align with bottom line of dimension text
1 Align vertical centered to dimension text
2 Align with top line of dimension text

dxf.dimtzin

Zero suppression for tolerances values, see DimStyle.dxf.dimzin
dxf.dimaltz

Zero suppression for alternate units dimension values. (default=0)
dxf.dimalttz

Zero suppression for alternate units tolerance values. (default=0)
dxf.dimfit

Obsolete, now use DIMATFIT and DIMTMOVE

dxf.dimupt

Controls user placement of dimension line and text. (default=0)

9.9.

Reference 351

ezdxf Documentation, Release 1.2.0

dxf.dimatfit
Controls placement of text and arrowheads when there is insufficient space between the extension lines. (de-
fault=3)

dxf.dimtxsty
Text style used for dimension text by name.

dxf.dimtxsty_handle

Text style used for dimension text by handle of STYLE entry. (use DimStyle.dxf.dimtxsty to get/set
text style by name)

dxf.dimldrblk
Specify arrowhead used for leaders by name.

dxf.dimldrblk_handle
Specify arrowhead used for leaders by handle of referenced block. (use DimStyle.dxf.dimldrblkto
get/set arrowhead by name)

dxf.dimblk_handle
Block type to use for both arrowheads, handle of referenced block. (use DimStyle.dxf.dimblk to
get/set arrowheads by name)

dxf.dimblkl_handle
Block type to use for first arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk1 to
get/set arrowhead by name)

dxf.dimblk2_handle
Block type to use for second arrowhead, handle of referenced block. (use DimStyle.dxf.dimblkZ2 to
get/set arrowhead by name)

dxf.dimlwd
Lineweight value for dimension lines. (default=-2, BYBLOCK)

dxf.dimlwe
Lineweight value for extension lines. (default=-2, BYBLOCK)
dxf.dimltype
Specifies the linetype used for the dimension line as linetype name, requires DXF R2007+

dxf.dimltype_handle

Specifies the linetype used for the dimension line as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltype to get/set linetype by name)

dxf.dimltexl
Specifies the linetype used for the extension line 1 as linetype name, requires DXF R2007+

dxf.dimlex1l_handle
Specifies the linetype used for the extension line 1 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex] to get/set linetype by name)

dxf.dimltex2
Specifies the linetype used for the extension line 2 as linetype name, requires DXF R2007+

dxf.dimlex2_handle

Specifies the linetype used for the extension line 2 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex2 to get/set linetype by name)

352

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dxf.dimfxlon
Extension line has fixed length if set to 1, requires DXF R2007+

dxf.dimfxl
Length of extension line below dimension line if fixed (DimStyle.dxf.dimtfxlon==1),DimStyle.
dxf .dimexen defines the length above the dimension line, requires DXF R2007+

dxf.dimt£fill
Text fill O=off; 1=background color; 2=custom color (see DimStyle.dxf.dimtfillclr), requires
DXF R2007+

dxf.dimtfillclr
Text fill custom color as color index (1-255), requires DXF R2007+

dxf.dimarcsym
Display arc symbol, supported only by ArcDimension:

0 arc symbol preceding the measurement text
1 arc symbol above the measurement text
2 disable arc symbol

copy_to_header (doc: Drawing)

Copy all dimension style variables to HEADER section of doc.

set_arrows (blk: str =", blkl: str = ", blk2: str = ", ldrblk: str = ") — None
Set arrows by block names or AutoCAD standard arrow names, set DIMTSZ to 0 which disables tick.

Parameters
¢ blk — block/arrow name for both arrows, if DIMSAH is 0
¢ blk1 — block/arrow name for first arrow, if DIMSAH is 1
¢ blk2 — block/arrow name for second arrow, if DIMSAH is 1
e 1drblk - block/arrow name for leader

set_tick (size: float = 1) — None
Set tick size, which also disables arrows, a tick is just an oblique stroke as marker.
Parameters
size — arrow size in drawing units
set_text_align (halign: str | None = None, valign: str | None = None, vshift: float | None = None) — None

Set measurement text alignment, halign defines the horizontal alignment (requires DXF R2000+), valign
defines the vertical alignment, abovel and above2 means above extension line 1 or 2 and aligned with extension

line.
Parameters
¢ halign - “left”, “right”, “center”, “abovel”, “above2”, requires DXF R2000+
e valign - “above”, “center”, “below”
* vshift — vertical text shift, if valign is “center”; >0 shift upward, <0 shift downwards
set_text_format (prefix: str = ", postfix: str = ", rnd: float | None = None, dec: int | None = None, sep: str |

None = None, leading_zeros: bool = True, trailing_zeros: bool = True)

Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.

9.9.

Reference 353

ezdxf Documentation, Release 1.2.0

Parameters
* prefix — Dimension text prefix text as string
* postfix — Dimension text postfix text as string

¢ rnd - Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

* dec - Sets the number of decimal places displayed for the primary units of a dimension,
requires DXF R2000+

@ @

e sep - “.” or “,” as decimal separator, requires DXF R2000+
* leading_zeros — Suppress leading zeros for decimal dimensions if False
* trailing_zeros — Suppress trailing zeros for decimal dimensions if False

set_dimline_format (color: int | None = None, linetype: str | None = None, lineweight: int | None = None,
extension: float | None = None, disablel: bool | None = None, disable2: bool | None
= None)

Set dimension line properties
Parameters
* color - color index
* linetype - linetype as string, requires DXF R2007+
¢ lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm, requires DXF R2000+
* extension - extension length
* disablel — True to suppress first part of dimension line, requires DXF R2000+
* disable2 - True to suppress second part of dimension line, requires DXF R2000+

set_extline_format (color: int | None = None, lineweight: int | None = None, extension: float | None =
None, offset: float | None = None, fixed_length: float | None = None)

Set common extension line attributes.
Parameters
* color - color index
* lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
¢ extension - extension length above dimension line
* offset - offset from measurement point
» fixed_length - set fixed length extension line, length below the dimension line

set_extlinel (linetype: str | None = None, disable=False)

Set extension line 1 attributes.
Parameters
¢ linetype - linetype for extension line 1, requires DXF R2007+
* disable - disable extension line 1 if True

set_extline2 (linetype: str | None = None, disable=False)
Set extension line 2 attributes.

Parameters

354 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

¢ linetype - linetype for extension line 2, requires DXF R2007+
* disable - disable extension line 2 if True

set_tolerance (upper: float, lower: float | None = None, hfactor: float = 1.0, align: MTextLineAlignment |
None = None, dec: int | None = None, leading_zeros: bool | None = None, trailing_zeros:
bool | None = None) — None

Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and
trailing zero suppression.

Parameters
e upper — upper tolerance value
* lower - lower tolerance value, if None same as upper
* hfactor - tolerance text height factor in relation to the dimension text height

* align - tolerance text alignment enum ezdxf.enums.MTextLineAlignment re-
quires DXF R2000+

* dec - Sets the number of decimal places displayed, requires DXF R2000+

* leading_zeros - suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

* trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+

set_limits (upper: float, lower: float, hfactor: float = 1.0, dec: int | None = None, leading_zeros: bool | None
= None, trailing_zeros: bool | None = None) — None

Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading
and trailing zero suppression.

Parameters
e upper — upper limit value added to measurement value
* lower — lower limit value subtracted from measurement value
* hfactor - limit text height factor in relation to the dimension text height
¢ dec - Sets the number of decimal places displayed, requires DXF R2000+

* leading_zeros - suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

* trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+

VPort

The viewport table (DXF Reference) stores the modelspace viewport configurations. So this entries just modelspace
viewports, not paperspace viewports, for paperspace viewports see the Viewport entity.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'VPORT'
Factory function Drawing.viewports.new ()

9.9. Reference 355

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8CE7CC87-27BD-4490-89DA-C21F516415A9

ezdxf Documentation, Release 1.2.0

See also:
DXF Internals: VPORT Configuration Table

class ezdxf.entities.VPort
Subclass of DXFEntity

Defines a viewport configurations for the modelspace.

dxf .owner
Handle to owner (ViewportTable).
dxf .name

Viewport name

dxf.flags
Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.lower_left

Lower-left corner of viewport

dxf.upper_right

Upper-right corner of viewport

dxf.center

View center point (in DCS)

dxf.snap_base

Snap base point (in DCS)
dxf.snap_spacing

Snap spacing X and Y
dxf.grid_spacing

Grid spacing X and Y

dxf.direction_point

View direction from target point (in WCS)
dxf.target_point

View target point (in WCS)
dxf.height

View height
dxf.aspect_ratio
dxf.lens_length

Lens focal length in mm

dxf.front_clipping
Front clipping plane (offset from target point)

356 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dxf .back_clipping
Back clipping plane (offset from target point)

dxf.snap_rotation

Snap rotation angle in degrees

dxf.view_twist

View twist angle in degrees

dxf.status
dxf.view_mode
dxf.circle_zoom
dxf.fast_zoom

dxf.uecs_icon

¢ bit O: O=hide, 1=show
* bit 1: O=display in lower left corner, 1=display at origin

dxf.snap_on
dxf.grid_on
dxf.snap_style
dxf.snap_isopair

reset_wcs () — None

Reset coordinate system to the WCS.

View

The View table (DXF Reference) stores named views of the model or paperspace layouts. This stored views makes parts
of the drawing or some view points of the model in a CAD applications more accessible. This views have no influence
to the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the
convenience of CAD application users.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'VIEW'
Factory function Drawing.views.new ()

See also:
DXF Internals: VIEW Table
class ezdxf.entities.View
dxf.owner
Handle to owner (Table).

dxf .name

Name of view.

9.9. Reference 357

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C

ezdxf Documentation, Release 1.2.0

dxf.flags
Standard flag values (bit-coded values):

1 If set, this is a paper space view
16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)

dxf.height
View height (in DCS)

dxf.width
View width (in DCS)

dxf.center_point
View center point (in DCS)

dxf.direction_point
View direction from target (in WCS)

dxf.target_point
Target point (in WCS)

dxf.lens_length
Lens length

dxf.front_clipping
Front clipping plane (offset from target point)

dxf.back_clipping
Back clipping plane (offset from target point)

dxf.view_twist

Twist angle in degrees.

dxf.view_mode
View mode (see VIEWMODE system variable)

dxf.render_mode

Flat shaded with wireframe
Gouraud shaded with wireframe

0 2D Optimized (classic 2D)
1 Wireframe

2 Hidden line

3 Flat shaded

4 Gouraud shaded

5

6

dxf.ucs
1 if there is a UCS associated to this view; 0 otherwise

dxf.ues_origin

UCS origin as (x, y, z) tuple (appears only if ucs is set to 1)

358 Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

dxf.ucs_xaxis

UCS x-axis as (X, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_yaxis

UCS y-axis as (X, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_ortho_type

Orthographic type of UCS (appears only if ucs is set to 1)

0 UCS is not orthographic
1 Top

2 Bottom

3 Front

4 Back

5 Left

6 Right

dxf.elevation
UCS elevation
dxf.ucs_handle

Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed (appears only if ucs
issetto 1)

dxf .base_ucs_handle

Handle of UCSTable of base UCS if UCS is orthographic. If not present and ucs_ortho_type is
non-zero, then base UCS is taken to be WORLD (appears only if ucs is set to 1)

dxf.camera_plottable

1 if the camera is plottable

dxf .background_handle
Handle to background object (optional)

dxf.live_selection_handle

Handle to live section object (optional)

dxf.visual_style_handle

Handle to visual style object (optional)

dxf.sun_handle

Sun hard ownership handle.

ApplID

Defines an APPID (DXF Reference). These table entries maintain a set of names for all registered applications.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'APPID'
Factory function Drawing.appids.new ()

class ezdxf.entities.AppID

9.9. Reference 359

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6E3140E9-E560-4C77-904E-480382F0553E

ezdxf Documentation, Release 1.2.0

dxf .owner
Handle to owner (Table).

dxf.name
User-supplied (or application-supplied) application name (for extended data).

dxf.flags
Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

ucs

Defines an named or unnamed user coordinate system (DXF Reference) for usage in CAD applications. This UCS table
entry does not interact with ezdxf in any way, to do coordinate transformations by ezdxf use the ezdxf.math.UCS
class.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'ycs!
Factory function Drawing.ucs.new ()

See also:
UCS and OCS
class ezdxf.entities.UCSTableEntry
dxf.owner
Handle to owner (Table).

dxf .name
UCS name (str).

dxf.flags
Standard flags (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.origin
Origin as (X, y, z) tuple

dxf.xaxis

X-axis direction as (X, y, z) tuple

dxf.yaxis

Y-axis direction as (X, y, z) tuple

360 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1906E8A7-3393-4BF9-BD27-F9AE4352FB8B

ezdxf Documentation, Release 1.2.0

uecs () — UCS
Returns an ezdxf.math. UCS object for this UCS table entry.

BlockRecord

BLOCK_RECORD (DXF Reference) is the core management structure for Bl ockLayout and Layout. This is an
internal DXF structure managed by ezdxf, package users don’t have to care about it.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'BLOCK_RECORD'
Factory function Drawing.block_records.new ()

class ezdxf.entities.BlockRecord
dxf .owner
Handle to owner (Table).

dxf .name
Name of associated BLOCK.

dxf.layout
Handle to associated DXFLayout, if paperspace layout or modelspace else “0”

dxf.explode
1 for BLOCK references can be exploded else O

dxf.scale
1 for BLOCK references can be scaled else 0

dxf.units
BLOCK insert units

9.9. Reference 361

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A1FD1934-7EF5-4D35-A4B0-F8AE54A9A20A

ezdxf Documentation, Release 1.2.0

0 Unitless

1 Inches

2 Feet

3 Miles

4 Millimeters

5 Centimeters

6 Meters

7 Kilometers

8 Microinches

9 Mils

10 Yards

11 Angstroms

12 Nanometers

13 Microns

14 Decimeters

15 Decameters

16 Hectometers

17 Gigameters

18 Astronomical units
19 Light years

20 Parsecs

21 US Survey Feet
22 US Survey Inch
23 US Survey Yard
24 US Survey Mile

property is_active_paperspace: bool
True if is “active” paperspace layout.
property is_any_paperspace: bool
True if is any kind of paperspace layout.
property is_any_layout: bool
True if is any kind of modelspace or paperspace layout.
property is_block_layout: bool
True if not any kind of modelspace or paperspace layout, just a regular block definition.
property is_modelspace: bool
True if is the modelspace layout.
property is_xref: bool
True if represents an XREF (external reference) or XREF_OVERLAY.

362 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Internal Structure

Do not change this structures, this is just an information for experienced developers!

The BLOCK_RECORD is the owner of all the entities in a layout and stores them in an EntitySpace object
(BlockRecord.entity_space). For each layout exist a BLOCK definition in the BLOCKS section, a reference
to the B1ock entity is stored in BlockRecord.block.

Modelspace and Paperspace layouts require an additional DXFLayout object in the OBJECTS section.
See also:

More information about Block Management Structures and Layout Management Structures.

Blocks

A block definition (B1ockLayout) is a collection of DXF entities, which can be placed multiply times at different
layouts or other blocks as references to the block definition. Block layouts are located in the BLOCKS sections and are
accessible by the b1ocks attribute of the Drawing class.

See also:

Tutorial for Blocks and DXF Internals: Block Management Structures

Block

BLOCK (DXF Reference) entity is embedded into the B1ockLayout object. The BLOCK entity is accessible by the
BlockLayout .block attribute.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'BLOCK'
Factory function Drawing.blocks.new () (returnsa BlockLayout)

See also:
Tutorial for Blocks and DXF Internals: Block Management Structures
class ezdxf.entities.Block
dxf.handle
BLOCK handle as plain hex string. (feature for experts)

dxf.owner

Handle to owner as plain hex string. (feature for experts)
dxf.layer

Layer name as string; default value is '0'

dxf .name

BLOCK name as string. (case insensitive)

dxf.base_point
BLOCK base point as (x, vy, z) tuple, default valueis (0, 0, O0)

Insertion location referenced by the Tnsert entity to place the block reference and also the center of rotation
and scaling.

9.9. Reference 363

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-66D32572-005A-4E23-8B8B-8726E8C14302

ezdxf Documentation, Release 1.2.0

dxf.flags
BLOCK flags (bit-coded)

1 Anonymous block generated by hatching, associative dimensioning, other internal operations, or an

application

2 Block has non-constant attribute definitions (this bit is not set if the block has any attribute definitions

that are constant, or has no attribute definitions at all)
4 Block is an external reference (xref)
8 Block is an xref overlay
16 Block is externally dependent

32 This is a resolved external reference, or dependent of an external reference (ignored on input)

64 This definition is a referenced external reference (ignored on input)

dxf.xref_ path

File system path as string, if this block defines an external reference (XREF).

is_layout_block

Returns True if this is a Mode 1 space or Paperspace block definition.

is_anonymous

Returns True if this is an anonymous block generated by hatching, associative dimensioning, other internal

operations, or an application.

is_xref

Returns True if bock is an external referenced file.

is_xref_ overlay

Returns True if bock is an external referenced overlay file.

EndBlk

ENDBLK entity is embedded into the BlockLayout object. ~The ENDBLK entity is accessible by the

BlockLayout .endblk attribute.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'ENDBLK'

class ezdxf.entities.EndBlk
dxf.handle
BLOCK handle as plain hex string. (feature for experts)

dxf .owner

Handle to owner as plain hex string. (feature for experts)

dxf.layer

Layer name as string; should always be the same as Block.dxf.layer

364

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Insert

The INSERT entity (DXF Reference) represents a block reference with optional attached attributes as (At t rib) entities.

Subclass of

DXEF type

Factory function
Inherited DXF attributes

ezdxf.entities.DXFGraphic

'INSERT'

ezdxf.layouts.BaseLayout.add blockref ()
Common graphical DXF attributes

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Insert

dxf .name
BLOCK name (str)

dxf.insert

Insertion location of the BLOCK base point as (2D/3D Point in OCS)

dxf.xscale

Scale factor for x direction (float)

dxf.yscale

Scale factor for y direction (float)

Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.zscale

Scale factor for z direction (float)

Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.rotation

Rotation angle in degrees (float)

dxf.row_count

Count of repeated insertions in row direction, MINSERT entity if > 1 (int)

dxf.row_spacing

Distance between two insert points (MINSERT) in row direction (float)

dxf.column_count

Count of repeated insertions in column direction, MINSERT entity if > 1 (int)

dxf.column_spacing

Distance between two insert points (MINSERT) in column direction (float)

attribs

A list of all attached At t rib entities.

9.9. Reference

365

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-28FA4CFB-9D5E-4880-9F11-36C97578252F

ezdxf Documentation, Release 1.2.0

has_scaling

Returns True if scaling is applied to any axis.

has_uniform scaling

Returns True if the scale factor is uniform for x-, y- and z-axis, ignoring reflections e.g. (1, 1, -1) is uniform

scaling.

mcount

Returns the multi-insert count, MINSERT (multi-insert) processing is required if mcount > 1.

set_scale (factor: float)
Set a uniform scale factor.

block () — BlockLayout | None
Returns the associated BlockLayout.

place (insert: UVec | None = None, scale: tuple[float, float, float] | None = None, rotation: float | None =
None) — Insert

Set the location, scaling and rotation attributes. Arguments which are None will be ignored.
Parameters
* insert - insert location as (x, y [,z]) tuple
* scale - (x-scale, y-scale, z-scale) tuple
* rotation - rotation angle in degrees

grid (size: tuple[int, int] = (1, 1), spacing: tuple[float, float] = (1, 1)) — Insert

Place block reference in a grid layout, grid size defines the row- and column count, spacing defines the distance

between two block references.
Parameters
* size — grid size as (row_count, column_count) tuple
* spacing - distance between placing as (row_spacing, column_spacing) tuple

has_attrib (tag: str, search_const: bool = False) — bool

Returns True if the INSERT entity has an attached ATTRIB entity with the given tag. Some applications do
not attach constant ATTRIB entities, set search_const to True, to check for an associated At tDef entity

with constant content.
Parameters
* tag - tag name fo the ATTRIB entity
¢ search_const —search also const ATTDEF entities

get_attrib (fag: str, search_const: bool = False) — Attrib | AttDef | None

Get an attached Attrib entity with the given fag, returns None if not found. Some applications do not
attach constant ATTRIB entities, set search_const to True, to get at least the associated At tDe £ entity.

Parameters
¢ tag - tag name of the ATTRIB entity
¢ search_const —search also const ATTDEF entities

get_attrib_text (tag: str, default: str = ", search_const: bool = False) — str

Get content text of an attached Attrib entity with the given tag, returns the default value if not found.
Some applications do not attach constant ATTRIB entities, set search_const to True, to get content text of
the associated At tDef entity.

366

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Parameters
* tag - tag name of the ATTRIB entity
* default - default value if ATTRIB fag is absent
¢ search_const —search also const ATTDEEF entities

add_attrib (fag: str, text: str, insert: UVec = (0, 0), dxfattribs=None) — Attrib
Attach an At t rib entity to the block reference.

Example for appending an attribute to an INSERT entity:

e.add_attrib ('EXAMPLETAG', 'example text').set_placement (
(3, 7), align=TextEntityAlignment .MIDDLE_CENTER
)

Parameters
* tag - tag name of the ATTRIB entity
* text — content text as string
e insert - insert location as (X, y[, z]) tuple in OCS

e dxfattribs — additional DXF attributes for the ATTRIB entity

add_auto_attribs (values: dict[str, str]) — Insert

Attach for each At tdef entity, defined in the block definition, automatically an At t i b entity to the block
reference and set tag/value DXF attributes of the ATTRIB entities by the key/value pairs (both as
strings) of the values dict. The ATTRIB entities are placed relative to the insert location of the block reference,
which is identical to the block base point.

This method avoids the wrapper block of the add_auto_blockref () method, but the visual results may
not match the results of CAD applications, especially for non-uniform scaling. If the visual result is very
important to you, use the add_auto_blockref () method.

Parameters
values — Attrib tagvalues as tag/value pairs

delete_attrib (fag: str, ignore=False) — None

Delete an attached At ¢t rib entity from INSERT. Raises an DXFKeyError exception, if no ATTRIB for
the given fag exist if ignore is False.

Parameters
* tag - tag name of the ATTRIB entity
e ignore —False for raising DXFKeyError if ATTRIB tag does not exist.

Raises
DxXFKeyError —no ATTRIB for the given tag exist

delete_all_attribs () — None
Delete all Attrib entities attached to the INSERT entity.

transform (m: Matrix44) — Insert
Transform INSERT entity by transformation matrix m inplace.

Unlike the transformation matrix m, the INSERT entity can not represent a non-orthogonal target coordinate
system and an InsertTransformationError will be raised in that case.

9.9.

Reference 367

ezdxf Documentation, Release 1.2.0

translate (dx: float, dy: float, dz: float) — Insert
Optimized INSERT translation about dx in x-axis, dy in y-axis and dz in z-axis.
virtual_entities (¥ skipped_entity_callback: Callable[[DXFGraphic, str], None] | None = None,
redraw_order=False) — Iterator[DXFGraphic]
Yields the transformed referenced block content as virtual entities.
This method is meant to examine the block reference entities at the target location without exploding the
block reference. These entities are not stored in the entity database, have no handle and are not assigned to

any layout. It is possible to convert these entities into regular drawing entities by adding the entities to the
entities database and a layout of the same DXF document as the block reference:

doc.entitydb.add (entity)
msp = doc.modelspace ()
msp.add_entity (entity)

Warning: Non-uniform scale factors may return incorrect results for some entities (TEXT, MTEXT,
ATTRIB).

This method does not resolve the MINSERT attributes, only the sub-entities of the first INSERT will be
returned. To resolve MINSERT entities check if multi insert processing is required, that’s the case if the
property Insert.mcount > 1,usethe Tnsert.multi_insert () method to resolve the MINSERT
entity into multiple INSERT entities.

This method does not apply the clipping path created by the XCLIP command. The method returns all entities
and ignores the clipping path polygon and no entity is clipped.

The skipped_entity_callback() will be called for all entities which are not processed, signature:
skipped_entity_callback (entity: DXFEntity, reason: str), entityis the origi-
nal (untransformed) DXF entity of the block definition, the reason string is an explanation why the entity was
skipped.

Parameters

* skipped_entity_callback - called whenever the transformation of an entity is not
supported and so was skipped

¢ redraw_order - yield entities in ascending redraw order if True

multi_insert () — Iterator[Insert]
Yields a virtual INSERT entity for each grid element of a MINSERT entity (multi-insert).

explode (target_layout: BaseLayout | None = None, *, redraw_order=False) — EntityQuery

Explodes the block reference entities into the target layout, if target layout is None, the layout of the block
reference will be used. This method destroys the source block reference entity.

Transforms the block entities into the required WCS location by applying the block reference attributes insert,
extrusion, rotation and the scale factors xscale, yscale and zscale.

Attached ATTRIB entities are converted to TEXT entities, this is the behavior of the BURST command of
the AutoCAD Express Tools.

Warning: Non-uniform scale factors may lead to incorrect results some entities (TEXT, MTEXT,
ATTRIB).

Parameters

368 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

* target_layout - target layout for exploded entities, None for same layout as source
entity.

* redraw_order - create entities in ascending redraw order if True

Returns
Ent ityQuery container referencing all exploded DXF entities.

ucs ()
Returns the block reference coordinate system as ezdxf.math. UCS object.

matrix44 () — Matrix44
Returns a transformation matrix to transform the block entities from the block reference coordinate system

into the WCS.

reset_transformation () — None
Reset block reference attributes location, rotation angle and the extrusion vector but preserves the scale factors.

Attrib

The ATTRIB (DXF Reference) entity represents a text value associated with a tag. In most cases an ATTRIB is appended
to an Insert entity, but it can also be used as a standalone entity.

Subclass of ezdxf.entities. Text

DXF type '"ATTRIB'

Factory function ezdxf.layouts.BaselLayout.add_attrib () (stand alone entity)
Factory function Insert.add _attrib () (attached to Insert)

Inherited DXF attributes ~ Common graphical DXF attributes

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Attrib
ATTRIB supports all DXF attributes and methods of parent class Text.

dxf.tag
Tag to identify the attribute (str)

dxf.text

Attribute content as text (str)
property is_invisible: bool

Attribute is invisible if True.
property is_const: bool

This is a constant attribute if True.

property is_verify: bool
Verification is required on input of this attribute. (interactive CAD application feature)

9.9. Reference 369

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7DD8B495-C3F8-48CD-A766-14F9D7D0DD9B

ezdxf Documentation, Release 1.2.0

property is_preset: bool
No prompt during insertion. (interactive CAD application feature)

property has_embedded mtext_entity: bool
Returns True if the entity has an embedded MTEXT entity for multi-line support.

virtual_mtext_entity () — MText

Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties
as the host entity.

plain_mtext (fast=True) — str

Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.

The fast mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The accurate mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

The accurate mode is much slower than the fast mode.

Parameters
fast —uses the fast mode to extract the plain MTEXT content if True or the accurate mode
if setto False

set_mtext (mtext: MText, graphic_properties=True) — None

Set multi-line properties from a MText entity.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
* mtext — source MText entity

* graphic_properties - copy graphic properties (color, layer, ...) from source MTEXT
if True

embed_mtext (mtext: M1ext, graphic_properties=True) — None
Set multi-line properties from a MText entity and destroy the source entity afterwards.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
* mtext —source MText entity

* graphic_properties —copy graphic properties (color, layer, ...) from source MTEXT
if True

AttDef

The ATTDEF (DXF Reference) entity is a template in a Bl ockLayout, which will be used to create an attached
Attrib entity for an Tnsert entity.

Subclass of ezdxf.entities.Text
DXEF type 'ATTDEF"
Factory function ezdxf.layouts.BaseLayout.add_attdef ()

Inherited DXF attributes ~ Common graphical DXF attributes

370

Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0EA099B-6F88-4BCC-BEC7-247BA64838A4

ezdxf Documentation, Release 1.2.0

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.AttDef
ATTDEEF supports all DXF attributes and methods of parent class Text.

dxf.tag
Tag to identify the attribute (str)

dxf.text
Attribute content as text (str)

dxf .prompt
Attribute prompt string. (CAD application feature)

dxf.field_length
Just relevant to CAD programs for validating user input

property is_invisible: bool
Attribute is invisible if True.

property is_const: bool
This is a constant attribute if True.

property is_verify: bool
Verification is required on input of this attribute. (interactive CAD application feature)

property is_preset: bool
No prompt during insertion. (interactive CAD application feature)

property has_embedded mtext_entity: bool
Returns True if the entity has an embedded MTEXT entity for multi-line support.

virtual_mtext_entity () — MText
Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties
as the host entity.

plain_mtext (fast=True) — str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.

The fast mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The accurate mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

The accurate mode is much slower than the fast mode.

Parameters
fast —uses the fast mode to extract the plain MTEXT content if True or the accurate mode
if settoFalse

set_mtext (mtext: MText, graphic_properties=True) — None
Set multi-line properties from a MText entity.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

9.9. Reference 371

ezdxf Documentation, Release 1.2.0

Parameters

* mtext — source MText entity

* graphic_properties - copy graphic properties (color, layer, ...) from source MTEXT

if True

embed_mtext (mtext: MText, graphic_properties=True) — None

Set multi-line properties from a MText entity and destroy the source entity afterwards.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-

TRIB/ATTDEEF entity will be exported.
Parameters

* mtext —source MText entity

* graphic_properties - copy graphic properties (color, layer, ...) from source MTEXT

if True

Layouts

Layout Manager

The layout manager is unique to each DXF drawing, access the layout manager as 1 ayout s attribute of the Drawing
object (e.g. doc.layouts.rename ("Layoutl", "PlanView")).

class ezdxf.layouts.Layouts

The Layouts class manages Paperspace layouts and the Modelspace.

len__ () —int

Returns count of existing layouts, including the modelspace layout.

__contains___ (name: str) — bool

Returns True if layout name exist.

__iter__ () — Iterator[Layout]
Returns iterable of all layouts as Layout objects, including the modelspace layout.

names () — list[str]

Returns a list of all layout names, all names in original case sensitive form.

names_in_taborder () — list[str]
Returns all layout names in tab order as shown in CAD applications.

modelspace () — Modelspace
Returns the Mode 1 space layout.

get (name: str | None) — Layout
Returns Layout by name, case insensitive “Model” == “MODEL”.

Parameters
name — layout name as shown in tab, e.g. 'Model' for modelspace

new (name: str, dxfattribs=None) — Paperspace

Returns a new Paperspace layout.
Parameters

* name — layout name as shown in tabs in CAD applications

372

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

e dxfattribs — additional DXF attributes for the DXFLayout entity
Raises

* DXFValueError — Invalid characters in layout name.

e DXFValueError — Layout name already exist.

rename (old_name: str, new_name: str) — None
Rename a layout from old_name to new_name. Can not rename layout 'Model' and the new name of a
layout must not exist.

Parameters

* old_name - actual layout name, case insensitive

* new_name — new layout name, case insensitive
Raises

* DXFValueError —try to rename 'Model'

e DXFValueError — Layout new_name already exist.

delete (name: str) — None

Delete layout name and destroy all entities in that layout.

Parameters
name (str) — layout name as shown in tabs

Raises
* DXFKeyError — if layout name do not exists
* DXFValueError — deleting modelspace layout is not possible
* DXFValueError — deleting last paperspace layout is not possible

active_layout () — Paperspace
Returns the active paperspace layout.

set_active_layout (name: str) — None
Set layout name as active paperspace layout.

get_layout_for_entity (entity: DXFEntity) — Layout
Returns the owner layout for a DXF entity.

Layout Types

A Layout represents and manages DXF entities, there are three different layout objects:
* Modelspace is the common working space, containing basic drawing entities.

* Paperspace is the arrangement of objects for printing and plotting, this layout contains basic drawing entities
and viewports to the Modelspace.
e BlockLayout works on an associated Block, Blocks are collections of DXF entities for reusing by block

references.

Warning: Do not instantiate layout classes by yourself - always use the provided factory functions!

9.9. Reference 373

ezdxf Documentation, Release 1.2.0

Entity Ownership

A layout owns all entities residing in their entity space, therefore the dxf . owner attribute of any DXFGraphi c entity
in this layout is the dxf.handle of the layout, and deleting an entity from a layout is the end of life of this entity,
because it is also deleted from the Ent it yDB. It’s possible to just unlink an entity from a layout to assign the entity to
another layout, use the move_to_Ilayout () method to move entities between layouts.

BaseLayout

class ezdxf.layouts.BaseLayout

BaseLayout is the common base class for Layout and BlockLayout.
is_alive

False if layout is deleted.
is_active_paperspace

True if is active layout.
is_any_paperspace

True if is any kind of paperspace layout.
is_modelspace

True if is modelspace layout.
is_any_layout

True if is any kind of modelspace or paperspace layout.
is_block_layout

True if not any kind of modelspace or paperspace layout, just a regular block definition.
units

set drawing units.

Type
Get/Set layout/block drawing units as enum, see also

Type
ref
_len__ () —int
Returns count of entities owned by the layout.
__iter_ () — lIterator[DXFGraphic]
Returns iterable of all drawing entities in this layout.
__getitem__ (index)
Get entity at index.
The underlying data structure for storing entities is organized like a standard Python list, therefore index can
be any valid list indexing or slicing term, like a single index 1ayout [-1] to get the last entity, or an index
slice layout [:10] to get the first 10 or less entities as 11 st [DXFGraphic].
get_extension_dict () — ExtensionDict
Returns the associated extension dictionary, creates a new one if necessary.
delete_entity (entity: DXFGraphic) — None
Delete entity from layout entity space and the entity database, this destroys the entfity.

374

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

delete_all_entities () — None
Delete all entities from this layout and from entity database, this destroys all entities in this layout.

unlink_entity (entity: DXFGraphic) — None
Unlink entity from layout but does not delete entity from the entity database, this removes entity just from the
layout entity space.
purge ()
Remove all destroyed entities from the layout entity space.
query (query: str = '*') — EntityQuery
Get all DXF entities matching the Entity Query String.
groupby (dxfattrib: str = ", key: KeyFunc | None = None) — dict

Returns a dict of entity lists, where entities are grouped by a dxfattrib or a key function.
Parameters
e dxfattrib - grouping by DXF attribute like ' layer'

* key — key function, which accepts a DXFGraphic entity as argument and returns the
grouping key of an entity or None to ignore the entity. Reason for ignoring: a queried DXF
attribute is not supported by entity.

move_to_layout (entity: DXFGraphic, layout: BaseLayout) — None

Move entity to another layout.
Parameters
* entity - DXF entity to move
* layout - any layout (modelspace, paperspace, block) from same drawing

set_redraw_order (handles: dict | Iterable[tuple[str, str]]) — None
If the header variable $SSORTENTS Regen flag (bit-code value 16) is set, AutoCAD regenerates entities in
ascending handles order.

To change redraw order associate a different sort-handle to entities, this redefines the order in which the
entities are regenerated. The handles argument can be a dict of entity_handle and sort_handle as (k, v) pairs,
or an iterable of (entity_handle, sort_handle) tuples.

The sort-handle doesn’t have to be unique, some or all entities can share the same sort-handle and a sort-handle
can be an existing handle.

The “0” handle can be used, but this sort-handle will be drawn as latest (on top of all other entities) and not
as first as expected.

Parameters
handles - iterable or dict of handle associations; an iterable of 2-tuples (entity_handle,
sort_handle) or a dict (k, v) association as (entity_handle, sort_handle)
get_redraw_order () — Iterable[tuple[str, str]]
Returns iterable for all existing table entries as (entity_handle, sort_handle) pairs, see also
set_redraw_order ().
entities_in_redraw_order (reverse=False) — Iterable[DXFGraphic)

Yields all entities from layout in ascending redraw order or descending redraw order if reverse is True.

add_entity (entity: DXFGraphic) — None

Add an existing DXFGraphi c entity to a layout, but be sure to unlink (unlink_entity ()) entity from
the previous owner layout. Adding entities from a different DXF drawing is not supported.

9.9.

Reference 375

ezdxf Documentation, Release 1.2.0

add_foreign_entity (entity: DXFGraphic, copy=True) — None

Add a foreign DXF entity to a layout, this foreign entity could be from another DXF document or an entity
without an assigned DXF document. The intention of this method is to add simple entities from another
DXF document or from a DXF iterator, for more complex operations use the i mporter add-on. Especially
objects with BLOCK section (INSERT, DIMENSION, MLEADER) or OBJECTS section dependencies
(IMAGE, UNDERLAY) can not be supported by this simple method.

Not all DXF types are supported and every dependency or resource reference from another DXF document
will be removed except attribute layer will be preserved but only with default attributes like color 7 and
linetype CONTINUOUS because the layer attribute doesn’t need a layer table entry.

If the entity is part of another DXF document, it will be unlinked from this document and its entity database
if argument copy is False, else the entity will be copied. Unassigned entities like from DXF iterators will
just be added.

Supported DXF types:
* POINT
e LINE
* CIRCLE
e ARC
* ELLIPSE
* LWPOLYLINE
* SPLINE
* POLYLINE
* 3DFACE
* SOLID
* TRACE
* SHAPE
* MESH
* ATTRIB
e ATTDEF
o TEXT
* MTEXT
« HATCH

Parameters

¢ entity — DXF entity to copy or move

* copy - if True copy entity from other document else unlink from other document
Raises

CopyNotSupported — copying of enfity i not supported

add_point (location: UVec, dxfattribs=None) — Point
Add a Point entity at location.

Parameters

376 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

¢ location - 2D/3D point in WCS
e dxfattribs — additional DXF attributes

add_1line (start: UVec, end: UVec, dxfattribs=None) — Line
Add a Line entity from start to end.

Parameters
e start —2D/3D point in WCS
¢ end - 2D/3D point in WCS
* dxfattribs — additional DXF attributes

add_circle (center: UVec, radius: float, dxfattribs=None) — Circle
Add a Circle entity. This is an 2D element, which can be placed in space by using OCS.

Parameters
e center - 2D/3D point in WCS
* radius - circle radius
e dxfattribs - additional DXF attributes

add_ellipse (center: UVec, major_axis: UVec = (1, 0, 0), ratio: float = 1, start_param: float = 0,
end_param: float = math.tau, dxfattribs=None) — Ellipse

Add an E111ipse entity, ratio is the ratio of minor axis to major axis, start_param and end_param defines
start and end point of the ellipse, a full ellipse goes from O to 2. The ellipse goes from start to end param in
counter-clockwise direction.

Parameters
* center - center of ellipse as 2D/3D point in WCS
* major_axis — major axis as vector (X, y,)
e ratio - ratio of minor axis to major axis in range +/-[1e-6, 1.0]
* start_param — start of ellipse curve
* end_param - end param of ellipse curve
* dxfattribs — additional DXF attributes

add_arc (center: UVec, radius: float, start_angle: float, end_angle: float, is_counter_clockwise: bool = True,
dxfattribs=None) — Arc

Add an Arc entity. The arc goes from start_angle to end_angle in counter-clockwise direction by default, set
parameter is_counter_clockwise to False for clockwise orientation.

Parameters
¢ center - center of arc as 2D/3D point in WCS
e radius - arc radius
* start_angle - start angle in degrees
* end_angle - end angle in degrees
¢ is_counter_clockwise — False for clockwise orientation

e dxfattribs — additional DXF attributes

9.9.

Reference 377

ezdxf Documentation, Release 1.2.0

add_solid (points: Iterable[UVec], dxfattribs=None) — Solid
Add a So1id entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters

e points —iterable of 3 or 4 2D/3D points in WCS
* dxfattribs — additional DXF attributes

add_trace (points: Iterable[UVec], dxfattribs=None) — Trace
Add a Trace entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters
¢ points —iterable of 3 or 4 2D/3D points in WCS

e dxfattribs — additional DXF attributes

add_3dface (points: Iterable[UVec], dxfattribs=None) — Face3d
Add a 3DFace entity, points is an iterable 3 or 4 2D/3D points.

Hint: In contrast to SOLID and TRACE, the last two vertices are in regular order: a square has the vertex
order 0-1-2-3

Parameters

* points —iterable of 3 or 4 2D/3D points in WCS
* dxfattribs — additional DXF attributes

add_text (fext: str, *, height: float | None = None, rotation: float | None = None, dxfattribs=None) — Text
Add a Text entity, see also Textstyle.
Parameters
* text — content string
¢ height - text height in drawing units
e rotation - text rotation in degrees
* dxfattribs — additional DXF attributes
add_blockref (name: str, insert: UVec, dxfattribs=None) — Insert

Add an Tnsert entity.

When inserting a block reference into the modelspace or another block layout with different units, the scaling
factor between these units should be applied as scaling attributes (xscale, ...) e.g. modelspace in meters
and block in centimeters, xscale has to be 0.01.

Parameters

378 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

¢ name — block name as str
e insert —insert location as 2D/3D point in WCS
e dxfattribs — additional DXF attributes

add_auto_blockref (name: str, insert: UVec, values: dict[str, str], dxfattribs=None) — Insert

Add an Tnsert entity. This method adds for each At t de £ entity, defined in the block definition, automat-
ically an Attrib entity to the block reference and set (tag, value) DXF attributes of the ATTRIB entities
by the (key, value) pairs (both as strings) of the values dict.

The Attrib entities are placed relative to the insert point, which is equal to the block base point.

This method wraps the INSERT and all the ATTRIB entities into an anonymous block, which produces
the best visual results, especially for non-uniform scaled block references, because the transformation
and scaling is done by the CAD application. But this makes evaluation of block references with at-
tributes more complicated, if you prefer INSERT and ATTRIB entities without a wrapper block use the
add_blockref with_attribs () method.

Parameters
* name — block name
e insert —insert location as 2D/3D point in WCS
* values — Attrib tag values as (tag, value) pairs
e dxfattribs — additional DXF attributes

add_attdef (rag: str, insert: UVec = (0, 0), text: str = ", *, height: float | None = None, rotation: float | None
= None, dxfattribs=None) — AttDef

Add an AttDef as stand alone DXF entity.

Set position and alignment by the idiom:

layout.add_attdef ("NAME") .set_placement (
(2, 3), align=TextEntityAlignment.MIDDLE_CENTER
)

Parameters
* tag - tag name as string
e insert —insert location as 2D/3D point in WCS
* text - tag value as string
* height - text height in drawing units
e rotation - text rotation in degrees
e dxfattribs - additional DXF attributes

add_polyline2d (points: Iterable[UVec], format: str | None = None, *, close: bool = False,
dxfattribs=None) — Polyline

Add a 2D Polyline entity.
Parameters
* points —iterable of 2D points in WCS
* close - True for a closed polyline

¢ format — user defined point format like add_Iwpolyline (), defaultis None

. Reference 379

ezdxf Documentation, Release 1.2.0

e dxfattribs — additional DXF attributes

add_polyline3d (points: Iterable[UVec], *, close: bool = False, dxfattribs=None) — Polyline
Add a 3D Polyline entity.

Parameters
* points —iterable of 3D points in WCS
* close — True for a closed polyline
* dxfattribs - additional DXF attributes

add_polymesh (size: tuple[int, int] = (3, 3), dxfattribs=None) — Polymesh

Add a Po1ymesh entity, which is a wrapper class for the POLYLINE entity. A polymesh is a grid of mcount
X ncount vertices and every vertex has its own (X, y, z)-coordinates.

Parameters
e size - 2-tuple (mcount, ncount)
e dxfattribs - additional DXF attributes

add_polyface (dxfattribs=None) — Polyface
Add a Polyface entity, which is a wrapper class for the POLYLINE entity.

Parameters
dxfattribs - additional DXF attributes for Po1y11ine entity

add_shape (name: str, insert: UVec = (0, 0), size: float = 1.0, dxfattribs=None) — Shape

Add a Shape reference to an external stored shape.
Parameters
* name - shape name as string
* insert —insert location as 2D/3D point in WCS
¢ size - size factor
* dxfattribs - additional DXF attributes

add_lwpolyline (points: lterable[UVec], format: str = xyseb', *, close: bool = False, dxfattribs=None) —
LWPolyline

Add a 2D polyline as LWPo 1y 11ine entity. A points are defined as (X, y, [start_width, [end_width, [bulge]]])
tuples, but order can be redefined by the format argument. Set start_width, end_width to O to be ignored like
(x,y, 0, 0, bulge).

The LiwPolyline is defined as a single DXF entity and needs less disk space than a Poly1ine entity.
(requires DXF R2000)

Format codes:
¢ x = Xx-coordinate
¢ y =y-coordinate
e s = start width
¢ e =end width
* b = bulge value

* v =(X,y [,z]) tuple (z-axis is ignored)

Parameters

380 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

e points —iterable of (x, y, [start_width, [end_width, [bulge]]]) tuples
* format — user defined point format, default is “xyseb”
* close - True for a closed polyline

¢ dxfattribs — additional DXF attributes

add_mtext (fext: str, dxfattribs=None) — MText

Add a multiline text entity with automatic text wrapping at boundaries as MText entity. (requires DXF
R2000)

Parameters
* text — content string
e dxfattribs — additional DXF attributes

add_mtext_static_columns (content: Iterable[str], width: float, gutter_width: float, height: float,
dxfattribs=None) — MText

Add a multiline text entity with static columns as MText entity. The content is spread across the columns,
the count of content strings determine the count of columns.

This factory method adds automatically a column break " \N" at the end of each column text to force a new
column. The height attribute should be big enough to reserve enough space for the tallest column. Too small
values produce valid DXF files, but the visual result will not be as expected. The height attribute also defines
the total height of the MTEXT entity.

(requires DXF R2000)
Parameters
e content - iterable of column content
* width - column width
e gutter_width — distance between columns
¢ height — max. column height
e dxfattribs — additional DXF attributes

add_mtext_dynamic_manual_height_columns (content: str, width: float, gutter_width: float, heights:
Sequence[float], dxfattribs=None) — MText

Add a multiline text entity with dynamic columns as MText entity. The content is spread across the columns
automatically by the CAD application. The heights sequence determine the height of the columns, except for
the last column, which always takes the remaining content. The height value for the last column is required
but can be 0, because the value is ignored. The count of heights also determines the count of columns, and
max (heights) defines the total height of the MTEXT entity, which may be wrong if the last column
requires more space.

This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXEF viewers and CAD application, which do the MTEXT content distribution completely by itself.

(requires DXF R2000)
Parameters
* content — column content as a single string

¢ width — column width

9.9. Reference 381

ezdxf Documentation, Release 1.2.0

¢ gutter_width — distance between columns
* heights - column height for each column
e dxfattribs - additional DXF attributes

add_mtext_dynamic_auto_height_columns (content: str, width: float, gutter_width: float, height:
float, count: int, dxfattribs=None) — MText

Add a multiline text entity with as many columns as needed for the given common fixed height. The content
is spread across the columns automatically by the CAD application. The height argument also defines the
total height of the MTEXT entity. To get the correct column count requires an exact MTEXT rendering like
AutoCAD, which is not done by ezdxf, therefore passing the expected column count is required to calculate
the correct total width.

This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXEF viewers and CAD application, which do the MTEXT content distribution completely by itself.

Because of the current limitations the use of this method is not recommend. This situation may improve in
future releases, but the exact rendering of the content will also slow down the processing speed dramatically.

(requires DXF R2000)
Parameters
* content - column content as a single string
¢ width - column width
e gutter_width — distance between columns
* height — max. column height
* count - expected column count
* dxfattribs — additional DXF attributes

add_ray (start: UVec, unit_vector: UVec, dxfattribs=None) — Ray
Add a Ray that begins at start point and continues to infinity (construction line). (requires DXF R2000)

Parameters
* start - location 3D point in WCS
* unit_vector - 3D vector (X, y, z)
e dxfattribs — additional DXF attributes

add_xline (start: UVec, unit_vector: UVec, dxfattribs=None) — XLine
Add an infinity XTI ine (construction line). (requires DXF R2000)

Parameters
* start - location 3D point in WCS
* unit_vector - 3D vector (X, y, z)
* dxfattribs — additional DXF attributes

add_mline (vertices: Iterable[UVec] | None = None, *, close: bool = False, dxfattribs=None) — MLine
Add a MLine entity

Parameters

¢ vertices — MLINE vertices (in WCS)

382 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

e close — True to add a closed MLINE
e dxfattribs — additional DXF attributes

add_spline (fit_points: Iterable[UVec] | None = None, degree: int = 3, dxfattribs=None) — Spline

Add a B-spline (Sp1 i ne entity) defined by the given fit_points - the control points and knot values are created
by the CAD application, therefore it is not predictable how the rendered spline will look like, because for every
set of fit points exists an infinite set of B-splines.

If fir_points is None, an “empty” spline will be created, all data has to be set by the user.
The SPLINE entity requires DXF R2000.

AutoCAD creates a spline through fit points by a global curve interpolation and an unknown method to
estimate the direction of the start- and end tangent.

See also:

* Tutorial for Spline

e ezdxf.math.fit_points_to_cad _cv()

Parameters

e fit_points —iterable of fit pointsas (x, y [, z]) in WCS, creates an empty Spline
if None

¢ degree — degree of B-spline, max. degree supported by AutoCAD is 11
* dxfattribs — additional DXF attributes

add_cad_spline_control_frame (fit_points: Iterable[UVec], tangents: Iterable[UVec] | None = None,
dxfattribs=None) — Spline

Add a Spline entity passing through the given fit points. This method creates the same control points as
CAD applications.

Parameters
e fit_points —iterable of fit points as (x, y[, z]) in WCS
* tangents - start- and end tangent, default is autodetect
e dxfattribs - additional DXF attributes

add_spline_control_frame (fit_points: Iterable[UVec], degree: int = 3, method: str = ‘chord’,
dxfattribs=None) — Spline
Add a Spline entity passing through the given fit_points, the control points are calculated by a global curve
interpolation without start- and end tangent constrains. The new SPLINE entity is defined by control points

and not by the fit points, therefore the SPLINE looks always the same, no matter which CAD application
renders the SPLINE.

* “uniform”: creates a uniform t vector, from O to 1 evenly spaced, see uniform method

 “distance”, “chord”: creates a t vector with values proportional to the fit point distances, see chord length
method

* “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see

centripetal method

13

e “arc”: creates a t vector with values proportional to the arc length between fit points.

Use function add_cad_spline_control_frame () to create SPLINE entities from fit points similar
to CAD application including start- and end tangent constraints.

9.9.

Reference 383

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-uniform.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-chord-length.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-centripetal.html

ezdxf Documentation, Release 1.2.0

Parameters
e fit_points —iterable of fit points as (x, y[, z]) in WCS
* degree —degree of B-spline, max. degree supported by AutoCAD is 11
* method - calculation method for parameter vector t
e dxfattribs — additional DXF attributes

add_open_spline (control_points: Iterable[UVec], degree: int = 3, knots: Iterable[float] | None
dxfattribs=None) — Spline

Add an open uniform Sp1ine defined by control_points. (requires DXF R2000)
Open uniform B-splines start and end at your first and last control point.
Parameters
* control_points —iterable of 3D points in WCS
* degree — degree of B-spline, max. degree supported by AutoCAD is 11
* knots — knot values as iterable of floats

¢ dxfattribs — additional DXF attributes

= None,

add_rational_spline (control_points: Iterable[UVec], weights: Sequence[float], degree: int = 3, knots:

Iterable[float] | None = None, dxfattribs=None) — Spline
Add an open rational uniform Sp ine defined by control_points. (requires DXF R2000)

weights has to be an iterable of floats, which defines the influence of the associated control poin
of the B-spline, therefore for each control point is one weight value required.

Open rational uniform B-splines start and end at the first and last control point.
Parameters
e control_points — iterable of 3D points in WCS
* weights — weight values as iterable of floats
¢ degree —degree of B-spline, max. degree supported by AutoCAD is 11
* knots — knot values as iterable of floats
* dxfattribs - additional DXF attributes

add_hatch (color: int = 7, dxfattribs=None) — Hatch
Add a Hatch entity. (requires DXF R2000)

Parameters
¢ color —fill color as :ref ACT', default is 7 (black/white).
e dxfattribs - additional DXF attributes

add_helix (radius: float, pitch: float, turns: float, ccw=True, dxfattribs=None) — Helix
Add a He 11 x entity.

The center of the helix is always (0, 0, 0) and the helix axis direction is the +z-axis.
Transform the new HELIX by the t ransform () method to your needs.
Parameters
* radius - helix radius

* pitch - the height of one complete helix turn

t to the shape

384 Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

* turns - count of turns
* ccw — creates a counter-clockwise turning (right-handed) helix if True
e dxfattribs - additional DXF attributes
add_mpolygon (color: int = const. BYLAYER, fill_color: int | None = None, dxfattribs=None) — MPolygon
Add a MPolygon entity. (requires DXF R2000)

The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application or DXF
library.

DXEF version R2004+ is required to use a fill color different from BYLAYER. For R2000 the fill color is
always BYLAYER, set any ACI value to create a filled MPOLYGON entity.

Parameters
* color - boundary color as AutoCAD Color Index (ACI), default is BYLAYER.
e £ill_color —fill color as AutoCAD Color Index (ACI), default is None
* dxfattribs — additional DXF attributes

add_mesh (dxfattribs=None) — Mesh
Add a Mesh entity. (requires DXF R2007)

Parameters
dxfattribs - additional DXF attributes

add_image (image_def: ImageDef, insert: UVec, size_in_units: tuple[float, float], rotation: float = 0.0,
dxfattribs=None) — Image

Add an Image entity, requires a ImageDef entity, see Tutorial for Image and ImageDef. (requires DXF
R2000)

Parameters
* image_def - required image definition as TmageDef
* insert - insertion point as 3D point in WCS
* size_in_units -size as (X, y) tuple in drawing units
¢ rotation - rotation angle around the extrusion axis, default is the z-axis, in degrees
* dxfattribs — additional DXF attributes

add_wipeout (vertices: Iterable[UVec], dxfattribs=None) — Wipeout
Adda ezdxf.entities.Wipeout entity, the masking area is defined by WCS vertices.

This method creates only a 2D entity in the xy-plane of the layout, the z-axis of the input vertices are ignored.

add_underlay (underlay_def: UnderlayDefinition, insert: UVec = (0, 0, 0), scale=(1, 1, 1), rotation: float =
0.0, dxfattribs=None) — Underlay

Add an Underlay entity, requires a UnderlayDefinition entity, see Tutorial for Underlay and Un-
derlayDefinition. (requires DXF R2000)
Parameters

* underlay_def —required underlay definition as UnderlayDefinition
¢ insert - insertion point as 3D point in WCS

* scale - underlay scaling factor as (X, y, z) tuple or as single value for uniform scaling for
X,y and z

* rotation - rotation angle around the extrusion axis, default is the z-axis, in degrees

9.9.

Reference 385

ezdxf Documentation, Release 1.2.0

e dxfattribs — additional DXF attributes

add_1linear_dim (base: UVec, pl: UVec, p2: UVec, location: UVec | None = None, text: str = '<>', angle:

float = 0, text_rotation: float | None = None, dimstyle: str = 'EZDXF", override: dict | None
= None, dxfattribs=None) — DimStyleOverride

Add horizontal, vertical and rotated Dimension line. If an UCS is used for dimension line rendering,
all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function.
Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base - location of dimension line, any point on the dimension line or its extension will do
(in UCS)

* pl — measurement point 1 and start point of extension line 1 (in UCS)
* p2 — measurement point 2 and start point of extension line 2 (in UCS)
¢ location —user defined location for the text midpoint (in UCS)

“@ <

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

* dimstyle — dimension style name (DimSt y e table entry), default is “EZDXF”
¢ angle - angle from ucs/wcs x-axis to dimension line in degrees

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_multi_point_linear_dim (base: UVec, points: Iterable[UVec], angle: float = 0, ucs: UCS | None

= None, avoid_double_rendering: bool = True, dimstyle: str = 'EZDXF’,
override: dict | None = None, dxfattribs=None, discard=False) — None
Add multiple linear dimensions for iterable points. If an UCS is used for dimension line rendering, all point

definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion
vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method sets many design decisions by itself, the necessary geometry will be generated automatically, no
required nor possible render () call. This method is easy to use, but you get what you get.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

386

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

base - location of dimension line, any point on the dimension line or its extension will do
(in UCS)

points — iterable of measurement points (in UCS)

angle — angle from ucs/wcs x-axis to dimension line in degrees (0 = horizontal, 90 = ver-
tical)

ucs — user defined coordinate system

avoid_double_rendering — suppresses the first extension line and the first arrow if
possible for continued dimension entities

dimstyle — dimension style name (DimStyle table entry), default is “EZDXF”
override - DimStyleOverride attributes
dxfattribs - additional DXF attributes for the DIMENSION entity

discard - discard rendering result for friendly CAD applications like BricsCAD to get a
native and likely better rendering result. (does not work with AutoCAD)

add_aligned_dim (pl: UVec, p2: UVec, distance: float, text: str = '<>', dimstyle: str = 'EZDXF", override:

dict | None = None, dxfattribs=None) — DimStyleOverride

Add linear dimension aligned with measurement points p/ and p2. If an UCS is used for dimension line
rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering
function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimSt yleOverride object, to create the necessary dimension geometry, you have
to call DimStyleOverride.render () manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

p1l — measurement point 1 and start point of extension line 1 (in UCS)
P2 — measurement point 2 and start point of extension line 2 (in UCS)
distance - distance of dimension line from measurement points

@ e

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZDXF”
override - DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim (center: UVec, mpoint: UVec | None = None, radius: float | None = None, angle: float |

None = None, *, location: UVec | None = None, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None) — DimStyleOverride

Add a radius Dimension line. The radius dimension line requires a center point and a point mpoint on
the circle or as an alternative a radius and a dimension line angle in degrees. See also: Tutorial for Radius

Dimensions

9.9. Reference

387

ezdxf Documentation, Release 1.2.0

If a UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Following render types are supported:
 Default text location outside: text aligned with dimension line; dimension style: “EZ_RADIUS”
¢ Default text location outside horizontal: “EZ_RADIUS” + dimtoh=1
¢ Default text location inside: text aligned with dimension line; dimension style: “EZ_RADIUS_INSIDE”
e Default text location inside horizontal: “EZ_RADIUS_INSIDE” + dimtih=1

* User defined text location: argument location !=None, text aligned with dimension line; dimension style:
“EZ_RADIUS”

 User defined text location horizontal: argument location != None, “EZ_RADIUS” + dimtoh=1 for text
outside horizontal, “EZ_RADIUS” + dimtih=1 for text inside horizontal

Placing the dimension text at a user defined location, overrides the mpoint and the angle argument, but requires
a given radius argument. The location argament does not define the exact text location, instead it defines the
dimension line starting at center and the measurement text midpoint projected on this dimension line going
through location, if text is aligned to the dimension line. If text is horizontal, location is the kink point of the
dimension line from radial to horizontal direction.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
¢ center — center point of the circle (in UCS)
* mpoint — measurement point on the circle, overrides angle and radius (in UCS)
e radius - radius in drawing units, requires argument angle
* angle - specify angle of dimension line in degrees, requires argument radius

¢ location — user defined dimension text location, overrides mpoint and angle, but requires
radius (in UCS)

“@

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_RADIUS”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim_2p (center: UVec, mpoint: UVec, *, text: str = '<>', dimstyle: str = 'EZ_RADIUS',
override: dict | None = None, dxfattribs=None) — DimStyleOverride
Shortcut method to create a radius dimension by center point, measurement point on the circle and the mea-

surement text at the default location defined by the associated dimstyle, for further information see general
method add_radius_dim().

388 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

 dimstyle “EZ_RADIUS”: places the dimension text outside

* dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters

center — center point of the circle (in UCS)
mpoint — measurement point on the circle (in UCS)

@ e

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_RADIUS”
override - DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim_cra (center: UVec, radius: float, angle: float, *, text: str = '<>', dimstyle: str =

'EZ_RADIUS', override: dict | None = None, dxfattribs=None) — DimStyleOverride

Shortcut method to create a radius dimension by (c)enter point, (r)adius and (a)ngle, the measurement text is
placed at the default location defined by the associated dimstyle, for further information see general method
add_radius_dim().

» dimstyle “EZ_RADIUS”: places the dimension text outside

 dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters

center — center point of the circle (in UCS)
radius - radius in drawing units
angle — angle of dimension line in degrees

“@ e

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_RADIUS”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_diameter_dim (center: UVec, mpoint: UVec | None = None, radius: float | None = None, angle: float |

None = None, *, location: UVec | None = None, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None) — DimStyleOverride

Add a diameter Dimension line. The diameter dimension line requires a center point and a point mpoint
on the circle or as an alternative a radius and a dimension line angle in degrees.

If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

9.9. Reference

389

ezdxf Documentation, Release 1.2.0

Note: FEzdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
* center - specifies the center of the circle (in UCS)
* mpoint — specifies the measurement point on the circle (in UCS)
¢ radius - specify radius, requires argument angle, overrides pl argument

* angle - specify angle of dimension line in degrees, requires argument radius, overrides pl/
argument

* location —user defined location for the text midpoint (in UCS)

@ e

¢ text —None or "<>" the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

* dimstyle — dimension style name (DimStyle table entry), default is “EZ_RADIUS”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_diameter_dim_2p (pl: UVec, p2: UVec, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: dict |
None = None, dxfattribs=None) — DimStyleOverride

Shortcut method to create a diameter dimension by two points on the circle and the measurement text
at the default location defined by the associated dimstyle, for further information see general method
add_diameter_dim (). Center point of the virtual circle is the midpoint between p/ and p2.

 dimstyle “EZ_RADIUS”: places the dimension text outside
¢ dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
e pl —first point of the circle (in UCS)

¢ p2 - second point on the opposite side of the center point of the circle (in UCS)

“@ e

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_RADIUS”
e override - DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_21 (base: UVec, linel: tuple[UVec, UVec], line2: tuple[UVec, UVec], *, location:
UVec | None = None, text: str = '<>', text_rotation: float | None = None, dimstyle: str
= 'EZ_CURVED', override: dict | None = None, dxfattribs=None) —
DimStyleOverride

Add angular Dimension from two lines. The measurement is always done from linel to line2 in counter-
clockwise orientation. This does not always match the result in CAD applications!

390 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: FEzdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base — location of dimension line, any point on the dimension line or its extension is valid
(in UCS)
¢ linel - specifies start leg of the angle (start point, end point) and determines extension line

1 (in UCS)

* line2 - specifies end leg of the angle (start point, end point) and determines extension line
2 (in UCS)

¢ location —user defined location for the text midpoint (in UCS)

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”

e override - DimStyleOverride attributes

* dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_3p (base: UVec, center: UVec, pl: UVec, p2: UVec, *, location: UVec | None = None,
text: str = '<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED/,
override: dict | None = None, dxfattribs=None) — DimStyleOverride

Add angular Dimension from three points (center, pl, p2). The measurement is always done from p/ to
p2 in counter-clockwise orientation. This does not always match the result in CAD applications!

If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base - location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

9.9. Reference 391

ezdxf Documentation, Release 1.2.0

center - specifies the vertex of the angle

p1l — specifies start leg of the angle (center -> p1) and end-point of extension line 1 (in UCS)
P2 — specifies end leg of the angle (center -> p2) and end-point of extension line 2 (in UCS)
location — user defined location for the text midpoint (in UCS)

“@ <

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_CURVED”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_cra (center: UVec, radius: float, start_angle: float, end_angle: float, distance: float, *,

location: UVec | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None) —
DimStyleOverride

Shortcut method to create an angular dimension by (c)enter point, (r)adius and start- and end (a)ngles,
the measurement text is placed at the default location defined by the associated dimstyle. The measure-
ment is always done from start_angle to end_angle in counter-clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim_3p().

Parameters

center — center point of the angle (in UCS)

radius - the distance from center to the start of the extension lines in drawing units
start_angle - start angle in degrees (in UCS)

end_angle - end angle in degrees (in UCS)

distance —distance from start of the extension lines to the dimension line in drawing units
location — user defined location for the text midpoint (in UCS)

“@ e

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”
override — DimStyleOverride attributes

dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_arc (arc: ConstructionArc, distance: float, *, location: UVec | None = None, text: str =

'<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override:
dict | None = None, dxfattribs=None) — DimStyleOverride

392

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Shortcut method to create an angular dimension from a ConstructionArc. This construction tool can
be created from ARC entities and the tool itself provides various construction class methods. The mea-
surement text is placed at the default location defined by the associated dimstyle. The measurement is al-
ways done from start_angle to end_angle of the arc in counter-clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim_3p().

Parameters
* arc - ConstructionArc
* distance - distance from start of the extension lines to the dimension line in drawing units
¢ location — user defined location for the text midpoint (in UCS)

@ e

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y e table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes
e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_arc_dim_3p (base: UVec, center: UVec, pl: UVec, p2: UVec, *, location: UVec | None = None, text: str
= '<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override: dict |
None = None, dxfattribs=None) — DimStyleOverride

Add ArcDimension from three points (center, pl, p2). Point p/ defines the radius and the start-angle of
the arc, point p2 only defines the end-angle of the arc.

If an UCS is used for arc dimension rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you
have to call render () manually, this two-step process allows additional processing steps on the ArcDi -
mension entity between creation and rendering.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters

* base — location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

¢ center - specifies the vertex of the angle

* p1 - specifies the radius (center -> p1) and the star angle of the arc, this is also the start point
for the 1st extension line (in UCS)

* p2 — specifies the end angle of the arc. The start 2nd extension line is defined by this angle
and the radius defined by p1 (in UCS)

¢ location —user defined location for the text midpoint (in UCS)

9.9. Reference 393

ezdxf Documentation, Release 1.2.0

Returns:

@ ¢

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_CURVED”
override - DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

DimStyleOverride

add_arc_dim_cra (center: UVec, radius: float, start_angle: float, end_angle: float, distance: float, *,

Shortcut method to create an arc dimension by (c)enter point, (r)adius and start- and end (a)ngles, the mea-

location: UVec | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None) —
DimStyleOverride

surement text is placed at the default location defined by the associated dimstyle.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE

variables, so the rendering results are very different from CAD applications.

Parameters

Returns:

add_arc_dim_arc (arc: ConstructionArc, distance: float, *, location: UVec | None = None, text: str = '<>/,
text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override: dict | None =

Shortcut method to create an arc dimension from a ConstructionArc. This construction tool can be
created from ARC entities and the tool itself provides various construction class methods. The measurement

center — center point of the angle (in UCS)

radius - the distance from center to the start of the extension lines in drawing units
start_angle - start-angle in degrees (in UCS)

end_angle - end-angle in degrees (in UCS)

distance —distance from start of the extension lines to the dimension line in drawing units
location — user defined location for text midpoint (in UCS)

@ e

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimStyle table entry), default is “EZ_CURVED”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

DimStyleOverride

None, dxfattribs=None) — DimStyleOverride

text is placed at the default location defined by the associated dimstyle.

394

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Note: FEzdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters

arc - ConstructionArc
distance —distance from start of the extension lines to the dimension line in drawing units
location — user defined location for the text midpoint (in UCS)

“@ <

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_CURVED”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_ordinate_dim (feature_location: UVec, offset: UVec, dtype: int, *, origin: UVec = NULLVEC,

rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None =
None, dxfattribs=None) — DimStyleOverride

Add an ordinate type Dimension line. The feature location is defined in the global coordinate system,
which is set as render UCS, which is the WCS by default.

If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

feature_location - feature location in the global coordinate system (UCS)

offset - offset vector of leader end point from the feature location in the local coordinate
system

dtype - 1 = x-type, 0 = y-type
origin — specifies the origin (0, 0) of the local coordinate system in UCS
rotation - rotation angle of the local coordinate system in degrees

@ e

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZDXF”

override - DimStyleOverride attributes

9.9. Reference

395

ezdxf Documentation, Release 1.2.0

e dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_ordinate_x_dim (feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation: float
= 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) — DimStyleOverride

Shortcut to add an x-type feature ordinate DIMENSION, for more information see
add_ordinate_dim/().

add_ordinate_y_dim (feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation: float
= 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) — DimStyleOverride

Shortcut to add a y-type feature ordinate DIMENSION, for more information see
add_ordinate_dim().

add_leader (vertices: Iterable[UVec], dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) — Leader

The Leader entity represents an arrow, made up of one or more vertices (or spline fit points) and an arrow-
head. The label or other content to which the Leader is attached is stored as a separate entity, and is not
part of the Leader itself. (requires DXF R2000)

Leader shares its styling infrastructure with Dimension.

By default a Leade r without any annotation is created. For creating more fancy leaders and annotations see
documentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementa-
tion notes .

Parameters
e vertices —leader vertices (in WCS)
e dimstyle — dimension style name (DimSt y e table entry), default is “EZDXF”
¢ override —override DimStyleOverride attributes
e dxfattribs — additional DXF attributes

add_multileader_mtext (style: str = ‘Standard', dxfattribs=None) — MultiLeaderMTextBuilder
Add a MultiLeader entity but returns a MultilLeaderMTextBuilder.

add_multileader_block (style: str = ‘Standard’, dxfattribs=None) — MultiLeaderBlockBuilder
Add a MultiLeader entity but returns a MultiLeaderBlockBuilder.

add_body (dxfattribs=None) — Body
Add a Body entity. (requires DXF R2000 or later)

The ACIS data has to be set as SAT or SAB.

add_region (dxfattribs=None) — Region
Add a Region entity. (requires DXF R2000 or later)

The ACIS data has to be set as SAT or SAB.

add_3dsolid (dxfattribs=None) — Solid3d
Add a 3DSOLID entity (Sol1d3d). (requires DXF R2000 or later)

The ACIS data has to be set as SAT or SAB.

396 Chapter 9. Contents

https://atlight.github.io/formats/dxf-leader.html
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 1.2.0

add_surface (dxfattribs=None) — Surface
Add a Surface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_extruded_surface (dxfattribs=None) — ExtrudedSurface
Add a Ext rudedSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_lofted_surface (dxfattribs=None) — LoftedSurface
Add a LoftedSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_revolved_surface (dxfattribs=None) — RevolvedSurface
Add a RevolvedSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_swept_surface (dxfattribs=None) — SweptSurface
Add a SweptSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

Layout

class ezdxf.layouts.Layout
Layout is a subclass of BaseLayout and common base class of Mode I space and Paperspace.

name

Layout name as shown in tabs of CAD applications.

dxf
Returns the DXF name space attribute of the associated DXFLayout object.

This enables direct access to the underlying LAYOUT entity, e.g. Layout .dxf.layout_flags

__contains___ (entity: DXFGraphic | str) — bool

Returns True if entity is stored in this layout.

Parameters
entity - DXFGraphic object or handle as hex string

reset_extents (extmin=(+1e20, +1e20, +1e20), extmax=(-1e20, -1¢20, -1e20)) — None
Reset extents to given values or the AutoCAD default values.

“Drawing extents are the bounds of the area occupied by objects.” (Quote Autodesk Knowledge Network)
Parameters
¢ extmin — minimum extents or (+1e20, +1e20, +1e20) as default value
¢ extmax — maximum extents or (-1e20, -1e20, -1e20) as default value

reset_limits (limmin=None, limmax=None) — None

Reset limits to given values or the AutoCAD default values.

“Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking
or entering point locations.” (Quote Autodesk Knowledge Network)

9.9. Reference 397

https://knowledge.autodesk.com/de/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/DEU/AutoCAD-Core/files/GUID-B3926CFA-DE74-4661-A9A5-2738A1FD937B-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html

ezdxf Documentation, Release 1.2.0

The Paperspace class has an additional method reset_paper 1imits () todeduce the default limits
from the paper size settings.

Parameters
¢ limmin — minimum limits or (0, 0) as default
¢ limmax — maximum limits or (paper width, paper height) as default value

set_plot_type (value: int =5) — None

0 last screen display
1 drawing extents
2 drawing limits
3 view specific (defined by Layout .dxf.plot_view_name)
4 window specific (defined by Layout . set_plot_window_limits())
5 layout information (default)
Parameters

value - plot type
Raises
DXFValueError — for value out of range

set_plot_style (name: str = ‘ezdxf.ctb’, show: bool = False) — None
Set plot style file of type .ctb.

Parameters
* name - plot style filename
* show — show plot style effect in preview? (AutoCAD specific attribute)

set_plot_window (lower_left: tuple[float, float] = (0, 0), upper_right: tuple[float, float] = (0, 0)) — None
Set plot window size in (scaled) paper space units.

Parameters
* lower_left —lower left corner as 2D point
e upper_right — upper right corner as 2D point

plot_viewport_borders (state: bool = True) — None
show_plot_styles (state: bool = True) — None
plot_centered (state: bool = True) — None
plot_hidden (state: bool = True) — None
use_standard_scale (state: bool = True) — None
use_plot_styles (state: bool = True) — None
scale_lineweights (state: bool = True) — None
print_lineweights (state: bool = True) — None

draw_viewports_first (state: bool = True) — None

398 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

model_type (state: bool = True) — None

update_paper (state: bool = True) — None
zoom_to_paper_on_update (state: bool = True) — None
plot_flags_initializing (state: bool = True) — None
prev_plot_init (state: bool = True) — None

set_plot_flags (flag, state: bool = True) — None

Modelspace

class ezdxf.layouts.Modelspace

Modelspace is asubclass of Layout.
The modelspace contains the “real” world representation of the drawing subjects in real world units.

name

Name of modelspace is fixed as “Model”.

new_geodata (dxfattribs=None) — GeoData

Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OB-
JECTS section and not in the modelspace, it is linked to the modelspace by an ExtensionDict located
in BLOCK_RECORD of the modelspace.

The GEODATA entity requires DXF R2010. The DXF reference does not document if other layouts than
the modelspace supports geo referencing, so I assume getting/setting geo data may only make sense for the
modelspace.

Parameters
dxfattribs — DXF attributes for GeoDat a entity

get_geodata () — GeoData | None

Returns the GeoDat a entity associated to the modelspace or None.

Paperspace

class ezdxf.layouts.Paperspace

Paperspace is a subclass of Layout.

Paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF
export.

name

Layout name as shown in tabs of CAD applications.

page_setup (size=(297, 210), margins=(10, 15, 10, 15), units="mm’, offset=(0, 0), rotation=0, scale=16,
name='ezdxf", device="DWG to PDF.pc3’)

Setup plot settings and paper size and reset viewports. All parameters in given units (mm or inch).
Reset paper limits, extents and viewports.
Parameters

* size — paper size as (width, height) tuple

9.9.

Reference 399

ezdxf Documentation, Release 1.2.0

* margins — (top, right, bottom, left) hint: clockwise
e units - “mm” or “inch”
» offset - plot origin offset is 2D point

e rotation - see table Rotation

* scale - integer in range [0, 32] defines a standard scale type or as tuple(numerator, de-

nominator) e.g. (1, 50) for scale 1:50
* name — paper name prefix “{name}_({width}_x_{height}_{unit})”

¢ device —device .pc3 configuration file or system printer name

int Rotation

0 no rotation

1 90 degrees counter-clockwise
2 upside-down

3 90 degrees clockwise

viewports () — list[Viewport]
Get all VIEWPORT entities defined in this paperspace layout.
main_viewport () — Viewport | None

Returns the main viewport of this paper space layout, or None if no main viewport exist.

add_viewport (center: UVec, size: tuple[float, float], view_center_point: UVec, view_height: float, status: int

= 2, dxfattribs=None) — Viewport
Add anew Viewport entity.

Viewport status:

* -1is on, but is fully off-screen, or is one of the viewports that is not active because the SMAXACTVP

count is currently being exceeded.

e Oisoff

* any value>0 is on and active. The value indicates the order of stacking for the viewports, where 1 is the

“active viewport”, 2 is the next, ...

reset_viewports () — None

Delete all existing viewports, and create a new main viewport.

reset_main_viewport (center: UVec = None, size: UVec = None) — Viewport

Reset the main viewport of this paper space layout to the given values, or reset them to the default values,

deduced from the paper settings. Creates a new main viewport if none exist.

Ezdxf does not create a main viewport by default, because CAD applications don’t require one.

Parameters
* center - center of the viewport in paper space units
* size — viewport size as (width, height) tuple in paper space units

reset_paper_limits () — None
Set paper limits to default values, all values in paperspace units but without plot scale (?).

400 Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

get_paper_limits () — tuple[Vec2, Vec2]
Returns paper limits in plot paper units, relative to the plot origin.
plot origin = lower left corner of printable area + plot origin offset

Returns
tuple (Vec2(x1, y1), Vec2(x2, y2)), lower left corner is (x1, y1), upper right corner is (x2, y2).

BlockLayout

class ezdxf.layouts.BlockLayout
BlockLayout is a subclass of BaseLayout.

Block layouts are reusable sets of graphical entities, which can be referenced by multiple Tnsert entities. Each
reference can be placed, scaled and rotated individually and can have it’s own set of DXF At t 1 b entities attached.

property name: str
Get/set the BLOCK name

property block: Block | None
the associated B1ock entity.

property endblk: EndBlk | None
the associated EndB1k entity.

property dxf
DXF name space of associated B1ockRecord table entry.

property can_explode: bool

Set property to True to allow exploding block references of this block.

property scale_uniformly: bool

Set property to True to allow block references of this block only scale uniformly.

property base_point: Vec3
Get/Set the base point of the block.

__contains__ (entity) — bool
Returns True if block contains entity.

Parameters
entity - DXFGraphic object or handle as hex string

attdefs () — Iterable[AttDef]
Returns iterable of all At tdef entities.

has_attdef (tag: str) — bool

Returns True if an At tdef for fag exist.

get_attdef (tag: str) — DXFGraphic | None
Returns attached At tdef entity by fag name.

get_attdef_text (tag: str, default: str = ") — str
Returns text content for At tdef fag as string or returns default if no Attdef for tag exist.

Parameters

* tag - name of tag

9.9. Reference 401

ezdxf Documentation, Release 1.2.0

¢ default — default value if zag not exist

Groups

A group is just a bunch of DXF entities tied together. All entities of a group has to be in the same layout (modelspace
or any paperspace layout but not block). Groups can be named or unnamed, but in reality an unnamed groups has just a
special name like “*Annnn”. The name of a group has to be unique in the drawing. Groups are organized in the group
table, which is stored as attribute groups in the Drawing object.

Important: Group entities have to reside in the modelspace or an paperspace layout but not in a block definition!

DXFGroup

class ezdxf.entities.dxfgroups.DXFGroup

The group name is not stored in the GROUP entity, it is stored in the GroupCollection object.

dxf.description

group description (string)

dxf .unnamed
1 for unnamed, O for named group (int)

dxf.selectable
1 for selectable, O for not selectable group (int)

__iter__ () — Iterator[DXFEntity]
Iterate over all DXF entities in DXFGroup as instances of DXFGraphic or inherited (LINE, CIRCLE,
).

len__ () —int

Returns the count of DXF entities in DXFGroup.

__getitem__ (item)
Returns entities by standard Python indexing and slicing.
_ _contains__ (item: str | DXFEntity) — bool
Returns True if item is in DXFGroup. item has to be a handle string or an object of type DXFEntity or
inherited.
handles () — Iterable[str]
Iterable of handles of all DXF entities in DXFGroup.

edit_data () — listfDXFEntity]

Context manager which yields all the group entities as standard Python list:

with group.edit_data () as data:
add new entities to a group
data.append (modelspace.add_line((0, 0), (3, 0)))
remove last entity from a group
data.pop ()

402

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

set_data (entities: Iterablel DXFEntity]) — None

Set entities as new group content, entities should be an iterable DXFGraphic or inherited (LINE, CIRCLE,
...). Raises DXFValueError if not all entities be on the same layout (modelspace or any paperspace layout
but not block)

extend (entities: Iterable] DXFEntity]) — None
Add entities to DXFGroup without immediate verification!

Validation at DXF export may raise a DXFStructureError!

clear () — None
Remove all entities from DXFGroup, does not delete any drawing entities referenced by this group.

audit (auditor: Auditor) — None
Remove invalid entities from DXFGroup.

Invalid entities are:
¢ deleted entities
« all entities which do not reside in model- or paper space

« all entities if they do not reside in the same layout

GroupCollection

Each Drawing has one group table, which is accessible by the attribute groups.

class ezdxf.entities.dxfgroups.GroupCollection

Manages all DXFGroup objects of a Drawing.

Returns the count of DXF groups.

_diter__ ()
Iterate over all existing groups as (name, group) tuples. name is the name of the group as string and group is
an DXFGroup object.

__contains__ ()

Returns True if a group name exist.

get (name: str) — DXFGroup
Returns the group name. Raises DXFKeyError if group name does not exist.

groups () — Iterator[DXFGroup]
Iterable of all existing groups.

new (name: str | None = None, description: str = ", selectable: bool = True) — DXFGroup

Creates a new group. If name is None an unnamed group is created, which has an automatically generated
name like “* Annnn”. Group names are case-insensitive.

Parameters
* name — group name as string
¢ description — group description as string

* selectable — group is selectable if True

9.9. Reference 403

ezdxf Documentation, Release 1.2.0

delete (group: DXFGroup | str) — None

Delete group, group can be an object of type DXFGroup or a group name as string.
clear ()

Delete all groups.
audit (auditor: Auditor) — None

Removes empty groups and invalid handles from all groups.

DXF Entities

All DXF entities can only reside in the BaseLayout and inherited classes like Modelspace, Paperspace and
BlockLayout.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

DXF Entity Base Class

Common base class for all DXF entities and objects.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFEntity

dxf
The DXEF attributes namespace:

set attribute value
entity.dxf.layer = 'MyLayer'

get attribute value
linetype = entity.dxf.linetype

delete attribute
del entity.dxf.linetype

dxf.handle
DXEF handle is a unique identifier as plain hex string like F000. (feature for experts)
dxf.owner
Handle to owner as plain hex string like F000. (feature for experts)
doc
Get the associated Drawing instance.
property is_alive: bool
Is False if entity has been deleted.
property is_virtual: bool

Is True if entity is a virtual entity.

404 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

property is_bound: bool
Is True if entity is bound to DXF document.

property is_copy: bool
Is True if the entity is a copy.
property uuid: UUID
Returns a UUID, which allows to distinguish even virtual entities without a handle.

Dynamic attribute: this UUID will be created at the first request.

property source_of_copy: DXFEntity | None
The immediate source entity if this entity is a copy else None. Never references a destroyed entity.
property origin_of_copy: DXFEntity | None
The origin source entity if this entity is a copy else None. References the first non-virtual source entity and
never references a destroyed entity.
property has_source_block_reference: bool
Is True if this virtual entity was created by a block reference.

property source_block_reference: Insert | None
The source block reference (INSERT) which created this virtual entity. The property is None if this entity
was not created by a block reference.

dxftype () — str
Get DXF type as string, like LINE for the line entity.

str__ () —str

Returns a simple string representation.
__repr__ () —»str

Returns a simple string representation including the class.
has_dxf_attrib (key: str) — bool

Returns True if DXF attribute key really exist.

Raises DXFAttributeError if key is not an supported DXF attribute.

is_supported_dxf_attrib (key: str) — bool
Returns True if DXF attrib key is supported by this entity. Does not grant that attribute key really exist.

get_dxf_attrib (key: str, default: Any = None) — Any
Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if default is DXF -
ValueError and no DXF default value is defined:

layer = entity.get_dxf_attrib("layer")
same as
layer = entity.dxf.layer

Raises DXFAttributeError if key is not an supported DXF attribute.

set_dxf_attrib (key: str, value: Any) — None
Set new value for DXF attribute key:

entity.set_dxf_attrib("layer", "MyLayer")
same as
entity.dxf.layer = "MyLayer"

9.9. Reference 405

ezdxf Documentation, Release 1.2.0

Raises DXFAttributeError if key is not an supported DXF attribute.
del_dxf_attrib (key: str) — None
Delete DXF attribute key, does not raise an error if attribute is supported but not present.

Raises DXFAttributeError if key is not an supported DXF attribute.

dxfattribs (drop: set[str] | None = None) — dict

Returns a dict with all existing DXF attributes and their values and exclude all DXF attributes listed in set
drop.

update_dxf_attribs (dxfanribs: dict) — None
Set DXF attributes by a dict like { 'layer': 'test', 'color': 4}.

set_flag_state (flag: int, state: bool = True, name: str = 'flags') — None
Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to O (off) if state is False.

get_flag_state (flag: int, name: str = 'flags’) — bool

Returns True if any flag of DXF attribute is 1 (on), else False. Always check only one flag state at the
time.

has_extension_dict

Returns True if entity has an attached ExtensionDict instance.

get_extension_dict () — ExtensionDict

Returns the existing ExtensionDict instance.

Raises
AttributeError — extension dict does not exist

new_extension_dict () — ExtensionDict

Create anew ExtensionDict instance.

discard_extension_dict () — None

Delete ExtensionDict instance.

discard_empty_extension_dict () — None

Delete ExtensionDict instance when empty.

has_app_data (appid: str) — bool
Returns True if application defined data for appid exist.

get_app_data (appid: str) — Tags
Returns application defined data for appid.

Parameters
appid - application name as defined in the APPID table.

Raises
DXFValueError —no data for appid found

set_app_data (appid: str, tags: Iterable) — None
Set application defined data for appid as iterable of tags.

Parameters
¢ appid - application name as defined in the APPID table.

* tags —iterable of (code, value) tuples or DXFTag

406 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

discard_app_data (appid: str)
Discard application defined data for appid. Does not raise an exception if no data for appid exist.

has_xdata (appid: str) — bool
Returns True if extended data for appid exist.

get_xdata (appid: str) — Tags
Returns extended data for appid.

Parameters
appid — application name as defined in the APPID table.

Raises
DXFValueError —no extended data for appid found

set_xdata (appid: str, tags: Iterable) — None
Set extended data for appid as iterable of tags.

Parameters
* appid - application name as defined in the APPID table.
* tags —iterable of (code, value) tuples or DXFTag

discard_xdata (appid: str) — None

Discard extended data for appid. Does not raise an exception if no extended data for appid exist.

has_xdata_1list (appid: str, name: str) — bool

Returns True if a tag list name for extended data appid exist.

get_xdata_list (appid: str, name: str) — Tags
Returns tag list name for extended data appid.

Parameters
¢ appid - application name as defined in the APPID table.
* name - extended data list name

Raises
DXFValueError — no extended data for appid found or no data list name not found

set_xdata_list (appid: str, name: str, tags: Iterable) — None
Set tag list name for extended data appid as iterable of tags.

Parameters
* appid — application name as defined in the APPID table.
* name - extended data list name
* tags —iterable of (code, value) tuples or DXFTag

discard_xdata_list (appid: str, name: str) — None

Discard tag list name for extended data appid. Does not raise an exception if no extended data for appid or
no tag list name exist.

replace_xdata_1list (appid: str, name: str, tags: Iterable) — None

Replaces tag list name for existing extended data appid by tags. Appends new list if tag list name do not exist,
but raises DXFValueError if extended data appid do not exist.

Parameters

* appid - application name as defined in the APPID table.

9.9.

Reference 407

ezdxf Documentation, Release 1.2.0

* name - extended data list name
* tags —iterable of (code, value) tuples or DXFTag

Raises
DXFValueError —no extended data for appid found

has_reactors () — bool

Returns True if entity has reactors.

get_reactors () — list[str]

Returns associated reactors as list of handles.

set_reactors (handles: Iterable[str]) — None

Set reactors as list of handles.

append_reactor_handle (handle: str) — None
Append handle to reactors.

discard_reactor_handle (handle: str) — None

Discard handle from reactors. Does not raise an exception if handle does not exist.

DXF Graphic Entity Base Class

Common base class for all graphical DXF entities.
All graphical entities reside in an entity space like Modelspace, any Paperspace or BlockLayout.
See also:

* ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities

e ezdxf.colors module

* Tutorial for Common Graphical Attributes

Subclass of ezdxf.entities.DXFEntity

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFGraphic

rgb
Get/set DXF attribute dxf. t rue_coloras(r, g b) tuple, returns None if attribute dxf. t rue_color
is not set.
entity.rgb = (30, 40, 50)

r, g, b = entity.rgb

This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level
attribute dxf.true_color.

408 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

transparency

Get/set the transparency value as float. The transparency value is in the range from O to 1, where 0 means
the entity is opaque and 1 means the entity is 100% transparent (invisible). This is the recommend method
to get/set the transparency value, when ever possible do not use the DXF low level attribute DXFGraphic.
dxf.transparency.

This attribute requires DXF R2004 or later, returns O for older DXF versions and raises DXFAttribu—
teError for setting transparency in older DXF versions.

property is_transparency_by_layer: bool
Returns True if entity inherits transparency from layer.
property is_transparency_by_block: bool
Returns True if entity inherits transparency from block.
ocs () — OCS

Returns object coordinate system (OCS) for 2D entities like Text or Circle, returns a pass-through OCS
for entities without OCS support.

get_layout () — BaseLayout | None
Returns the owner layout or returns None if entity is not assigned to any layout.
unlink_from_layout () — None

Unlink entity from associated layout. Does nothing if entity is already unlinked.

It is more efficient to call the unliink entity () method of the associated layout, especially if you have
to unlink more than one entity.

copy_to_layout (layout: BaseLayout) — Self

Copy entity to another layout, returns new created entity as DXFEnt ity object. Copying between different
DXF drawings is not supported.

Parameters
layout - any layout (model space, paper space, block)

Raises
DXFStructureError — for copying between different DXF drawings

move_to_layout (layout: BaseLayout, source: BaseLayout | None = None) — None

Move entity from model space or a paper space layout to another layout. For block layout as source, the block
layout has to be specified. Moving between different DXF drawings is not supported.

Parameters
* layout - any layout (model space, paper space, block)
* source - provide source layout, faster for DXF R12, if entity is in a block layout

Rai
) SDejs’FStruct ureError — for moving between different DXF drawings

graphic_properties () — dict

Returns the important common properties layer, color, linetype, lineweight, Itscale, true_color and

color_name as dxfartribs dict.
has_hyperlink () — bool

Returns True if entity has an attached hyperlink.
get_hyperlink () — tuple[str, str, str]

Returns hyperlink, description and location.

9.9.

Reference 409

ezdxf Documentation, Release 1.2.0

set_hyperlink (link: str, description: str | None = None, location: str | None = None)
Set hyperlink of an entity.

transform (m: Matrix44) — Self

Inplace transformation interface, returns self (floating interface).

Parameters
m — 4x4 transformation matrix (ezdxf.math.Matrix44)

translate (dx: float, dy: float, dz: float) — Self
Translate entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).

Basic implementation uses the t ransform () interface, subclasses may have faster implementations.

scale (sx: float, sy: float, sz: float) — Self

Scale entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).

scale_uniform (s: float) — Self

Scale entity inplace uniform about s in x-axis, y-axis and z-axis, returns self (floating interface).

rotate_x (angle: float) — Self

Rotate entity inplace about x-axis, returns self (floating interface).

Parameters
angle - rotation angle in radians

rotate_y (angle: float) — Self
Rotate entity inplace about y-axis, returns self (floating interface).

Parameters
angle - rotation angle in radians

rotate_z (angle: float) — Self

Rotate entity inplace about z-axis, returns self (floating interface).

Parameters
angle - rotation angle in radians

rotate_axis (axis: UVec, angle: float) — Self
Rotate entity inplace about vector axis, returns self (floating interface).

Parameters
* axis - rotation axis as tuple or Vec3

* angle - rotation angle in radians

Common graphical DXF attributes

DXFGraphic.dxf.layer
Layer name as string; default = “0”

DXFGraphic.dxf.linetype
Linetype as string, special names “BYLAYER”, “BYBLOCK?”; default value is “BYLAYER”

410 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

DXFGraphic.dxf.color
AutoCAD Color Index (ACI), default value is 256

Constants defined in ezdxf.11dxf.const oruse the ezdxf.colors module

0 BYBLOCK
256 BYLAYER
257 BYOBIJECT

DXFGraphic.dxf.lineweight

Line weight in mm times 100 (e.g. 0.13mm = 13). There are fixed valid lineweights which are accepted
by AutoCAD, other values prevents AutoCAD from loading the DXF document, BricsCAD isn’t that
picky. (requires DXF R2000)

Constants defined in ezdxf.1]ldxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT_DEFAULT

Valid DXF lineweights stored in VALID_DXF_LINEWEIGHTS:O0, 5, 9, 13, 15, 18, 20, 25, 30, 35,
40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211

DXFGraphic.dxf.ltscale
Line type scale as float; default value is 1.0; (requires DXF R2000)

DXFGraphic.dxf.invisible
1 for invisible, O for visible; default value is 0; (requires DXF R2000)

DXFGraphic.dxf.paperspace
0 for entity resides in modelspace or a block, 1 for paperspace, this attribute is set automatically by
adding an entity to a layout (feature for experts); default value is O
DXFGraphic.dxf.extrusion

Extrusion direction as 3D vector; default value is (0, 0, 1)

DXFGraphic.dxf.thickness
Entity thickness as float; default value is 0.0; (requires DXF R2000)

DXFGraphic.dxf.true_color
True color value as int 0XOORRGGBB, use DXFGraphic. rgb to get/set true color values as (r, g,
b) tuples. (requires DXF R2004)

DXFGraphic.dxf.color_name

Color name as string. (requires DXF R2004)

DXFGraphic.dxf.transparency

Transparency value as int, 0x020000TT, 0x00 = 100% transparent / OxFF = opaque, spe-
cial value 0x01000000 means transparency by block. An unset transparency value means
transparency by layer. Use DXFGraphic.transparency to get/set transparency as float
value, and the properties DXFGraphic.is_transparency_by_block and DXFGraphic.
is_transparency_by_layer to check special cases.

(requires DXF R2004)

9.9.

Reference 411

ezdxf Documentation, Release 1.2.0

DXFGraphic.dxf.shadow_mode

casts and receives shadows
casts shadows

receives shadows

ignores shadows

[SS BN S)

(requires DXF R2007)
See also:
* ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities
* ezdxf.colors module

o Tutorial for Common Graphical Attributes

Face3d

The 3DFACE entity (DXF Reference) is real 3D solid filled triangle or quadrilateral. Access vertices by name (entity.
dxf.vtx0 = (1.7, 2.3))orbyindex (entity[0] = (1.7, 2.3)).

Unlike the entities Sol1id and Trace, the vertices of Face3d have the expected vertex order:

msp.add_3dface([(0, 0), (10, O0), (10, 10), (0, 10)1)

412 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-747865D5-51F0-45F2-BEFE-9572DBC5B151

ezdxf Documentation, Release 1.2.0

Subclass of ezdxf.entities.DXFGraphic
DXF type ' 3DFACE"
Factory function ezdxf.layouts.BaseLayout.add_3dface ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Face3d
The class name is Face 3d because 3dface is not a valid Python class name.

dxf.vtx0
Location of 1. vertex (3D Point in WCS)

dxf.vtxl
Location of 2. vertex (3D Point in WCS)

dxf.vtx2
Location of 3. vertex (3D Point in WCS)

9.9. Reference 413

ezdxf Documentation, Release 1.2.0

dxf.vtx3
Location of 4. vertex (3D Point in WCS)

dxf.invisible_edges

invisible edge flag (int, default=0)

first edge is invisible
second edge is invisible
third edge is invisible
fourth edge is invisible

oo B~ N —

Combine values by adding them, e.g. 1+4 = first and third edge is invisible.

transform (m: Matrix44) — Face3d
Transform the 3DFACE entity by transformation matrix m inplace.

wes_vertices (close: bool = False) — list[Vec3]

Returns WCS vertices, if argument close is True, the first vertex is also returned as closing last vertex.

Returns 4 vertices when close is False and 5 vertices when close is True. Some edges may have zero-
length. This is a compatibility interface to SOLID and TRACE. The 3DFACE entity is already defined by
WCS vertices.

Solid3d

3DSOLID entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
See also:

Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How fo add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXEF type '3DSOLID'
Factory function ezdxf.layouts.BaseLayout.add_3dsolid /()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Solid3d

Same attributes and methods as parent class Body.

dxf.history_handle
Handle to history object.

414 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-19AB1C40-0BE0-4F32-BCAB-04B37044A0D3
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 1.2.0

ACADProxyEntity

An ACAD_PROXY_ENTITY (DXF Reference) is a proxy entity that represents an entity created by an Autodesk or 3rd
party application. It stores the graphics and data of the original entity.

The internals of this entity are unknown, so the entity cannot be copied or transformed. However, ezdxf can extract the
proxy graphic from these entities as virtual entities or replace (explode) the entire entity with its proxy graphic. The
meaning and data of this entity is lost when the entity is exploded.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'ACAD_PROXY_ENTITY'
Factory function not supported

Inherited DXF attributes ~ Common graphical DXF attributes

class ezdxf.entities.ACADProxyEntity

virtual_entities () — Iterator[DXFGraphic]
Yields proxy graphic as “virtual” entities.

explode (target_layout: BaseLayout | None = None) — EntityQuery

Explodes the proxy graphic for the ACAD_PROXY_ENTITY into the target layout, if target layout
is None, the layout of the ACAD_PROXY_ENTITY will be used. This method destroys the source
ACAD_PROXY_ENTITY entity.

Parameters
target_layout - target layout for exploded entities, None for same layout as the source
ACAD_PROXY_ENTITY.

Returns
Ent ityQuery container referencing all exploded DXF entities.

Arc

The ARC entity (DXF Reference) represents a circular arc, which is defined by the DXF attributes dxf . center, dxf.
radius, dxf.start_angle and dxf.end_angle. The arc-curve goes always from dxf.start_angle to
dxf.end_angle in counter-clockwise orientation around the dxf . ext rusion vector, which is (0, 0, 1) by default
and the usual case for 2D arcs. The ARC entity has OCS coordinates.

The helper tool ezdxf.math.ConstructionArc supports creating arcs from various scenarios, like from 3 points
or 2 points and an angle or 2 points and a radius and the upright module can convert inverted extrusion vectors from
(0,0, -1) to (0, 0, 1) without changing the curve.

See also:
e Tutorial for Simple DXF Entities, section Arc
* ezdxf.math.ConstructionArc
* Object Coordinate System (OCS)

* ezdxf.upright module

Subclass of ezdxf.entities.Circle
DXF type 'ARC'
Factory function ezdxf.layouts.BaseLayout.add_arc ()

Inherited DXF attributes ~ Common graphical DXF attributes

9.9. Reference 415

https://help.autodesk.com/view/OARX/2019/ENU/?guid=GUID-89A690F9-E859-4D57-89EA-750F3FB76C6B
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0B14D8F1-0EBA-44BF-9108-57D8CE614BC8

ezdxf Documentation, Release 1.2.0

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Arc

dxf.center
Center point of arc (2D/3D Point in OCS)

dxf.radius
Radius of arc (float)

dxf.start_angle
Start angle in degrees (float)

dxf.end_angle
End angle in degrees (float)

start_point
Returns the start point of the arc in WCS, takes the OCS into account.

end_point
Returns the end point of the arc in WCS, takes the OCS into account.

angles (num: int) — Iterator[float]
Yields num angles from start- to end angle in degrees in counter-clockwise orientation. All angles are nor-
malized in the range from [0, 360).

flattening (sagitta: float) — Iterator[Vec3]
Approximate the arc by vertices in WCS, the argument sagitta defines the maximum distance from the center
of an arc segment to the center of its chord.

transform (m: Matrix44) — Arc
Transform ARC entity by transformation matrix m inplace. Raises NonUniformScalingError () for
non-uniform scaling.

to_ellipse (replace=True) — Ellipse
Convert the CIRCLE/ARC entity to an £1 1 1pse entity.

Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by ELLIPSE entity if True

to_spline (replace=True) — Spline
Convert the CIRCLE/ARC entity to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by SPLINE entity if True
construction_tool () — ConstructionArc

Returns the 2D construction tool ezdx f.math.ConstructionArc but the extrusion vector is ignored.

apply_construction_tool (arc: ConstructionArc) — Arc

Set ARC data from the construction tool ezdxf.math.ConstructionArc but the extrusion vector is
ignored.

416

Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.2.0

Body

BODY entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.

See also:

Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.DXFGraphic
DXF type 'BODY'
Factory function ezdxf.layouts.BaseLayout .add_body ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Body
dxf.version
Modeler format version number, default value is 1

dxf.flags
Require DXF R2013.

dxf.uid
Require DXF R2013.

property acis_data: bytes | Sequence[str]
Returns SAT data for DXF R2000 up to R2010 and SAB data for DXF R2013 and later

property sat: Sequence[str]
Get/Set SAT data as sequence of strings.

property sab: bytes
Get/Set SAB data as bytes.

property has_binary_data
Returns True if the entity contains SAB data and False if the entity contains SAT data.

tostring () — str
Returns ACIS SAT data as a single string if the entity has SAT data.

Circle

The CIRCLE entity (DXF Reference) defined by the DXF attributes dxf . center and dxf.radius. The CIRCLE
entity has OCS coordinates.

See also:
e Tutorial for Simple DXF Entities, section Circle
* ezdxf.math.ConstructionCircle

* Object Coordinate System (OCS)

9.9. Reference 417

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7FB91514-56FF-4487-850E-CF1047999E77
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8663262B-222C-414D-B133-4A8506A27C18

ezdxf Documentation, Release 1.2.0

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'CIRCLE'
Factory function ezdxf.layouts.BaseLayout.add _circle ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Circle

dxf.center
Center point of circle (2D/3D Point in OCS)

dxf.radius
Radius of circle (float)

vertices (angles: Iterable[float]) — Iterator[Vec3]
Yields the vertices of the circle of all given angles as Vec 3 instances in WCS.
Parameters
angles - iterable of angles in OCS as degrees, angle goes counter-clockwise around the ex-
trusion vector, and the OCS x-axis defines 0-degree.
flattening (sagitta: float) — Iterator[Vec3]
Approximate the circle by vertices in WCS as Vec 3 instances. The argument sagitta is the maximum distance
from the center of an arc segment to the center of its chord. Yields a closed polygon where the start vertex is
equal to the end vertex!
transform (m: Matrix44) — Circle
Transform the CIRCLE entity by transformation matrix m inplace. Raises NonUniformScalingEr—
ror () for non-uniform scaling.
translate (dx: float, dy: float, dz: float) — Circle
Optimized CIRCLE/ARC translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating
interface).
to_ellipse (replace=True) — Ellipse
Convert the CIRCLE/ARC entity to an £1 1 i pse entity.

Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by ELLIPSE entity if True

to_spline (replace=True) — Spline
Convert the CIRCLE/ARC entity to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace — replace (delete) source entity by SPLINE entity if True

418 Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.2.0

Dimension

The DIMENSION entity (DXF Reference) represents several types of dimensions in many orientations and alignments.
The basic types of dimensioning are linear, radial, angular, ordinate, and arc length.

For more information about dimensions see the online help from AutoDesk: About the Types of Dimensions

Important: The DIMENSION entity is reused to create dimensional constraints, such entities do not have an associ-
ated geometrical block nor a dimension type group code (2) and reside on layer *ADSK_CONSTRAINTS. Use property
Dimension.is_dimensional_constraint to check for this objects. Dimensional constraints are not docu-
mented in the DXF reference and not supported by ezdxf.

See also:
e Tutorial for Linear Dimensions
e Tutorial for Radius Dimensions
e Tutorial for Diameter Dimensions
» Tutorial for Angular Dimensions

* Tutorial for Ordinate Dimensions

Subclass of ezdxf.entities.DXFGraphic
DXF type "DIMENSION'
factory function see table below

Inherited DXF attributes ~ Common graphical DXF attributes

Factory Functions

Linear and Rotated Dimension (DXF) add_linear dim()
Aligned Dimension (DXF) add_aligned_dim/()
Angular Dimension (DXF) add_angular_dim_ 21 ()
Angular 3P Dimension (DXF) add_angular_dim_3p ()
Angular Dimension by center, radius, angles add_angular _dim_cra ()
Angular Dimension by ConstructionArc add_angular_dim arc ()
Diameter Dimension (DXF) add_diameter _dim()
Radius Dimension (DXF) add_radius_dim/()
Ordinate Dimension (DXF) add_ordinate_dim()

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Dimension

There is only one Dimension class to represent all different dimension types.

dxf.version
Version number: 0 = R2010. (int, DXF R2010)

9.9. Reference 419

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-239A1BDD-7459-4BB9-8DD7-08EC79BF1EB0
https://knowledge.autodesk.com/support/autocad/getting-started/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-9A8AB1F2-4754-444C-B90D-CD3F2FC8A3E0-htm.html
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 1.2.0

dxf.geometry
Name of the BLOCK that contains the entities that make up the dimension picture.
For AutoCAD this graphical representation is mandatory, otherwise AutoCAD will not open the DXF docu-
ment. BricsCAD will render the DIMENSION entity by itself, if the graphical representation is not present,
but displays the BLOCK content if present.

dxf.dimstyle
Dimension style (DimStyle) name as string.

dxf.dimtype

Values 0-6 are integer values that represent the dimension type. Values 32, 64, and 128 are bit values, which
are added to the integer values.

Linear and Rotated Dimension (DXF)

Aligned Dimension (DXF)

Angular Dimension (DXF)

Diameter Dimension (DXF)

Radius Dimension (DXF)

Angular 3P Dimension (DXF)

Ordinate Dimension (DXF)

subclass ezdxf.entities.ArcDimension introduced in DXF R2004

Indicates that graphical representation geomet ry is referenced by this dimension only. (always

set in DXF R13 and later)

64 Ordinate type. This is a bit value (bit 7) used only with integer value 6. If set, ordinate is X-type; if
not set, ordinate is Y-type

128 This is a bit value (bit 8) added to the other dimt ype values if the dimension text has been posi-

tioned at a user-defined location rather than at the default location

LW oo NN AW —O

[\

dxf.defpoint
Definition point for all dimension types. (3D Point in WCS)

* Linear- and rotated dimension: dxf . de fpoint specifies the dimension line location.

¢ Arc- and angular dimension: dxf . defpoint and dxfdefpoint4 specify the endpoints of the line
used to determine the second extension line.

dxf.defpoint2
Definition point for linear- and angular dimensions. (3D Point in WCS)

 Linear- and rotated dimension: The dxf.defpoint?2 specifies the start point of the first extension
line.

¢ Arc- and angular dimension: The dxf .defpoint2 and dxf .defpoint 3 specify the endpoints of
the line used to determine the first extension line.

dxf.defpoint3
Definition point for linear- and angular dimensions. (3D Point in WCS)

* Linear- and rotated dimension: The dxf . defpoint 3 specifies the start point of the second extension
line.

¢ Arc- and angular dimension: The dxf .defpoint2 and dxf .defpoint 3 specify the endpoints of
the line used to determine the first extension line.

420 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 1.2.0

dxf.defpoint4
Definition point for diameter-, radius-, and angular dimensions. (3D Point in WCS)

The dxf.defpoint and dxf.defpoint4 specify the endpoints of the line used to determine the second
extension line for arc- and angular dimension:

dxf.defpoint5h

This point defines the location of the arc for angular dimensions. (3D Point in OCS)
dxf.angle

Rotation angle of linear and rotated dimensions in degrees. (float)
dxf.leader_length

Leader length for radius and diameter dimensions. (float)
dxf.text_midpoint

Middle point of dimension text. (3D Point in OCS)
dxf.insert

Insertion point for clones of a linear dimensions. (3D Point in OCS)

This value translates the content of the associated anonymous block for cloned linear dimensions, similar to
the insert attribute of the Tnsert entity.

dxf.attachment_point
Text attachment point (int, DXF R2000), default value is 5.

Top left

Top center
Top right
Middle left
Middle center
Middle right
Bottom left
Bottom center
Bottom right

O 00 1O\ N B W~

dxf.line_spacing_style
Dimension text line-spacing style (int, DXF R2000), default value is 1.

1 At least (taller characters will override)
2 Exact (taller characters will not override)

dxf.line_spacing_ factor
Dimension text-line spacing factor. (float, DXF R2000)

Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00.

dxf.actual_measurement

Actual measurement (float, DXF R2000), this is an optional attribute and often not present. (read-only value)

dxf.text
Dimension text explicitly entered by the user (str), default value is an empty string.

If empty string or “<>”, the dimension measurement is drawn as the text, if “” (one blank space), the text is
suppressed. Anything else will be displayed as the dimension text.

9.9. Reference 421

ezdxf Documentation, Release 1.2.0

dxf.oblique_angle
The optional dxf . oblique_angle defines the angle of the extension lines for linear dimension.

dxf.text_rotation
Defines is the rotation angle of the dimension text away from its default orientation (the direction of the
dimension line). (float)

dxf.horizontal_direction
Indicates the horizontal direction for the dimension entity (float).
This attribute determines the orientation of dimension text and lines for horizontal, vertical, and rotated linear

dimensions. This value is the negative of the angle in the OCS xy-plane between the dimension line and the
OCS x-axis.

property dimtype: int
dxf.dimt ype without binary flags (32, 62, 128).

property is_dimensional_constraint: bool
Returns True if the DIMENSION entity is a dimensional constraint object.

get_dim_style () — DimStyle
Returns the associated DimStyle entity.

get_geometry_block () — BlockLayout | None
Returns BlockLayout of associated anonymous dimension block, which contains the entities that make
up the dimension picture. Returns None if block name is not set or the BLOCK itself does not exist

get_measurement () — float| Vec3
Returns the actual dimension measurement in WCS units, no scaling applied for linear dimensions. Returns
angle in degrees for angular dimension from 2 lines and angular dimension from 3 points. Returns vector
from origin to feature location for ordinate dimensions.

override () — DimStyleOverride
Returns the DimStyleOverride object.

render () — None
Renders the graphical representation of the DIMENSION entity as DXF primitives (TEXT, LINE, ARC, ...)
into an anonymous content BLOCK.

transform (m: Matrix44) — Dimension
Transform the DIMENSION entity by transformation matrix m inplace.

Raises NonUniformScalingError () for non uniform scaling.

virtual_entities () — Iterator[DXFGraphic]
Yields the graphical representation of the anonymous content BLOCK as virtual DXF primitives (LINE,
ARC, TEXT, ...).

These virtual entities are located at the original location of the DIMENSION entity, but they are not stored
in the entity database, have no handle and are not assigned to any layout.

explode (target_layout: BaseLayout | None = None) — EntityQuery
Explodes the graphical representation of the DIMENSION entity as DXF primitives (LINE, ARC, TEXT,
...) into the target layout, None for the same layout as the source DIMENSION entity.

Returns an Ent it yQuery container containing all DXF primitives.

Parameters
target_layout — target layout for the DXF primitives, None for same layout as source

DIMENSION entity.

422 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

DimStyleOverride

All of the DimSt y1e attributes can be overridden for each Dimension entity individually.

The DimStyleOverride class manages all the complex dependencies between DimStyle and Dimension, the
different features of all DXF versions and the rendering process to create the Dimension picture as BLOCK, which is
required for AutoCAD.

class ezdxf.entities.DimStyleOverride

dimension

Base Dimension entity.
dimstyle
By dimension referenced DimStyle entity.
dimstyle_attribs
Contains all overridden attributes of dimension, asa dict with DimStyle attribute names as keys.
__getitem__ (key: str) — Any
Returns DIMSTYLE attribute key, see also get ().
__setitem__ (key: str, value: Any) — None
Set DIMSTYLE attribute key in dimstyle_attribs.
__delitem__ (key: str) — None
Deletes DIMSTYLE attribute key from dimstyle_attribs,ignores KeyErrors silently.

get (attribute: str, default: Any = None) — Any
Returns DIMSTYLE attribute from override dict dimstyle_attribsorbase DimStyle.

Returns default value for attributes not supported by DXF R12. This is a hack to use the same algorithm to
render DXF R2000 and DXF R12 DIMENSION entities. But the DXF R2000 attributes are not stored in the
DXF R12file! This method does not catch invalid attribute names! Check debug log for ignored DIMSTYLE
attributes.
pop (attribute: str, default: Any = None) — Any
Returns DIMSTYLE attribute from override dict dimstyle_attribs and removes this attribute from
override dict.
update (attribs: dict) — None
Update override dict dimstyle _attribs.
Parameters
attribs - dict of DIMSTYLE attributes
commit () — None
Writes overridden DIMSTYLE attributes into ACAD:DSTYLE section of XDATA of the DIMENSION
entity.
get_arrow_names () — tuple[str, str]
Get arrow names as strings like ‘ARCHTICK’ as tuple (dimblk1, dimblk?2).
set_arrows (blk: str | None = None, blkl: str | None = None, blk2: str | None = None, ldrblk: str | None =
None, size: float | None = None) — None

Set arrows or user defined blocks and disable oblique stroke as tick.
Parameters

¢ blk — defines both arrows at once as name str or user defined block

9.9. Reference 423

ezdxf Documentation, Release 1.2.0

* blk1 - defines left arrow as name str or as user defined block

* blk2 — defines right arrow as name str or as user defined block

* 1drblk — defines leader arrow as name str or as user defined block
* size — arrow size in drawing units

set_tick (size: float = 1) — None

Use oblique stroke as tick, disables arrows.

Parameters
size — arrow size in daring units

set_text_align (halign: str | None = None, valign: str | None = None, vshift: float | None = None) — None

Set measurement text alignment, halign defines the horizontal alignment, valign defines the vertical alignment,
abovel and above2 means above extension line 1 or 2 and aligned with extension line.

Parameters
* halign - left, right, center, abovel, above2, requires DXF R2000+
* valign - above, center, below
e vshift — vertical text shift, if valign is center; >0 shift upward, <0 shift downwards

set_tolerance (upper: float, lower: float | None = None, hfactor: float | None = None, align:
MTextLineAlignment | None = None, dec: int | None = None, leading_zeros: bool | None =
None, trailing_zeros: bool | None = None) — None

Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and
trailing zero suppression.

Parameters
* upper — upper tolerance value
¢ lower - lower tolerance value, if None same as upper
* hfactor — tolerance text height factor in relation to the dimension text height
e align - tolerance text alignment enum ezdxf.enums.MTextLineAlignment
¢ dec - Sets the number of decimal places displayed
* leading_zeros - suppress leading zeros for decimal dimensions if False
* trailing_zeros —suppress trailing zeros for decimal dimensions if False

set_limits (upper: float, lower: float, hfactor: float | None = None, dec: int | None = None, leading_zeros:
bool | None = None, trailing_zeros: bool | None = None) — None

Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading
and trailing zero suppression.

Parameters
e upper — upper limit value added to measurement value
* lower - lower limit value subtracted from measurement value
* hfactor - limit text height factor in relation to the dimension text height
* dec - Sets the number of decimal places displayed, requires DXF R2000+

* leading_zeros — suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

424 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

* trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires

DXF R2000+
set_text_format (prefix: str = ", postfix: str = ", rnd: float | None = None, dec: int | None = None, sep: str |
None = None, leading_zeros: bool | None = None, trailing_zeros: bool | None = None) —
None

Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.
Parameters
* prefix — dimension text prefix text as string
* postfix — dimension text postfix text as string

* rnd - Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

¢ dec — Sets the number of decimal places displayed for the primary units of a dimension.
requires DXF R2000+

@ » @ »

* sep-— or “,” as decimal separator
* leading_zeros - suppress leading zeros for decimal dimensions if False
* trailing_zeros —suppress trailing zeros for decimal dimensions if False

set_dimline_format (color: int | None = None, linetype: str | None = None, lineweight: int | None = None,
extension: float | None = None, disablel: bool | None = None, disable2: bool | None
= None)

Set dimension line properties.
Parameters
¢ color - color index
¢ linetype - linetype as string
* lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
* extension - extension length
e disablel - True to suppress first part of dimension line
* disable2 - True to suppress second part of dimension line

set_extline_format (color: int | None = None, lineweight: int | None = None, extension: float | None =
None, offset: float | None = None, fixed_length: float | None = None)

Set common extension line attributes.
Parameters
* color - color index
e lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
* extension - extension length above dimension line
* offset - offset from measurement point
» fixed_length - set fixed length extension line, length below the dimension line

set_extlinel (linetype: str | None = None, disable=False)
Set attributes of the first extension line.

Parameters

9.9.

Reference 425

ezdxf Documentation, Release 1.2.0

¢ linetype - linetype for the first extension line

* disable — disable first extension line if True
set_extline2 (linetype: str | None = None, disable=False)

Set attributes of the second extension line.
Parameters

¢ linetype - linetype for the second extension line

e disable — disable the second extension line if True
set_text (fext: str = '<>') — None

Set dimension text.

“@ o«

e text = “ “ to suppress dimension text

232

e text = “” or “<>" to use measured distance as dimension text
* otherwise display rext literally

shift_text (dh: float, dv: float) — None
Set relative text movement, implemented as user location override without leader.

Parameters
* dh - shift text in text direction
¢ dv - shift text perpendicular to text direction

set_location (location: UVec, leader=False, relative=False) — None

Set text location by user, special version for linear dimensions, behaves for other dimension types like
user_location_override ().

Parameters
¢ location — user defined text location
¢ leader - create leader from text to dimension line
e relative - location is relative to default location.

user_location_override (location: UVec) — None
Set text location by user, location is relative to the origin of the UCS defined in the render () method or
WCS if the ucs argument is None.

render (ucs: UCS | None = None, discard=False) — BaseDimensionRenderer

Starts the dimension line rendering process and also writes overridden dimension style attributes into the
DSTYLE XDATA section. The rendering process “draws” the graphical representation of the DIMENSION
entity as DXF primitives (TEXT, LINE, ARC, ...) into an anonymous content BLOCK.

You can discard the content BLOCK for a friendly CAD applications like BricsCAD, because the rendering
of the dimension entity is done automatically by BricsCAD if the content BLOCK is missing, and the result
is in most cases better than the rendering done by ezdxf.

AutoCAD does not render DIMENSION entities automatically, therefore I see AutoCAD as an unfriendly
CAD application.

Parameters
* ucs — user coordinate system

¢ discard - discard the content BLOCK created by ezdxf, this works for BricsCAD, Auto-
CAD refuses to open DXF files containing DIMENSION entities without a content BLOCK

426 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Returns
The rendering object of the DIMENSION entity for analytics

ArcDimension

The ARC_DIMENSION entity was introduced in DXF R2004 and is not documented in the DXF reference.
See also:

Tutorial for Arc Dimensions

Subclass of ezdxf.entities.Dimension
DXF type 'ARC_DIMENSION'

factory function
ry * add_arc_dim 3p ()

e add _arc_dim cra /()
e add_arc_dim_arc ()

Inherited DXF attributes Common graphical DXF attributes
Required DXF version R2004 / AC1018

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.ArcDimension

dxf.defpoint2

start point of first extension line in OCS

dxf.defpoint3

start point of second extension line in OCS

dxf.defpoint4

center point of arc in OCS

dxf.start_angle
dxf.end_angle
dxf.is_partial
dxf.has_leader
dxf.leader_pointl
dxf.leader_point2

dimtype

Returns always 8.

9.9. Reference 427

ezdxf Documentation, Release 1.2.0

Ellipse

The ELLIPSE entity (DXF Reference) is an elliptic 3D curve defined by the DXF attributes dxf . center, the dxf.
major_axis vector and the dxf .extrusion vector.

The dxf.ratio attribute is the ratio of minor axis to major axis and has to be smaller or equal 1. The dxf.
start_param and dxf.end_param attributes defines the starting- and the end point of the ellipse, a full ellipse
goes from O to 2;. The curve always goes from start- to end param in counter clockwise orientation.

The dxf .extrusion vector defines the normal vector of the ellipse plane. The minor axis direction is calculated by
dxf.extrusion cross dxf.major_axis. The default extrusion vector (0, O, 1) defines an ellipse plane parallel to
xy-plane of the WCS.

All coordinates and vectors in WCS.

See also:

 Tutorial for Simple DXF Entities, section Ellipse

e ezdxf.math.ConstructionEllipse

Subclass of ezdxf.entities.DXFGraphic
DXF type '"ELLIPSE'
factory function add_ellipse ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ("AC1015")

class ezdxf.entities.Ellipse

dxf.center
Center point of circle (2D/3D Point in WCS)

dxf.major_axis
Endpoint of major axis, relative to the dxf . center (Vec3), default value is (1, 0, 0).

dxf.ratio
Ratio of minor axis to major axis (float), has to be in range from 0.000001 to 1.0, default value is 1.

dxf.start_param
Start parameter (float), default value is O.

dxf.end_param

End parameter (float), default value is 2.

start_point

Returns the start point of the ellipse in WCS.
end_point

Returns the end point of the ellipse in WCS.
minor_axis

Returns the minor axis of the ellipse as Vec3 in WCS.

construction_tool () — ConstructionEllipse

Returns construction tool ezdxf.math.ConstructionEllipse.

apply_construction_tool (e: ConstructionEllipse) — Ellipse
Set ELLIPSE data from construction tool ezdxf.math.ConstructionEllipse.

428

Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-107CB04F-AD4D-4D2F-8EC9-AC90888063AB

ezdxf Documentation, Release 1.2.0

vertices (params: Iterable[float]) — Iterable[Vec3]

Yields vertices on ellipse for iterable params in WCS.

Parameters
params — param values in the range from O to 2 in radians, param goes counter-clockwise
around the extrusion vector, major_axis = local x-axis = 0 rad.

flattening (distance: float, segments: int = 8) — Iterable[Vec3]

Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided. Returns a closed polygon for a full ellipse where the start vertex has the same value as the
end vertex.

Parameters
* distance — maximum distance from the projected curve point onto the segment chord.
¢ segments — minimum segment count

params (num: int) — Iterable[float]

Returns num params from start- to end param in counter-clockwise order.
All params are normalized in the range [0, 27).

transform (m: Matrix44) — Ellipse
Transform the ELLIPSE entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Ellipse

Optimized ELLIPSE translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating inter-
face).

to_spline (replace=True) — Spline
Convert ELLIPSE to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by SPLINE entity if True

classmethod from_arc (entity: DXFGraphic) — Ellipse
Create a new virtual ELLIPSE entity from an ARC or a CIRCLE entity.

The new entity has no owner, no handle, is not stored in the entity database nor assigned to any layout!

Hatch

The HATCH entity (DXF Reference) fills a closed area defined by one or more boundary paths by a hatch pattern, a solid
fill, or a gradient fill.

All points in OCS as (x, y) tuples (Hatch.dxf.elevation is the z-axis value).

There are two different hatch pattern default scaling, depending on the HEADER variable SMEASUREMENT, one for
ISO measurement (m, cm, mm, ...) and one for imperial measurement (in, ft, yd, ...).

The default scaling for predefined hatch pattern will be chosen according this measurement setting in the HEADER
section, this replicates the behavior of BricsCAD and other CAD applications. Ezdxf uses the ISO pattern definitions as a
base line and scales this pattern down by factor 1/25.6 for imperial measurement usage. The pattern scaling is independent
from the drawing units of the document defined by the HEADER variable SINSUNITS.

9.9. Reference 429

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-C6C71CED-CE0F-4184-82A5-07AD6241F15B

ezdxf Documentation, Release 1.2.0

See also:

Tutorial for Hatch and DXF Units

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'HATCH'
Factory function ezdxf.layouts.BaseLayout.add_hatch ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ("AC1015")

Boundary paths classes

Path manager: BoundaryPaths
* PolylinePath

e EdgePath

LineEdge

ArcEdge

EllipseEdge

SplineEdge

Pattern and gradient classes

e Pattern
e PatternLine
* Gradien
class ezdxf.entities.Hatch
dxf.pattern_name
Pattern name as string

dxf.solid fill

1 solid fill, use method Hatch.set solid fill ()
0 pattern fill, use method Hatch. set_pattern_fill ()

dxf.associative

1 associative hatch
0 not associative hatch

Associations are not managed by ezdxf.

430 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dxf.hatch_style

0 normal
1 outer
2 ignore

(search AutoCAD help for more information)

dxf.pattern_type

0 user
1 predefined
2 custom

dxf.pattern_angle
The actual pattern rotation angle in degrees (float). Changing this value does not rotate the pattern, use
set_pattern_angle () for this task.

dxf.pattern_scale
The actual pattern scale factor (float). Changing this value does not scale the pattern use
set_pattern_scale () for this task.

dxf.pattern_double
1 = double pattern size else 0. (int)

dxf.n_seed_points
Count of seed points (use get_seed_points())
dxf.elevation

Z value represents the elevation height of the OCS. (float)

paths
BoundaryPaths object.

pattern

Pattern object.

gradient

Gradient object.

seeds
A list of seed points as (x, y) tuples.
property has_solid_fill: bool
True if entity has a solid fill. (read only)

property has_pattern_f£fill: bool
True if entity has a pattern fill. (read only)

property has_gradient_data: bool
True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)

. Reference 431

ezdxf Documentation, Release 1.2.0

property bgcolor: RGB | None
Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)

usage:

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition (lines: Sequence, factor: float = 1, angle: float = 0) — None

Setup pattern definition by a list of definition lines and the definition line is a 4-tuple (angle, base_point, offset,
dash_length_items). The pattern definition should be designed for a pattern scale factor of 1 and a pattern
rotation angle of 0.

* angle: line angle in degrees
¢ base-point: (x, y) tuple
* offset: (dx, dy) tuple

* dash_length_items: list of dash items (item > O is a line, item < O is a gap and item == 0.0 is a point)

Parameters
¢ lines - list of definition lines
e factor - pattern scale factor

* angle - rotation angle in degrees

set_pattern_scale (scale: float) — None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale (1) call resets the pat-
tern scale to the original appearance as defined by the pattern designer, but only if the pattern attribute dx 1.

pattern_scale represents the actual scale, it cannot restore the original pattern scale from the pattern
definition itself.

Parameters
scale - pattern scale factor

set_pattern_angle (angle: float) — None

Sets the pattern rotation angle and rotates the pattern definition.

The method always starts from the original base rotation of 0, the set_pattern_angle (0) call resets
the pattern rotation angle to the original appearance as defined by the pattern designer, but only if the pattern
attribute dx . pattern_angle represents the actual pattern rotation, it cannot restore the original rotation
angle from the pattern definition itself.

Parameters
angle — pattern rotation angle in degrees

set_solid_£il1 (color: int = 7, style: int = 1, rgb: RGB | None = None)
Set the solid fill mode and removes all gradient and pattern fill related data.

Parameters
e color — AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)

¢ style - hatch style (0 = normal; 1 = outer; 2 = ignore)

432 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

rgb — true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2000.

set_pattern_£ill (name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int

= 1, pattern_type: int = 1, definition=None) — None

Sets the pattern fill mode and removes all gradient related data.

The pattern definition should be designed for a scale factor 1 and a rotation angle of 0 degrees. The predefined
hatch pattern like “ANSI33” are scaled according to the HEADER variable SMEASUREMENT for 1SO
measurement (m, cm, ...), or imperial units (in, ft, ...), this replicates the behavior of BricsCAD.

Parameters

name — pattern name as string

color — pattern color as AutoCAD Color Index (ACI)

angle — pattern rotation angle in degrees

scale — pattern scale factor

double - double size flag

style - hatch style (0 = normal; 1 = outer; 2 = ignore)

pattern_type — pattern type (0 = user-defined; 1 = predefined; 2 = custom)

definition - list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition()

set_gradient (colorl: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,

centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') — None

Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004 or newer. A gradient
filled hatch is also a solid filled hatch.

Valid gradient type names are:
“LINEAR”
“CYLINDER”
“INVCYLINDER”
“SPHERICAL”
“INVSPHERICAL”
“HEMISPHERICAL”
“INVHEMISPHERICAL”
“CURVED”
“INVCURVED”

Parameters

colorl — (1, g, b)-tuple for first color, rgb values as int in the range [0, 255]
color2 —(r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
rotation - rotation angle in degrees

centered - determines whether the gradient is centered or not

one_color — | for gradient from color! to tinted colorl

9.9. Reference

433

ezdxf Documentation, Release 1.2.0

* tint - determines the tinted target colorl for a one color gradient. (valid range 0.0 to 1.0)

* name — name of gradient type, default “LINEAR”

set_seed_points (points: Iterable[tuple[float, float]]) — None

Set seed points, points is an iterable of (x, y)-tuples. I don’t know why there can be more than one seed point.
All points in OCS (Hatch.dxf.elevation is the Z value)

transform (m: Matrixd4) — Hatch

Transform entity by transformation matrix m inplace.

associate (path: AbstractBoundaryPath, entities: Iterable/DXFEntity])
Set association from hatch boundary path to DXF geometry entities.

A HATCH entity can be associative to a base geometry, this association is not maintained nor verified by
ezdxf, so if you modify the base geometry the geometry of the boundary path is not updated and no verification
is done to check if the associated geometry matches the boundary path, this opens many possibilities to create
invalid DXF files: USE WITH CARE!

remove_association ()

Remove associated path elements.

Boundary Paths

The hatch entity is build by different path types, these are the filter flags for the Hatch.dxf.hatch_style:
¢ EXTERNAL: defines the outer boundary of the hatch
* OUTERMOST: defines the first tier of inner hatch boundaries
* DEFAULT: default boundary path

As you will learn in the next sections, these are more the recommended usage type for the flags, but the fill algorithm
doesn’t care much about that, for instance an OUTERMOST path doesn’t have to be inside the EXTERNAL path.

Island Detection

In general the island detection algorithm works always from outside to inside and alternates filled and unfilled areas. The
area between then 1st and the 2nd boundary is filled, the area between the 2nd and the 3rd boundary is unfilled and so on.
The different hatch styles defined by the Hatch. dxf.hatch_style attribute are created by filtering some boundary
path types.

Hatch Style

* HATCH_STYLE_IGNORE: Ignores all paths except the paths marked as EXTERNAL, if there are more than
one path marked as EXTERNAL, they are filled in NESTED style. Creates no hatch if no path is marked as
EXTERNAL.

« HATCH_STYLE_OUTERMOST: Ignores all paths marked as DEFAULT, remaining EXTERNAL and OUTER-
MOST paths are filled in NESTED style. Creates no hatch if no path is marked as EXTERNAL or OUTERMOST.

e HATCH_STYLE_NESTED: Use all existing paths.

434 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Hatch Boundary Classes

class ezdxf.entities.BoundaryPaths

Defines the borders of the hatch, a hatch can consist of more than one path.

paths
List of all boundary paths. Contains PolylinePath and EdgePath objects. (read/write)

external_paths () — Iterable[AbstractBoundaryPath]
Iterable of external paths, could be empty.

outermost_paths () — Iterable[AbstractBoundaryPath]

Iterable of outermost paths, could be empty.

default_paths () — Iterable[AbstractBoundaryPath]
Iterable of default paths, could be empty.

rendering_paths (hatch_style: int = const HATCH_STYLE_NESTED) —; Iterable[AbstractBoundaryPath]

Iterable of paths to process for rendering, filters unused boundary paths according to the given hatch style:
e NESTED: use all boundary paths
¢ OUTERMOST: use EXTERNAL and OUTERMOST boundary paths
* IGNORE: ignore all paths except EXTERNAL boundary paths

Yields paths in order of EXTERNAL, OUTERMOST and DEFAULT.

add_polyline_path (path_vertices: Iterable[tuple[float, ...]], is_closed: bool = True, flags: int = 1) —
PolylinePath

Create and add a new PolylinePath object.
Parameters
* path_vertices —iterable of polyline vertices as (x, y) or (X, y, bulge)-tuples.
* is_closed - 1 for a closed polyline else 0
¢ flags — external(1) or outermost(16) or default (0)

add_edge_path (flags: int = 1) — EdgePath
Create and add a new EdgePath object.

Parameters
flags — external(1) or outermost(16) or default (0)

polyline_to_edge_paths (just_with_bulge=True) — None
Convert polyline paths including bulge values to line- and arc edges.

Parameters
just_with_bulge - convert only polyline paths including bulge values if True

edge_to_polyline_paths (distance: float, segments: int = 16)
Convert all edge paths to simple polyline paths without bulges.

Parameters

* distance — maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

* segments — minimum segment count per curve

9.9. Reference 435

ezdxf Documentation, Release 1.2.0

arc_edges_to_ellipse_edges () — None
Convert all arc edges to ellipse edges.
ellipse_edges_to_spline_edges (num: int = 32) — None
Convert all ellipse edges to spline edges (approximation).

Parameters

num — count of control points for a full ellipse, partial ellipses have proportional fewer control
points but at least 3.

spline_edges_to_line_edges (factor: int = 8) — None
Convert all spline edges to line edges (approximation).

Parameters
factor - count of approximation segments = count of control points x factor

all_to_spline_edges (num: int = 64) — None
Convert all bulge, arc and ellipse edges to spline edges (approximation).

Parameters

num — count of control points for a full circle/ellipse, partial circles/ellipses have proportional
fewer control points but at least 3.

all_to_line_edges (num: int = 64, spline_factor: int = 8) — None
Convert all bulge, arc and ellipse edges to spline edges and approximate this splines by line edges.

Parameters

* num - count of control points for a full circle/ellipse, partial circles/ellipses have proportional
fewer control points but at least 3.

* spline_factor — count of spline approximation segments = count of control points x
spline_factor

clear () — None

Remove all boundary paths.

class ezdxf.entities.BoundaryPathType

POLYLINE
polyline path type
EDGE
edge path type
class ezdxf.entities.PolylinePath
A polyline as hatch boundary path.
type
Path type as BoundaryPathType.POLYLINE enum
path_type_flags
(bit coded flags)

0 default

1 external

2 polyline, will be set by ezdxf
16 outermost

436 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

My interpretation of the path_type_flags, see also Tutorial for Hatch:
* external: path is part of the hatch outer border
* outermost: path is completely inside of one or more external paths
e default: path is completely inside of one or more outermost paths

If there are troubles with AutoCAD, maybe the hatch entity has the Hatch.dxf.pixel_size attribute

set - delete it del hatch.dxf.pixel_size and maybe the problem is solved. Ezdxf does not use the

Hatch.dxf.pixel_size attribute, but it can occur in DXF files created by other applications.
is_closed

True if polyline path is closed.

vertices

List of path vertices as (X, y, bulge)-tuples. (read/write)

source_boundary_objects
List of handles of the associated DXF entities for associative hatches. There is no support for associative
hatches by ezdxf, you have to do it all by yourself. (read/write)

set_vertices (vertices: Iterable[Sequence[float]], is_closed: bool = True) — None

Set new vertices as new polyline path, a vertex has to be a (x, y) or a (x, y, bulge)-tuple.

clear () — None

Removes all vertices and all handles to associated DXF objects (source_boundary_objects).

class ezdxf.entities.EdgePath

Boundary path build by edges. There are four different edge types: LineEdge, ArcEdge, E11ipseEdge of
SplineEdge. Make sure there are no gaps between edges and the edge path must be closed to be recognized as
path. AutoCAD is very picky in this regard. Ezdxf performs no checks on gaps between the edges and does not
prevent creating open loops.

Note: ArcEdge and E11ipseEdge are ALWAYS represented in counter-clockwise orientation, even if an
clockwise oriented edge is required to build a closed loop. To add a clockwise oriented curve swap start- and end
angles and set the ccw flag to False and ezdxf will export a correct clockwise orientated curve.

type

Path type as BoundaryPathType.EDGE enum
path_type_flags

(bit coded flags)

0 default
1 external
16 outermost

see PolylinePath.path_type_flags
edges

List of boundary edges of type LineEdge, ArcEdge, E11ipseEdge of SplineEdge
source_boundary_objects

Required for associative hatches, list of handles to the associated DXF entities.

9.9. Reference 437

ezdxf Documentation, Release 1.2.0

clear () — None
Delete all edges.

add_1line (start: UVec, end: UVec) — LineEdge
Add a LineEdge from start to end.

Parameters
* start - start point of line, (x, y)-tuple
* end - end point of line, (x, y)-tuple

add_arc (center: UVec, radius: float = 1.0, start_angle: float = 0.0, end_angle: float = 360.0, ccw: bool =
True) — ArcEdge

Add an ArcEdge.
Adding Clockwise Oriented Arcs:

Clockwise oriented ArcEdge objects are sometimes necessary to build closed loops, but the ArcEdge
objects are always represented in counter-clockwise orientation. To add a clockwise oriented ArcEdge
you have to swap the start- and end angle and set the ccw flag to False, e.g. to add a clockwise oriented
ArcEdge from 180 to 90 degree, add the ArcEdge in counter-clockwise orientation with swapped angles:

edge_path.add_arc(center, radius, start_angle=90, end_angle=180, ccw=False)

Parameters
e center — center point of arc, (x, y)-tuple
* radius - radius of circle
e start_angle - start angle of arc in degrees (end_angle for a clockwise oriented arc)
* end_angle - end angle of arc in degrees (start_angle for a clockwise oriented arc)
* ccw — True for counter-clockwise False for clockwise orientation
add_ellipse (center: UVec, major_axis: UVec = (1.0, 0.0), ratio: float = 1.0, start_angle: float = 0.0,
end_angle: float = 360.0, ccw: bool = True) — EllipseEdge
Addan E11ipseEdge.
Adding Clockwise Oriented Ellipses:

Clockwise oriented E11ipseEdge objects are sometimes necessary to build closed loops, but the E1 -
1lipseEdge objects are always represented in counter-clockwise orientation. To add a clockwise oriented
EllipseEdge you have to swap the start- and end angle and set the ccw flag to False, e.g. toadd a
clockwise oriented E11ipseEdge from 180 to 90 degree, add the £11ipseEdge in counter-clockwise
orientation with swapped angles:

edge_path.add_ellipse(center, major_axis, ratio, start_angle=90, end_
—~angle=180, ccw=False)

Parameters
* center — center point of ellipse, (X, y)-tuple
* major_axis — vector of major axis as (x, y)-tuple
e ratio - ratio of minor axis to major axis as float

* start_angle — start angle of ellipse in degrees (end_angle for a clockwise oriented el-
lipse)

438 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

* end_angle - end angle of ellipse in degrees (start_angle for a clockwise oriented ellipse)

¢ cecw — True for counter-clockwise False for clockwise orientation

add_spline (fit_points: Iterable[UVec] | None = None, control_points: Iterable[UVec] | None = None,

knot_values: Iterable/[float] | None = None, weights: Iterable[float] | None = None, degree: int =
3, periodic: int = 0, start_tangent: UVec | None = None, end_tangent: UVec | None = None) —
SplineEdge

Add a SplineEdge.

Parameters

* fit_points — points through which the spline must go, at least 3 fit points are required.
list of (X, y)-tuples

e control_points — affects the shape of the spline, mandatory and AutoCAD crashes on
invalid data. list of (x, y)-tuples

* knot_values — (knot vector) mandatory and AutoCAD crashes on invalid data. list of
floats; ezdxf provides two tool functions to calculate valid knot values: ezdxf.math.
uniform knot_vector (), ezdxf.math.open_uniform knot_vector ()
(default if None)

* weights — weight of control point, not mandatory, list of floats.
* degree — degree of spline (int)

* periodic - 1 for periodic spline, O for none periodic spline

* start_tangent - start_tangent as 2d vector, optional

* end_tangent - end_tangent as 2d vector, optional

crashes.

Warning: Unlike for the spline entity AutoCAD does not calculate the necessary knot_values for the
spline edge itself. On the contrary, if the knot_values in the spline edge are missing or invalid AutoCAD

class ezdxf.entities.EdgeType
LINE
ARC
ELLIPSE
SPLINE

class ezdxf.entities.LineEdge
Straight boundary edge.

type
Edge type as EdgeType . LINE enum

start
Start point as (X, y)-tuple. (read/write)

end
End point as (x, y)-tuple. (read/write)

9.9. Reference

439

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.ArcEdge

Arc as boundary edge in counter-clockwise orientation, see EdgePath.add_arc ().
type
Edge type as EdgeType . ARC enum
center
Center point of arc as (X, y)-tuple. (read/write)
radius
Arc radius as float. (read/write)
start_angle
Arc start angle in counter-clockwise orientation in degrees. (read/write)
end_angle
Arc end angle in counter-clockwise orientation in degrees. (read/write)
cew
True for counter clockwise arc else False. (read/write)
class ezdxf.entities.EllipseEdge
Elliptic arc as boundary edge in counter-clockwise orientation, see EdgePath.add_ellipse ().
type
Edge type as EdgeType . ELLIPSE enum
major_axis_vector
Ellipse major axis vector as (X, y)-tuple. (read/write)
minor_axis_length
Ellipse minor axis length as float. (read/write)
radius
Ellipse radius as float. (read/write)
start_angle
Ellipse start angle in counter-clockwise orientation in degrees. (read/write)
end_angle
Ellipse end angle in counter-clockwise orientation in degrees. (read/write)
cew
True for counter clockwise ellipse else False. (read/write)
class ezdxf.entities.SplineEdge
Spline as boundary edge.
type
Edge type as EdgeType . SPLINE enum
degree
Spline degree as int. (read/write)
rational

1 for rational spline else 0. (read/write)

440 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

periodic

1 for periodic spline else 0. (read/write)

knot_values

List of knot values as floats. (read/write)

control_points

List of control points as (x, y)-tuples. (read/write)
fit_points
List of fit points as (x, y)-tuples. (read/write)

weights

List of weights (of control points) as floats. (read/write)

start_tangent

Spline start tangent (vector) as (X, y)-tuple. (read/write)

end_tangent

Spline end tangent (vector) as (X, y)-tuple. (read/write)

Hatch Pattern Definition Classes

class ezdxf.entities.Pattern
lines
List of pattern definition lines (read/write). see PatternLine

add_1line (angle: float = 0, base_point: UVec = (0, 0), offset: UVec = (0, 0), dash_length_items:
Iterable[float] | None = None) — None

Create a new pattern definition line and add the line to the Pattern. 1 ines attribute.

clear () — None

Delete all pattern definition lines.

scale (factor: float = 1, angle: float = 0) — None

Scale and rotate pattern.

Be careful, this changes the base pattern definition, maybe better use Hatch. set_pattern_scale ()
or Hatch.set_pattern_angle ().

Parameters
e factor - scaling factor
* angle - rotation angle in degrees

class ezdxf.entities.PatternlLine
Represents a pattern definition line, use factory function Pattern.add_1ine () tocreate new pattern definition
lines.
angle
Line angle in degrees. (read/write)

base_point
Base point as (x, y)-tuple. (read/write)

9.9. Reference 441

ezdxf Documentation, Release 1.2.0

offset
Offset as (x, y)-tuple. (read/write)

dash_length_items
List of dash length items (item > O is line, < 0 is gap, 0.0 = dot). (read/write)

Hatch Gradient Fill Class

class ezdxf.entities.Gradient
colorl
First rgb color as (r, g, b)-tuple, rgb values in range O to 255. (read/write)

color2
Second rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)

one_color
If one_coloris 1 - the hatch is filled with a smooth transition between color and a specified t int of
colorl. (read/write)

rotation

Gradient rotation in degrees. (read/write)

centered

Specifies a symmetrical gradient configuration. If this option is not selected, the gradient fill is shifted up and
to the left, creating the illusion of a light source to the left of the object. (read/write)

tint
Specifies the tint (color1 mixed with white) of a color to be used for a gradient fill of one color. (read/write)
See also:

Tutorial for Hatch Pattern Definition

Helix

The HELIX entity (DXF Reference).

The helix curve is represented by a cubic B-spline curve, therefore the HELIX entity is also derived from the SPLINE
entity.

See also:

» Wikipedia article about the helix shape

Subclass of ezdxf.entities.Spline
DXF type "HELIX'
Factory function ezdxf.layouts.BaseLayout.add _helix ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.Helix
All points in WCS as (X, y, z) tuples

442 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-76DB3ABF-3C8C-47D1-8AFB-72942D9AE1FF
https://en.wikipedia.org/wiki/Helix

ezdxf Documentation, Release 1.2.0

dxf.axis_base_point
The base point of the helix axis (Vec3).

dxf.start_point
The starting point of the helix curve (Vec3). This also defines the base radius as the distance from the start
point to the axis base point.

dxf.axis_vector

Defines the direction of the helix axis (Vec3).

dxf.radius
Defines the top radius of the helix (float).

dxf.turn_height
Defines the pitch (height if one helix turn) of the helix (float).

dxf.turns
The count of helix turns (float).

dxf .handedness

Helix orientation (int).

0 clock wise (left handed)
1 counter clockwise (right handed)

dxf.constrain

0 constrain turn height (pitch)
1 constrain count of turns
2 constrain total height

Image

The IMAGE entity (DXF Reference) represents a raster image, the image file itself is not embedded into the DXF file,
it is always a separated file. The IMAGE entity is like a block reference, it can be used to add the image multiple times
at different locations with different scale and rotation angles. Every IMAGE entity requires an image definition, see
entity TmageDef. Ezdxf creates only images in the xy-plan, it’s possible to place images in 3D space, therefore the
Image.dxf.u_pixel and the Tmage.dxf.v_pixel vectors has to be set accordingly.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'IMAGE'
Factory function ezdxf.layouts.BaseLayout.add_image ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Image

9.9. Reference 443

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3A2FF847-BE14-4AC5-9BD4-BD3DCAEF2281

ezdxf Documentation, Release 1.2.0

dxf.insert

Insertion point, lower left corner of the image (3D Point in WCS).

dxf.u_pixel
U-vector of a single pixel as (X, y, z) tuple. This vector points along the visual bottom of the image, starting
at the insertion point.

dxf.v_pixel
V-vector of a single pixel as (X, y, z) tuple. This vector points along the visual left side of the image, starting
at the insertion point.

dxf.image_size
Image size in pixels as (X, y) tuple

dxf.image_def_handle
Handle to the image definition entity, see TmageDef

dxf.flags
Image.SHOW_IMAGE 1 Show image
Image.SHOW_WHEN_NOT_ALIGNED 2 Show image when not aligned with screen
Image.USE_CLIPPING_BOUNDARY 4 Use clipping boundary
Image.USE_TRANSPARENCY 8 Transparency is on

dxf.clipping
Clipping state:

0 clipping off
1 clipping on

dxf .brightness
Brightness value in the range [0, 100], default is 50

dxf.contrast
Contrast value in the range [0, 100], default is 50

dxf . fade
Fade value in the range [0, 100], default is O

dxf.clipping_boundary_ type

1 Rectangular
2 Polygonal

dxf.count_boundary_ points
Number of clip boundary vertices, this attribute is maintained by ezdxf.

dxf.clip_mode

0 Outside
1 Inside

444

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

requires DXF R2010 or newer
boundary_path
Returns the boundray path in raw form in pixel coordinates.

A list of vertices as pixel coordinates, Two vertices describe a rectangle, lower left corner is (-0.5, -0.5) and
upper right corner is (ImageSizeX-0.5, ImageSizeY-0.5), more than two vertices is a polygon as clipping path.
All vertices as pixel coordinates. (read/write)

image_def
Returns the associated IMAGEDEEF entity, see TmageDef.

reset_boundary_path () — None
Reset boundary path to the default rectangle [(-0.5, -0.5), (ImageSizeX-0.5, ImageSizeY-0.5)].

set_boundary_path (vertices: Iterable[UVec]) — None

Set boundary path to vertices. Two vertices describe a rectangle (lower left and upper right corner), more
than two vertices is a polygon as clipping path.

pixel_boundary_path () — list[Vec2]

Returns the boundary path as closed loop in pixel coordinates. Resolves the simple form of two vertices as a
rectangle. The image coordinate system has an inverted y-axis and the top-left corner is (0, 0).

Changed in version 1.2.0: renamed from boundray_path_ocs ()

boundary path_wcs () — list[Vec3]
Returns the boundary/clipping path in WCS coordinates.

It’s recommended to acquire the clipping path as Path object by the make_path () function:

from ezdxf.path import make_path

image = ... # get image entity
clipping_path = make_path (image)

transform (m: Matrix44) — Self
Transform IMAGE entity by transformation matrix m inplace.

Leader

The LEADER entity (DXF Reference) represents a pointer line, made up of one or more vertices (or spline fit points)
and an arrowhead. The label or other content to which the Leader is attached is stored as a separate entity, and is not
part of the Leader itself.

The LEADER entity uses parts of the styling infrastructure of the DIMENSION entity.

By default a Leader without any annotation is created. For creating more fancy leaders and annotations see the docu-
mentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementation notes .

Subclass of ezdxf.entities.DXFGraphic
DXF type ' LEADER'
Factory function ezdxf.layouts.BaseLayout.add_leader ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ("AC1015")

9.9. Reference 445

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-396B2369-F89F-47D7-8223-8B7FB794F9F3
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.Leader

dxf

dxf

dxf

dxf.

dxf.

dxf.

dxf.

dxf.

dxf

dxf.

dxf.

.dimstyle

Name of Dimstyle as string.

.has_arrowhead

0 Disabled

1 Enabled
.path_type
Leader path type:
0 Straight line segments
1 Spline
annotation_type

Created with text annotation

Created with tolerance annotation
Created with block reference annotation
Created without any annotation (default)

W N = O

hookline_direction
Hook line direction flag:

0 Hookline (or end of tangent for a splined leader) is the opposite direction from the horizontal vector

1 Hookline (or end of tangent for a splined leader) is the same direction as horizontal
has_hook_1line)

vector (see

has_hookline

0 No hookline
1 Has a hookline

text_height
Text annotation height in drawing units.

text_width
Text annotation width.

.block_color

Color to use if leader’s DIMCLRD = BYBLOCK

annotation_handle
Hard reference (handle) to associated annotation (MText, Tolerance, or Insert entity)

normal_vector

Extrusion vector? default is (0, 0, 1).

446

Chapter 9

. Contents

ezdxf Documentation, Release 1

.2.0

.dxf.horizontal_direction

Horizontal direction for leader, default is (1, 0, 0).

dxf.leader_offset_block_ref

Offset of last leader vertex from block reference insertion point, default is (0, 0, 0).

dxf.leader_offset_annotation_placement

Offset of last leader vertex from annotation placement point, default (0, 0, 0).

vertices

List of Vec3 objects, representing the vertices of the leader (3D Point in WCS).

set_vertices (vertices: Iterable[UVec])

Set vertices of the leader, vertices is an iterable of (x, y [,z]) tuples or Vec3.
transform (m: Matrix44) — Leader

Transform LEADER entity by transformation matrix m inplace.

virtual_entities () — Iterator[DXFGraphic]
Yields the DXF primitives the LEADER entity is build up as virtual entities.

These entities are located at the original location, but are not stored in the entity database, have no handle and

are not assigned to any layout.

explode (target_layout: BaseLayout | None = None) — EntityQuery

Explode parts of the LEADER entity as DXF primitives into target layout, if target layout is None, the target

layout is the layout of the LEADER entity. This method destroys the source entity.
Returns an Ent it yQuery container referencing all DXF primitives.

Parameters
target_layout - target layout for the created DXF primitives, None for the same layout
as the source entity.

Line

The LINE entity (DXF Reference) is a 3D line defined by the DXF attributes dxf . start and dxf .end. The LINE

entity has WCS coordinates.

See also:
* Tutorial for Simple DXF Entities, section Line
* ezdxf.math.ConstructionRay

e ezdxf.math.ConstructionLine

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'LINE'
Factory function ezdxf.layouts.BaseLayout.add_line ()

Inherited DXF Attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

9.9. Reference

447

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-FCEF5726-53AE-4C43-B4EA-C84EB8686A66

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.Line

dxf.start
start point of line (2D/3D Point in WCS)

dxf.end
end point of line (2D/3D Point in WCS)

dxf.thickness
Line thickness in 3D space in direction ext rusion, default value is 0. This value should not be confused
with the 1 ineweight value.

dxf.extrusion

extrusion vector, default value is (0, 0, 1)

transform (m: Matrix44) — Line

Transform the LINE entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Line
Optimized LINE translation about dx in x-axis, dy in y-axis and dz in z-axis.

LWPolyline

The LWPOLYLINE entity (Lightweight POLYLINE, DXF Reference) is defined as a single graphic entity, which differs
from the old-style Poly1ine entity, which is defined as a group of sub-entities. LWPolyline display faster (in
AutoCAD) and consume less disk space, it is a planar element, therefore all points are located in the OCS as (x, y)-tuples
(Lwpolyline.dxf.elevation is the z-axis value).

Subclass of ezdxf.entities.DXFGraphic
DXEF type ' LWPOLYLINE'
factory function add_lwpolyline ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Bulge value

The bulge value is used to create arc shaped line segments for Polyline and LIiWPolyline entities. The arc starts at
the vertex which includes the bulge value and ends at the following vertex. The bulge value defines the ratio of the arc
sagitta (versine) to half line segment length, a bulge value of 1 defines a semicircle.

The sign of the bulge value defines the side of the bulge:
* positive value (> 0): bulge is right of line (counter clockwise)
* negative value (< 0): bulge is left of line (clockwise)

* 0 =no bulge

448 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-748FC305-F3F2-4F74-825A-61F04D757A50

ezdxf Documentation, Release 1.2.0

bulge = 0.5 [h=2.5

R6.25

10.0
bulge =1.0 ‘

R5.0
h=5.0 T

Start- and end width

The start width and end width values defines the width in drawing units for the following line segment. To use the default
width value for a line segment set value to 0.

Width and bulge values at last point

The width and bulge values of the last point has only a meaning if the polyline is closed, and they apply to the last line
segment from the last to the first point.

See also:

Tutorial for LWPolyline and Bulge Related Functions

9.9. Reference 449

ezdxf Documentation, Release 1.2.0

User Defined Point Format Codes

Code Point Component

bulge value
X,y [, z]) as tuple

X x-coordinate
y y-coordinate
S start width

e end width

b

v

class ezdxf.entities.LWPolyline
dxf.elevation
OCS z-axis value for all polyline points, default=0

dxf.flags
Constants defined in ezdxf.11dxf.const:

dxf.flags Value Description

LWPOLYLINE_CLOSED 1 polyline is closed
LWPOLYLINE_PLINEGEN 128 linetype is generated across the points

dxf.const_width
Constant line width (float), default value is 0.

dxf.count
Count of polyline points (read only), same as 1en (polyline)

property closed: bool
Get/set closed state of polyline. A closed polyline has a connection segment from the last vertex to the first
vertex.

property is_closed: bool
Get closed state of LWPOLYLINE. Compatibility interface to Polyline

close (state: bool = True) — None
Set closed state of LWPOLYLINE. Compeatibility interface to Polyline

property has_arc: bool
Returns True if LWPOLYLINE has an arc segment.

property has_width: bool
Returns True if LWPOLYLINE has any segment with width attributes or the DXF attribute const_width is
not 0.

len__ () —int

Returns count of polyline points.

__getitem__ (index: int) — Tuple[float, float, float, float, float]

Returns point at position index as (x, y, start_width, end_width, bulge) tuple. start_width, end_width and
bulge is 0 if not present, supports extended slicing. Point format is fixed as “xyseb”.

All coordinates in OCS.

450 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

__setitem__ (index: int, value: Sequence[float]) — None

Set point at position index as (X, y, [start_width, [end_width, [bulge]]]) tuple. If start_width or end_width is
0 or left off the default width value is used. If the bulge value is left off, bulge is O by default (straight line).
Does NOT support extend slicing. Point format is fixed as “xyseb”.

All coordinates in OCS.
Parameters
¢ index — point index
* value - point value as (X, y, [start_width, [end_width, [bulge]]]) tuple

_ delitem__ (index: int) — None
Delete point at position index, supports extended slicing.

_ _iter__ () — Iterator[Tuple[float, float, float, float, float]]
Returns iterable of tuples (x, y, start_width, end_width, bulge).

vertices () — Iterator[tuple[float, float]]
Returns iterable of all polyline points as (X, y) tuples in OCS (dxf.elevation is the z-axis value).

vertices_in_wes () — Iterator[Vec3]

Returns iterable of all polyline points as Vec3(x, y, z) in WCS.

append (point: Sequence[float], format: str = DEFAULT_FORMAT) — None
Append point to polyline, format specifies a user defined point format.

All coordinates in OCS.
Parameters
* point - (X, y, [start_width, [end_width, [bulge]]]) tuple
» format — format string, default is “xyseb”, see: format codes

append_points (points: Iterable[Sequence[float]], format: str = DEFAULT_FORMAT) — None
Append new points to polyline, format specifies a user defined point format.

All coordinates in OCS.
Parameters
* points - iterable of point, point is (X, y, [start_width, [end_width, [bulge]]]) tuple
» format — format string, default is “xyseb”, see: format codes

insert (pos: int, point: Sequence(float], format: str = DEFAULT_FORMAT) — None

Insert new point in front of positions pos, format specifies a user defined point format.
All coordinates in OCS.
Parameters
* pos — insert position
* point - point data
* format — format string, default is “xyseb”, see: format codes

clear () — None

Remove all points.

9.9.

Reference 451

ezdxf Documentation, Release 1.2.0

get_points (format: str = DEFAULT_FORMAT) — list[Sequence[float]]

Returns all points as list of tuples, format specifies a user defined point format.
All points in OCS as (x, y) tuples (dxf.elevation is the z-axis value).

Parameters
format - format string, default is “xyseb”, see format codes

set_points (points: Iterable[Sequence[float]], format: str = DEFAULT _FORMAT) — None

Remove all points and append new points.
All coordinates in OCS.
Parameters
* points —iterable of point, point is (X, y, [start_width, [end_width, [bulge]]]) tuple
» format — format string, default is “xyseb”, see format codes

points (format: str = DEFAULT_FORMAT) — lIterator[list[Sequence[float]]]
Context manager for polyline points. Returns a standard Python list of points, according to the format string.

All coordinates in OCS.

Parameters
format - format string, see format codes
transform (m: Matrix44) — LWPolyline
Transform the LWPOLYLINE entity by transformation matrix m inplace.

A non-uniform scaling is not supported if the entity contains circular arc segments (bulges).

Parameters
m — transformation Mat rix44

Raises
NonUniformScalingError — for non-uniform scaling of entity containing circular arc
segments (bulges)
virtual_entities () — Iterator[Line | Arc]
Yields the graphical representation of LWPOLYLINE as virtual DXF primitives (LINE or ARC).
These virtual entities are located at the original location, but are not stored in the entity database, have no
handle and are not assigned to any layout.
explode (target_layout: BaseLayout | None = None) — EntityQuery
Explode the LWPOLYLINE entity as DXF primitives (LINE or ARC) into the target layout, if the target
layout is None, the target layout is the layout of the source entity. This method destroys the source entity.

Returns an Ent it yQuery container referencing all DXF primitives.

Parameters
target_layout —target layout for the DXF primitives, None for same layout as the source
entity.

452 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

MLine

The MLINE entity (DXF Reference).

Subclass of ezdxf.entities.DXFGraphic
DXF type '"MLINE'
factory function add_mline ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MLine

dxf.style_name
MLineStylename stored in Drawing.mline_styles dictionary, use set_style () tochange the
MLINESTYLE and update geometry accordingly.

dxf.style_handle
Handle of MLineStyle,use set_style () tochange the MLINESTYLE and update geometry accord-
ingly.

dxf.scale_factor
MLINE scaling factor, use method set_scale_factor () to change the scaling factor and update ge-
ometry accordingly.

dxf.justification
Justification defines the location of the MLINE in relation to the reference line, use method

set_justification () to change the justification and update geometry accordingly.

Constants defined in ezdxf.11ldxf.const:

dxf.justification Value
MLINE_TOP 0
MLINE_ZERO 1
MLINE_BOTTOM 2
MLINE_RIGHT (alias) 0
MLINE_CENTER (alias) 1
MLINE_LEFT (alias) 2

dxf.flags

Use method close () and the properties start_caps and end_caps to change these flags.

Constants defined in ezdxf.11dxf.const:

dxf.flags Value
MLINE_HAS_VERTEX 1
MLINE_CLOSED 2

MLINE_SUPPRESS_START_CAPS 4
MLINE_SUPPRESS_END_CAPS 8

dxf.start_location

Start location of the reference line. (read only)

9.9. Reference 453

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-590E8AE3-C6D9-4641-8485-D7B3693E432C

ezdxf Documentation, Release 1.2.0

dxf.count
Count of MLINE vertices. (read only)

dxf.style_element_count

Count of elements in MLineSt y1e definition. (read only)

dxf.extrusion
Normal vector of the entity plane, but MLINE is not an OCS entity, all vertices of the reference line are
WCS! (read only)

vertices

MLINE vertices as MLineVertex objects, stored in a regular Python list.
property style: MLineStyle | None
Get associated MLINESTYLE.

set_style (name: str) — None
Set MLINESTYLE by name and update geometry accordingly. The MLINESTYLE definition must exist.

set_scale_factor (value: float) — None

Set the scale factor and update geometry accordingly.
set_justification (value: int) — None

Set MLINE justification and update geometry accordingly. See dxf. justification for valid settings.
property is_closed: bool

Returns True if MLINE is closed. Compatibility interface to Polyline
close (state: bool = True) — None

Get/set closed state of MLINE and update geometry accordingly. Compatibility interface to Polyline
property start_caps: bool

Get/Set start caps state. True to enable start caps and False tu suppress start caps.
property end_caps: bool

Get/Set end caps state. True to enable end caps and False tu suppress start caps.

len ()

Count of MLINE vertices.

start_location () — Vec3
Returns the start location of the reference line. Callback function for dxf.start_location.

get_locations () — list[Vec3]
Returns the vertices of the reference line.

extend (vertices: Iterable[UVec]) — None

Append multiple vertices to the reference line.

It is possible to work with 3D vertices, but all vertices have to be in the same plane and the normal vector of
this plan is stored as extrusion vector in the MLINE entity.

clear () — None
Remove all MLINE vertices.

update_geometry () — None
Regenerate the MLINE geometry based on current settings.

454

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

generate_geometry (vertices: list/ Vec3]) — None

Regenerate the MLINE geometry for new reference line defined by vertices.

transform (m: Matrix44) — Self

Transform MLINE entity by transformation matrix m inplace.

virtual_entities () — Iterator[DXFGraphic]
Yields virtual DXF primitives of the MLINE entity as LINE, ARC and HATCH entities.

These entities are located at the original positions, but are not stored in the entity database, have no handle
and are not assigned to any layout.

explode (target_layout: BaseLayout | None = None) — EntityQuery

Explode the MLINE entity as LINE, ARC and HATCH entities into target layout, if target layout is None,
the target layout is the layout of the MLINE. This method destroys the source entity.

Returns an Ent it yQuery container referencing all DXF primitives.

Parameters
target_layout — target layout for DXF primitives, None for same layout as source entity.

class ezdxf.entities.MLineVertex
location
Reference line vertex location.

line_direction

Reference line direction.

miter_direction

line_params

The line parameterization is a list of float values. The list may contain zero or more items.

The first value (miter-offset) is the distance from the vertex location along the miter direction
vector to the point where the line element’s path intersects the miter vector.

The next value (line-start-offset) is the distance along the 1 ine_ direction from the miter/line path in-
tersection point to the actual start of the line element.

The next value (dash-length) is the distance from the start of the line element (dash) to the first break (gap)
in the line element. The successive values continue to list the start and stop points of the line element in this
segment of the mline.

fill_params

The fill parameterization is also a list of float values. Similar to the line parameterization, it describes the
parameterization of the fill area for this mline segment. The values are interpreted identically to the line
parameters and when taken as a whole for all line elements in the mline segment, they define the boundary of
the fill area for the mline segment.

class ezdxf.entities.MLineStyle
The MLineSty1e stores the style properties for the MLINE entity.

dxf.name
dxf.description

dxf.flags

9.9. Reference 455

ezdxf Documentation, Release 1.2.0

dxf.£fill_color
AutoCAD Color Index (ACI) value of the fill color

dxf.start_angle

dxf.end_angle

elements
MLineStyleElement s object

update_all ()
Update all MLINE entities using this MLINESTYLE.

The update is required if elements were added or removed or the offset of any element was changed.
class ezdxf.entities.mline.MLineStyleElements

elements
List of MLineStyleElement objects, one for each line element.

MLineStyleElements.__len ()

MLineStyleElements.__getitem__ (item)
MLineStyleElements.append (offset: float, color: int = 0, linetype: str = 'BYLAYER') — None
Append a new line element.

Parameters

¢ offset — normal offset from the reference line: if justification is MLINE_ZERO, positive
values are above and negative values are below the reference line.

e color — AutoCAD Color Index (ACI) value
* linetype - linetype name

class ezdxf.entities.mline.MLineStyleElement

Named tuple to store properties of a line element.

offset
Normal offset from the reference line: if justification is MLINE_ZERO, positive values are above and negative
values are below the reference line.

color
AutoCAD Color Index (ACI) value

linetype

Linetype name

Mesh

The MESH entity (DXF Reference) is a 3D surface in WCS build up from vertices and faces similar to the Polyface
entity.

All vertices in WCS as (X, y, z) tuples

456 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-4B9ADA67-87C8-4673-A579-6E4C76FF7025

ezdxf Documentation, Release 1.2.0

Subclass of

DXEF type

Factory function
Inherited DXF attributes
Required DXF version

ezdxf.entities.DXFGraphic

'MESH'

ezdxf.layouts.BaseLayout.add _mesh ()
Common graphical DXF attributes

DXF R2000 ('AC1015")

See also:

Tutorial for Mesh and helper classes: MeshBuilder, MeshVertexMerger

class ezdxf.entities.Mesh
dxf.version

dxf.blend_crease
0=off, 1 =on

dxf.subdivision_levels

0 for no smoothing else integer greater than 0.

vertices

Vertices as list like VertexArray. (read/write)

edges

Edges as list like TagArray. (read/write)

faces

Faces as list like TagList. (read/write)

creases

Creases as array.array. (read/write)

edit_data () — Iterator[MeshData]

Context manager for various mesh data, returns a Me shDat a instance.

Despite that vertices, edge and faces are accessible as packed data types, the usage of MeshDat a by context
manager edit_data () is still recommended.

transform (m: Matrix44) — Mesh

Transform the MESH entity by transformation matrix m inplace.

MeshData

class ezdxf.entities.MeshData

vertices

A standard Python list with (X, y, z) tuples (read/write)

faces

A standard Python list with (v1, v2, v3,...) tuples (read/write)

Each face consist of a list of vertex indices (= index in vertices).

9.9. Reference

457

ezdxf Documentation, Release 1.2.0

edges

A Python list with (vl, v2) tuples (read/write). This list represents the edges to which the
edge_crease_values values will be applied. Each edge consist of exact two vertex indices (= index in
vertices).

edge_crease_values
A Python list of float values, one value for each edge. (read/write)

add_face (vertices: Iterable[UVec]) — Sequencel[int]
Add a face by a list of vertices.

add_edge_crease (vi: int, v2: int, crease: float)
Add an edge crease value, the edge is defined by the vertex indices v/ and v2.

The crease value defines the amount of subdivision that will be applied to this edge. A crease value of the
subdivision level prevents the edge from deformation and a value of 0.0 means no protection from subdividing.

optimize ()

Reduce vertex count by merging coincident vertices.

MPolygon

The MPOLYGON entity is not a core DXF entity and is not supported by all CAD applications and DXF libraries. The
MPolygon class is very similar to the Hat ch class with small differences in the supported features and DXF attributes.

The boundary paths of the MPOLYGON are visible and use the graphical DXF attributes of the main entity like dxf .
color, dxf.linetype and so on. The solid filling is only visible if the attribute dxf.solid_£fi1l1 is 1, the
color of the solid fill is defined by dxf.fi11_color as AutoCAD Color Index (ACI). The MPOLYGON supports
ezdxf.entities.Gradient settings like HATCH for DXF R2004 and newer. This feature is used by method
MPolygon.set_solid_fill () to seta solid RGB fill color as linear gradient, this disables pattern fill automati-
cally. The MPOLYGON does not support associated source path entities, because the MPOLYGON also represents the
boundary paths as visible graphical objects. Hatch patterns are supported, but the hatch style tag is not supported, the
default hatch style is ezdx f . const . HATCH_STYLE_NESTED and the style flags of the boundary paths are ignored.
Background color for pattern fillings is supported, set background color by property MPolygon.bgcolor as RGB
tuple.

Note: Background RGB fill color for solid fill and pattern fill is set differently!

Autodesk products do support polyline paths including bulges. An example for edge paths as boundary paths is not
available or edge paths are not supported. Ezdxf does not export MPOLYGON entities including edge paths! The
BoundaryPaths.edge_to_polyline paths () method converts all edge paths to simple polyline paths with
approximated curves, this conversion has to be done explicit.

See also:

For more information see the ezdxf.entities.Hatch documentation.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'MPOLYGON'
Factory function ezdxf.layouts.BaseLayout.add _mpolygon ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

458 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.MPolygon

dxf.pattern_name

Pattern name as string

dxf.solid_£fill

1 solid fill, better use: MPolygon.set_solid fill ()
0 pattern fill, better use: MPolygon.set_pattern fill ()

(search AutoCAD help for more information)

dxf.pattern_type

dxf.pattern_angle

Actual pattern angle in degrees (float).

set_pattern_angle () for this task.

dxf.pattern_scale

Actual pattern scaling factor (float).
set_pattern_scale () for this task.

dxf.pattern_double
1 = double pattern size else 0. (int)

dxf.elevation

0 user
1 predefined
2 custom

Changing this value does not rotate the pattern, use

Changing this value does not scale the pattern use

Z value represents the elevation height of the OCS. (float)

paths
BoundaryPaths object.

pattern
Pattern object.

gradient
Gradient object.

property has_solid_£fill: bool
True if entity has a solid fill. (read only)

property has_pattern_f£fill: bool

True if entity has a pattern fill. (read only)

property has_gradient_data: bool

True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)

property bgcolor: RGB | None

Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)

usage:

9.9. Reference

459

ezdxf Documentation, Release 1.2.0

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition (lines: Sequence, factor: float = 1, angle: float = 0) — None

Setup pattern definition by a list of definition lines and the definition line is a 4-tuple (angle, base_point, offset,
dash_length_items). The pattern definition should be designed for a pattern scale factor of 1 and a pattern
rotation angle of 0.

* angle: line angle in degrees
* base-point: (x, y) tuple
* offset: (dx, dy) tuple

* dash_length_items: list of dash items (item > O is a line, item < O is a gap and item == 0.0 is a point)

Parameters
¢ lines — list of definition lines
* factor — pattern scale factor

* angle - rotation angle in degrees

set_pattern_scale (scale: float) — None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale (1) call resets the pat-
tern scale to the original appearance as defined by the pattern designer, but only if the pattern attribute dx 1.

pattern_scale represents the actual scale, it cannot restore the original pattern scale from the pattern
definition itself.

Parameters
scale — pattern scale factor

set_pattern_angle (angle: float) — None

Sets the pattern rotation angle and rotates the pattern definition.

The method always starts from the original base rotation of 0, the set_pattern_angle (0) call resets
the pattern rotation angle to the original appearance as defined by the pattern designer, but only if the pattern
attribute dx . pattern_angle represents the actual pattern rotation, it cannot restore the original rotation
angle from the pattern definition itself.

Parameters
angle — pattern rotation angle in degrees

set_solid_£i11 (color: int = 7, style: int = 1, rgb: RGB | None = None)
Set MPo1ygon to solid fill mode and removes all gradient and pattern fill related data.

Parameters
e color — AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
* style - hatch style is not supported by MPOLYGON, just for symmetry to HATCH

e rgb — true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2004+

460 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

set_pattern_£ill (name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int

= 1, pattern_type: int = 1, definition=None) — None

Sets the pattern fill mode and removes all gradient related data.

The pattern definition should be designed for a scale factor 1 and a rotation angle of 0 degrees. The predefined
hatch pattern like “ANSI33” are scaled according to the HEADER variable SMEASUREMENT for ISO
measurement (m, cm, ...), or imperial units (in, ft, ...), this replicates the behavior of BricsCAD.

Parameters

name — pattern name as string

color — pattern color as AutoCAD Color Index (ACI)

angle — pattern rotation angle in degrees

scale — pattern scale factor

double - double size flag

style - hatch style (O = normal; 1 = outer; 2 = ignore)

pattern_type — pattern type (0 = user-defined; 1 = predefined; 2 = custom)

definition - list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition ()

set_gradient (colorl: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,

centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') — None

Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004 or newer. A gradient
filled hatch is also a solid filled hatch.

Valid gradient type names are:
* “LINEAR”
“CYLINDER”
“INVCYLINDER”
“SPHERICAL”
“INVSPHERICAL”
“HEMISPHERICAL”
“INVHEMISPHERICAL”
“CURVED”
“INVCURVED”

Parameters

colorl —(r, g, b)-tuple for first color, rgb values as int in the range [0, 255]

color2 —(r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
rotation - rotation angle in degrees

centered - determines whether the gradient is centered or not

one_color — 1 for gradient from color! to tinted colorl

tint - determines the tinted target color! for a one color gradient. (valid range 0.0 to 1.0)

name — name of gradient type, default “LINEAR”

9.9. Reference

461

ezdxf Documentation, Release 1.2.0

transform (m: Matrix44) — DXFPolygon

Transform entity by transformation matrix m inplace.

MText

The MTEXT entity (DXF Reference) fits a multiline text in a specified width but can extend vertically to an indefinite
length. You can format individual words or characters within the MText.

See also:

Tutorial for MText and MTextEditor

Subclass of ezdxf.entities.DXFGraphic
DXF type "MTEXT'
Factory function ezdxf.layouts.BaseLayout.add _mtext ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MText
dxf.insert
Insertion point (3D Point in OCS)

dxf.char_height
Initial text height (float); default=1.0
dxf.width

Reference text width (float), forces text wrapping at given width.

dxf.attachment_point
Constants defined in ezdxf.11ldxf.const:

MText.dxf.attachment_point ~ Value

MTEXT_TOP_LEFT
MTEXT_TOP_CENTER
MTEXT_TOP_RIGHT
MTEXT_MIDDLE_LEFT
MTEXT_MIDDLE_CENTER
MTEXT_MIDDLE_RIGHT
MTEXT_BOTTOM_LEFT
MTEXT_BOTTOM_CENTER
MTEXT_BOTTOM_RIGHT

O 001N N AW

dxf.flow_direction

Constants defined in ezdxf .const:

MText.dxf.flow_direction Value Description

MTEXT_LEFT TO_RIGHT 1 left to right

MTEXT_TOP_TO_BOTTON 3 top to bottom

MTEXT BY_STYLE 5 by style (the flow direction is inherited from the associated text
style)

462 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-5E5DB93B-F8D3-4433-ADF7-E92E250D2BAB

ezdxf Documentation, Release 1.2.0

dxf.style
Text style (string); default is “STANDARD”

dxf.text_direction

X-axis direction vector in WCS (3D Point); default value is (1, 0, 0); if dxf.rotation and dxf.
text_direction are present, dxf.text_direction wins.

dxf.rotation
Text rotation in degrees (float); default is O

dxf.line_spacing_style

Line spacing style (int), see table below

dxf.line_spacing_factor
Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00 (float).

Constants defined in ezdxf.11dxf.const:

MText.dxf.line_spacing_style Value Description

MTEXT AT LEAST 1 taller characters will override
MTEXT_EXACT 2 taller characters will not override

dxf.bg_£ill
Defines the background fill type. (DXF R2007)

MText.dxf.bg_fill Value Description

MTEXT BG_OFF 0 no background color
MTEXT BG_COLOR 1 use specified color
MTEXT_BG_WINDOW_COLOR 2 use window color (?)
MTEXT_BG_CANVAS_COLOR 3 use canvas background color

dxf.box_f£fill_scale
Determines how much border there is around the text. (DXF R2007)

Requires that the attributes bg_fill, bg_fill_color are present otherwise AutoCAD complains.
It’s recommended to use set_bg_color ()

dxf.bg_£fill_color
Background fill color as AutoCAD Color Index (ACI) (DXF R2007)

It’s recommended to use set_bg_color ()

dxf.bg_f£fill_true_color
Background fill color as true color value (DXF R2007), also the dxf .bg_fill_color attribute must be
present otherwise AutoCAD complains.

It’s recommended to use set_bg_color ()

dxf.bg_£fill_color_name
Background fill color as name string (?) (DXF R2007), also the dxf .bg_fill_color attribute must be
present otherwise AutoCAD complains.

It’s recommended to use set_bg_color ()

9.9. Reference 463

ezdxf Documentation, Release 1.2.0

dxf.transparency
Transparency of background fill color (DXF R2007), not supported by AutoCAD nor BricsCAD.

text
MTEXT content as string (read/write).

The line ending character \ n will be replaced by the MTEXT line ending \ P at DXF export, but not vice versa
the \P character by \n at DXF file loading, therefore loaded MTEXT entities always use the \P character
for line endings.

set_location (insert: UVec, rotation: float | None = None, attachment_point: int | None = None) — MText

Sets the attributes dxf. insert, dxf.rotation and dxf.attachment_point, None for dxf.
rotationor dxf.attachment_point preserves the existing value.

get_rotation () — float

Returns the text rotation in degrees.

set_rotation (angle: float) — MText

Sets the attribute rotation to angle (in degrees) and deletes dx . text_direction if present.
get_text_direction () — Vec3
Returns the horizontal text direction as Vec 3 object, even if only the text rotation is defined.

set_bg_color (color: int | str | RGB | None, scale: float = 1.5, text_frame=False)
Sets the background color as AutoCAD Color Index (ACI) value, as name string or as (r, g, b) tuple.

Use the special color name canvas, to set the background color to the canvas background color. Remove
the background filling by setting argument color to None.

Parameters
¢ color - color as AutoCAD Color Index (ACI), string, (r, g, b) tuple or None

¢ scale —determines how much border there is around the text, the value is based on the text
height, and should be in the range of [1, 5], where 1 fits exact the MText entity.

¢ text_frame — draw a text frame in text color if True

__iadd__ (text: str) — MText

Append fext to existing content (text attribute).
append (text: str) — MText

Append fext to existing content (text attribute).
plain_text (split=False, fast=True) — list[str] | str

Returns the text content without inline formatting codes.

The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

Parameters

* split - split content text at line breaks if True and returns a list of strings without line
endings

* fast — uses the “fast” mode to extract the plain MTEXT content if True or the “accurate”
mode if setto False

464 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

all_columns_plain_text (split=False) — list[str] | str
Returns the text content of all columns without inline formatting codes.
Parameters
split — split content text at line breaks if True and returns a list of strings without line
endings
all_columns_raw_content () — str
Returns the text content of all columns as a single string including the inline formatting codes.

transform (m: Matrix44) — MText
Transform the MTEXT entity by transformation matrix m inplace.

ucs () — UCS

Returns the UCS of the MText entity, defined by the insert location (origin), the text direction or rotation
(x-axis) and the extrusion vector (z-axis).

9.9. Reference 465

ezdxf Documentation, Release 1.2.0

MText Inline Codes

Code Description
\L Start underline
\l Stop underline
\O Start overline
\o Stop overline
\K Start strike-through
\k Stop strike-through
\P New paragraph (new line)
\p Paragraphs properties: indentation, alignment, tabulator
stops
\X Paragraph wrap on the dimension line (only in dimen-
sions)
\Q Slanting (oblique) text by angle - e.g. \Q30;
\H Text height - e.g. relative \H3x; absolut \H3;
\W Text width - e.g. relative \W0.8x; absolut \W0.8;
\T Tracking, character spacing - e.g. relative \T0.5x; absolut
\T2;
\F Font selection e.g. \Fgdt;o - GDT-tolerance
\S Stacking, fractions e.g. \SA” B; space after “/” is required
to avoid caret decoding, \SX/Y; \S1#4;
\A Alignment
¢ \AQ; = bottom
¢ \Al; = center
* \A2; =top
\C Color change
e \Cl;=red
* \C2; = yellow
e \C3; = green
e \C4; = cyan
¢ \C5; = blue
* \C6; = magenta
¢ \C7; = white
\~ Non breaking space
{} Braces - define the text area influenced by the code, codes
and braces can be nested up to 8 levels deep
\ Escape character - e.g. \{ =“{”
466 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Convenient constants defined in MTextEditor:

Constant

Description

UNDERLINE_START
UNDERLINE_STOP
OVERSTRIKE_START
OVERSTRIKE_STOP
STRIKE_START
STRIKE_STOP
GROUP_START
GROUP_END
NEW_LINE

NBSP

start underline text
stop underline text
start overline

stop overline

start strike through
stop strike through
start of group

end of group

start in new line
none breaking space

MultiLeader

The MULTILEADER entity (DXF Reference) represents one or more leaders, made up of one or more vertices (or spline
fit points) and an arrowhead. In contrast to the Leader entity the text- or block content is part of the MULTILEADER
entity.

AutoCAD, BricsCAD and maybe other CAD applications do accept “MLEADER” as type string but they always create
entities with “MULTILEADER?” as type string.

Because of the complexity of the MULTILEADER entity, the usage of factory methods to create new entities by special
builder classes is recommended:

e add multileader mtext () returns anew MultilLeaderMTextBuilder instance
e add multileader block () returns anew MultiLeaderBlockBuilder instance

The visual design is based on an associated MLeaderStyle, but almost all attributes are also stored in the MULTI-
LEADER entity itself.

The attribute MultilLeader.dxf.property override_flags should indicate which MLEADERSTYLE at-
tributes are overridden by MULTILEADER attributes, but these flags do not always reflect the state of overridden at-
tributes. The ezdxf MULTILEADER renderer uses always the attributes from the MULTILEADER entity and ignores
the override flags.

All vertices are WCS coordinates, even those for BLOCK entities which are OCS coordinates for regular usage.
See also:

* ezdxf.entities.MLeaderStyle

¢ ezdxf.render.MultilLeaderBuilder

* Tutorial for MultiLeader

o MULTILEADER Internals

9.9. Reference 467

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72D20B8C-0F5E-4993-BEB7-0FCF94F32BE0

ezdxf Documentation, Release 1.2.0

Subclass of ezdxf.entities.DXFGraphic
DXF type '"MULTILEADER'
Factory functions

* ezdxf.layouts.BaseLayout.
add_multileader_mtext ()

* ezdxf.layouts.BaseLayout.
add multileader block ()

Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MultiLeader

dxf.arrow_head_handle

handle of the arrow head, see also ezdxf. render.arrows module, “closed filled” arrow if not set

dxf.arrow_head_size

arrow head size in drawing units

dxf.block_color
block color as raw-color value, default is BY_ BLOCK_RAW_VALUE

dxf .block_connection_type

0 center extents
1 insertion point

dxf.block_record_handle
handle to block record of the BLOCK content

dxf.block_rotation
BLOCK rotation in radians

dxf .block_scale_vector

Vec 3 object which stores the scaling factors for the x-, y- and z-axis

dxf.content_type

0 none

1 BLOCK

2 MTEXT

3 TOLERANCE

dxf.dogleg_length

dogleg length in drawing units

dxf.has_dogleg
dxf.has_landing

dxf.has_text_frame

468

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

dxf.is_annotative
dxf.is_text_direction_negative
dxf.leader_extend_to_text

dxf.leader_line_color

leader line color as raw-color value

dxf.leader_linetype_handle
handle of the leader linetype, “CONTINUOUS” if not set

dxf.leader_lineweight

dxf.leader_type

0 invisible
1 straight line leader
2 spline leader

dxf .property_override_flags

Each bit shows if the MLEADERSTYLE is overridden by the value in the MULTILEADER entity, but this
is not always the case for all values, it seems to be save to always use the value from the MULTILEADER
entity.

dxf.scale
overall scaling factor

dxf.style_handle
handle to the associated MLEADERSTYLE object

dxf.text_IPE_align

unknown meaning

dxf.text_alignment_type
unknown meaning - its not the MTEXT attachment point!

dxf.text_angle_type

0 text angle is equal to last leader line segment angle

text is horizontal

2 text angle is equal to last leader line segment angle, but potentially rotated by 180 degrees so the right
side is up for readability.

—

dxf.text_attachment_direction

defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top &
bottom:

0 horizontal - left & right of content
1 vertical - top & bottom of content

9.9. Reference 469

ezdxf Documentation, Release 1.2.0

dxf.text_attachment_point

MTEXT attachment point
1 top left
2 top center
3 top right
dxf.text_bottom_attachment_type
9 center

10 overline and center

dxf.text_color

MTEXT color as raw-color value

dxf.text_left_attachment_type

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line
bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

01NN Bk W~ O

dxf.text_right_attachment_type

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line

bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

0NN W~ O

dxf.text_style_handle
handle of the MTEXT text style, “Standard” if not set

dxf.text_top_attachment_type

9 center
10 overline and center

470 Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

dxf.version
always 27
context

MLeaderContext instance
arrow_heads
list of ArrowHeadData
block_attribs
listof AttribData
property has_mtext_content: bool
True if MULTILEADER has MTEXT content.
get_mtext_content () — str
Get MTEXT content as string, return “” if MULTILEADER has BLOCK content.
set_mtext_content (fext: sir)
Set MTEXT content as string, does nothing if MULTILEADER has BLOCK content.
property has_block_content: bool
True if MULTILEADER has BLOCK content.
get_block_content () — dict[str, str]

Get BLOCK attributes as dictionary of (tag, value) pairs. Returns an empty dictionary if MULTILEADER
has MTEXT content.

set_block_content (content: dict[str, str])

Set BLOCK attributes by a dictionary of (tag, value) pairs. Does nothing if MULTILEADER has MTEXT
content.

virtual_entities () — Iterator[DXFGraphic]
Yields the graphical representation of MULTILEADER as virtual DXF primitives.

These entities are located at the original location, but are not stored in the entity database, have no handle and
are not assigned to any layout.

explode (target_layout: BaselLayout | None = None) — EntityQuery

Explode MULTILEADER as DXF primitives into target layout, if target layout is None, the target layout is
the layout of the source entity.

Returns an Ent it yQuery container with all DXF primitives.

Parameters

target_layout — target layout for the DXF primitives, None for same layout as the source
entity.

transform (m: Matrix44) — MultiLeader
Transform the MULTILEADER entity by transformation matrix m inplace.
Non-uniform scaling is not supported.

Parameters
m — transformation Mat rix44

Raises
NonUniformScalingError — for non-uniform scaling

9.9.

Reference 471

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.MLeaderContext
leaders
list of LeaderData objects

scale
redundant data: MultilLeader.dxf.scale

base_point
insert location as Vec3 of the MTEXT or the BLOCK entity?

char_height
MTEXT char height, already scaled

arrow_head_size

redundant data: MultiLeader.dxf.arrow head size
landing_gap_size
left_attachment

redundant data: MultilLeader.dxf.text_left_attachment_type

right_attachment

redundant data: MultilLeader.dxf.text_right_attachment_type
text_align_type

redundant data: MultilLeader.dxf.text_attachment_point

attachment_type
BLOCK alignment?

0 content extents
1 insertion point

mtext
instance of MTextDat a if content is MTEXT otherwise None

block

instance of Bl ockDat a if content is BLOCK otherwise None
plane_origin

Vec3
plane_x_axis

Vec3

plane_y_axis
Vec3

plane_normal_reversed

the plan normal is x-axis “cross” y-axis (right-hand-rule), this flag indicates to invert this plan normal

top_attachment
redundant data: MultilLeader.dxf.text_top_attachment_type

bottom_attachment
redundant data: MultilLeader.dxf.text_bottom attachment_type

472 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.LeaderData
lines
list of LeaderLine

has_last_leader_line

unknown meaning
has_dogleg_vector
last_leader_point

WCS point as Vec3

dogleg_vector
WCS direction as Vec3

dogleg_length
redundant data: MultiLeader.dxf.dogleg length

index

leader index?

attachment_direction

redundant data: MultilLeader.dxf.text_attachment_direction

breaks

list of break vertices as Vec3 objects
class ezdxf.entities.LeaderLine
vertices
list of WCS coordinates as Vec3

breaks

mixed list of mixed integer indices and break coordinates or None leader lines without breaks in it

index

leader line index?

color
leader line color override, ignore override value if BY_ BLOCK_RAW_VALUE

class ezdxf.entities.ArrowHeadData
index
arrow head index?

handle

handle to arrow head block
class ezdxf.entities.AttribData
handle
handle to At tdef entity in the BLOCK definition

index

unknown meaning

9.9. Reference 473

ezdxf Documentation, Release 1.2.0

width
text width factor?

text

At trib content

class ezdxf.entities.MTextData

stores the content and attributes of the MTEXT entity

default_content

content as string
extrusion

extrusion vector of the MTEXT entity but MTEXT is not an OCS entity!
style_handle

redundant data: MultilLeader.dxf.text_style_ handle
insert

insert location in WCS coordinates, same as MLeaderContext .base_point?
text_direction

“horizontal” text direction vector in WCS
rotation

rotation angle in radians (!) around the extrusion vector, calculated as it were an OCS entity
width

unscaled column width
defined_height

unscaled defined column height
line_spacing_factor

see MText .dxf.line_spacing_factor
line_spacing_style

see MText .dxf.line_spacing_style
color

redundant data: MultilLeader.dxf.text_color
alignment

redundant data: MultilLeader.dxf.text_attachment_point

flow_direction

1 horizontal
3 vertical
6 Dby text style

bg_color

background color as raw-color value

bg_scale_factor
see MText.dxf.box_fill_scale

474

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

bg_transparency

background transparency value

use_window_bg_color
has_bg_fill

column_type

unknown meaning - most likely:

0 none
1 static
2 dynamic

use_auto_height
column_width
unscaled column width, redundant data width

column_gutter_width

unscaled column gutter width

column_flow_reversed

column_sizes

list of unscaled columns heights for dynamic column with manual heights

use_word_break

class ezdxf.entities.BlockData

stores the attributes for the Tnsert entity
block_record_handle

redundant data: MultiLeader.dxf.block record handle
extrusion

extrusion vector in WCS
insert

insertion location in WCS as Vec 3, same as MLeaderContext .base_point?
scale

redundant data: MultiLeader.dxf.block scale vector
rotation

redundant data: MultiLeader.dxf.block rotation
color

redundant data: MultilLeader.dxf.block color

9.9. Reference 475

ezdxf Documentation, Release 1.2.0

Point

The POINT entity (DXF Reference) represents a dimensionless point in WCS.

The POINT styling is a global setting, stored as header variable SPDMODE, this also means all POINT entities in a DXF

document have the same styling:

center dot (.)
none ()
cross (+)
X-Cross (X)
tick (°)

S W= O

Combined with these bit values

32 circle
64 Square

e.g. circle + square + center dot =32 + 64 + 0 =96

O 0O & ® O

32 33 34 35 36

O 0O 8 X O

G4 65 66 67 68

O 08 R O
a8 1]

96 &7 100

The size of the points is defined by the header variable $PDSIZE:

0 5% of draw area height
<0 Specifies a percentage of the viewport size
>0 Specifies an absolute size

See also:

e Tutorial for Simple DXF Entities, section Point

Subclass of ezdxf.entities.DXFGraphic
DXF type "POINT'
Factory function ezdxf.layouts.BaseLayout.add_point ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Point

476 Chapter 9

. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-9C6AD32D-769D-4213-85A4-CA9CCB5C5317
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-82F9BB52-D026-4D6A-ABA6-BF29641F459B-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/AutoCAD-Core/files/GUID-826CA91D-704B-400B-B784-7FCC9619AFB9-htm.html?st=\protect \TU\textdollar PDSIZE

ezdxf Documentation, Release 1.2.0

dxf.location
Location of the point (2D/3D Point in WCS)

dxf.angle
Angle in degrees of the x-axis for the UCS in effect when POINT was drawn (float); used when PDMODE
is nonzero.

transform (m: Matrix44) — Point

Transform the POINT entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Point
Optimized POINT translation about dx in x-axis, dy in y-axis and dz in z-axis.
virtual_entities (pdsize: float = 1, pdmode: int = 0) — Iterator[DXFGraphic]

Yields the graphical representation of POINT as virtual DXF primitives (LINE and CIRCLE). The dimen-
sionless point is rendered as zero-length line!

Check for this condition:

e.dxftype () == 'LINE' and e.dxf.start.isclose (e.dxf.end)

if the rendering engine can’t handle zero-length lines.
Parameters
¢ pdsize — point size in drawing units

¢ pdmode - point styling mode

Polyline

The POLYLINE entity (POLYLINE DXF Reference) is very complex, it’s used to build 2D/3D polylines, 3D meshes
and 3D polyfaces. For every type exists a different wrapper class but they all have the same DXF type “POLYLINE”.
Detect the actual POLYLINE type by the method Polyline.get_mode ().

POLYLINE types returned by Polyline.get_mode ():
e '"AcDb2dPolyline" for 2D Polyline
e 'AcDb3dPolyline’ for 3D Polyline
e '"AcDbPolygonMesh' for Polymesh
e '"AcDbPolyFaceMesh' for Polyface
For 2D entities all vertices in OCS.

For 3D entities all vertices in WCS.

Subclass of ezdxf.entities.DXFGraphic

DXF type 'POLYLINE'

2D factory function ezdxf.layouts.BaseLayout.add polyline2d /()
3D factory function ezdxf.layouts.BaseLayout.add_polyline3d()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

9.9. Reference 477

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-ABF6B778-BE20-4B49-9B58-A94E64CEFFF3

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.Polyline

The Vertex entities are stored in the Python list Polyline.vertices. The VERTEX entities can be re-
trieved and deleted by direct access to the Polyline. vertices attribute:

delete first and second vertex
del polyline.vertices[:2]

dxf.elevation

Elevation point, the X and Y values are always 0, and the Z value is the polyline elevation (3D Point).

dxf.flags

Constants defined in ezdxf.11ldxf.const:

Polyline.dxf.flags

Value Description

POLYLINE_CLOSED 1
POLY- 1
LINE_MESH_CLOSED_M_DIRECT]
POLY- 2
LINE_CURVE_FIT_VERTICES_AL
POLY- 4
LINE_SPLINE_FIT_VERTICES_AL
POLYLINE_3D_POLYLINE 8
POLYLINE_3D_POLYMESH 16
POLY- 32

LINE_MESH_CLOSED_N_DIRECT
POLYLINE_POLYFACE_MESH 64
POLY- 128
LINE_GENERATE_LINETYPE_PA’

This is a closed Polyline (or a polygon mesh closed in the
M direction)
equals POLYLINE_CLOSED

Curve-fit vertices have been added

Spline-fit vertices have been added

This is a 3D Polyline

This is a 3D polygon mesh

The polygon mesh is closed in the N direction
This Polyline is a polyface mesh

The linetype pattern is generated continuously around the
vertices of this Polyline

dxf.default_start_width
Default line start width (float); default is O

dxf.default_end_width
Default line end width (float); default is O

dxf.m_count

Polymesh M vertex count (int); default is 1

dxf.n_count

Polymesh N vertex count (int); default is 1

dxf.m_smooth_density
Smooth surface M density (int); default is O

dxf.n_smooth_density
Smooth surface N density (int); default is 0

dxf.smooth_type

Curves and smooth surface type (int); default is 0, see table below

Constants for smooth_type defined in ezdxf.11dxf.const:

478

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

Polyline.dxf.smooth_type Value Description

POLYMESH_NO_SMOOTH 0 no smooth surface fitted
POLYMESH_QUADRATIC_BSPLINE quadratic B-spline surface
POLYMESH_CUBIC_BSPLINE cubic B-spline surface
POLYMESH_BEZIER_SURFACE Bezier surface

oo N

vertices

List of Vertex entities.
is_2d_polyline

True if POLYLINE is a 2D polyline.
is_3d_polyline

True if POLYLINE is a 3D polyline.

is_polygon_mesh
True if POLYLINE is a polygon mesh, see Polymesh

is_poly_ face_mesh
True if POLYLINE is a poly face mesh, see Polyface

is_closed
True if POLYLINE is closed.

is_m closed

True if POLYLINE (as Polymesh) is closed in m direction.
is_n_closed

True if POLYLINE (as Polymesh) is closed in n direction.

has_arc
Returns True if 2D POLYLINE has an arc segment.

has_width
Returns True if 2D POLYLINE has default width values or any segment with width attributes.

get_mode () — str
Returns POLYLINE type as string:

* “AcDb2dPolyline”

¢ “AcDb3dPolyline”

¢ “AcDbPolygonMesh”
* “AcDbPolyFaceMesh”

m_close (status=True) — None
Close POLYMESH in m direction if status is True (also closes POLYLINE), clears closed state if status is
False.

n_close (status=True) — None

Close POLYMESH in n direction if status is True, clears closed state if status is False.

close (m_close=True, n_close=False) — None

Set closed state of POLYMESH and POLYLINE in m direction and n direction. True set closed flag,
False clears closed flag.

9.9.

Reference 479

ezdxf Documentation, Release 1.2.0

len__ () —int

Returns count of Vertex entities.

__getitem__ (pos) — DXFVertex

Get Vertex entity at position pos, supports list-like slicing.

points () — Iterator[Vec3]

Returns iterable of all polyline vertices as (X, y, z) tuples, not as Ve rtex objects.

append_vertex (point: UVec, dxfattribs=None) — None

Append a single Ve rtex entity at location point.
Parameters
* point —as (x, y[, z]) tuple
* dxfattribs — dict of DXF attributes for Vertex class

append_vertices (points: Iterable[UVec], dxfattribs=None) — None

Append multiple Ve rtex entities at location points.
Parameters
* points —iterable of (X, y[, z]) tuples
* dxfattribs — dict of DXF attributes for the VERTEX objects

append_formatted_vertices (points: Iterable[UVec], format: str = 'xy', dxfattribs=None) — None

Append multiple Vertex entities at location points.
Parameters
* points —iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple
* format — format string, default is “xy”, see: User Defined Point Format Codes
* dxfattribs —dict of DXF attributes for the VERTEX objects

insert_vertices (pos: int, points: Iterable[UVec], dxfattribs=None) — None

Insert vertices points into Polyline. vert ices list at insertion location pos .
Parameters
* pos — insertion position of list Polyline.vertices
e points - list of (x, y[, z]) tuples
e dxfattribs — dict of DXF attributes for Ve rtex class

transform (m: Matrix44) — Polyline
Transform the POLYLINE entity by transformation matrix m inplace.
A non-uniform scaling is not supported if a 2D POLYLINE contains circular arc segments (bulges).

Parameters
m — transformation Mat rix44

Raises
NonUniformScalingError — for non-uniform scaling of 2D POLYLINE containing cir-
cular arc segments (bulges)

480 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

virtual_entities () — Iterator[Line | Arc | Face3d]
Yields the graphical representation of POLYLINE as virtual DXF primitives (LINE, ARC or 3DFACE).

These virtual entities are located at the original location, but are not stored in the entity database, have no
handle and are not assigned to any layout.

explode (target_layout: BaseLayout | None = None) — EntityQuery

Explode the POLYLINE entity as DXF primitives (LINE, ARC or 3DFACE) into the target layout, if the
target layout is None, the target layout is the layout of the POLYLINE entity.

Returns an Ent it yQuery container referencing all DXF primitives.

Parameters
target_layout - target layout for DXF primitives, None for same layout as source entity.

Vertex

A VERTEX (VERTEX DXF Reference) represents a polyline/mesh vertex.

Subclass of ezdxf.entities.DXFGraphic
DXF type '"VERTEX'

Factory function Polyline.append_vertex ()
Factory function Polyline.extend ()

Factory function Polyline.insert_vertices ()

Inherited DXF Attributes Common graphical DXF attributes

class ezdxf.entities.Vertex

dxf.location
Vertex location (2D/3D Point OCS when 2D, WCS when 3D)

dxf.start_width

Line segment start width (float); default is O
dxf.end_width

Line segment end width (float); default is O
dxf .bulge

Bulge value (float); default is 0.

The bulge value is used to create arc shaped line segments.

dxf.flags

Constants defined in ezdxf.11dxf.const:

Vertex.dxf.flags Valut Description

VTX_EXTRA_VERTE. 1 Extra vertex created by curve-fitting

VTX_CURVE_FIT_TA 2 curve-fit tangent defined for this vertex. A curve-fit tangent direction of
0 may be omitted from the DXF output, but is significant if this bit is set.

VTX_SPLINE VERTE 8§ spline vertex created by spline-fitting

VTX_SPLINE _FRAME 16 spline frame control point

VTX_3D_POLYLINE_" 32 3D polyline vertex

VTX 3D POLYGON_! 64 3D polygon mesh

VTX_3D_POLYFACE_ 128 polyface mesh vertex

9.9. Reference 481

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0741E831-599E-4CBF-91E1-8ADBCFD6556D

ezdxf Documentation, Release 1.2.0

dxf.tangent

Curve fit tangent direction (float), used for 2D spline in DXF R12.

dxf.vtxl
Index of 1st vertex, if used as face (feature for experts)

dxf.vtx2
Index of 2nd vertex, if used as face (feature for experts)

dxf.vtx3
Index of 3rd vertex, if used as face (feature for experts)

dxf.vtx4
Index of 4th vertex, if used as face (feature for experts)

is_2d_polyline_vertex
is_3d_polyline_vertex
is_polygon_mesh_vertex
is_poly_ face_mesh_vertex
is_face_record

format (format="xyz') — Sequence
Return formatted vertex components as tuple.

Format codes:

[Tt}

e “X” = x-coordinate

[Tt}

e “y” = y-coordinate

e “z” = z-coordinate

e “s” = start width

e “e” = end width

e “b” = bulge value

e v’ =(X,Y, z) as tuple

Args:
format: format string, default is “xyz”

Polymesh

Subclass of ezdxf.entities.Polyline
DXEF type 'POLYLINE'
Factory function ezdxf.layouts.BaseLayout.add _polymesh ()

Inherited DXF Attributes ~ Common graphical DXF attributes

class ezdxf.entities.Polymesh

A polymesh is a grid of m_count by n_count vertices, every vertex has its own (X, y, z) location. The
Polymeshis asubclass of Polyline, the DXF type is also “POLYLINE”, the method get_mode () returns

“AcDbPolygonMesh”.

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

get_mesh_vertex (pos: tuple[int, int]) — DXFVertex
Get location of a single mesh vertex.

Parameters

pos — 0-based (row, col) tuple, position of mesh vertex

set_mesh_vertex (pos: tuple[int, int], point: UVec, dxfattribs=None)
Set location and DXF attributes of a single mesh vertex.

Parameters

* pos — 0-based (row, col) tuple, position of mesh vertex

e point — (X, Y, z) tuple, new 3D coordinates of the mesh vertex

e dxfattribs - dict of DXF attributes

get_mesh_vertex_cache () — MeshVertexCache
Get a MeshVertexCache object for this POLYMESH. The caching object provides fast access to the
location attribute of mesh vertices.

MeshVertexCache

class ezdxf.entities.MeshVertexCache

Cache mesh vertices in a dict, keys are 0-based (row, col) tuples.

Set vertex location: cache [row,
Get vertex location: x, y, z =

vertices

col] = (Xr Yr z)

cache[row, col]

Dict of mesh vertices, keys are 0-based (row, col) tuples.

__getitem__ (pos: tuple[int, int]) — UVec

Get mesh vertex location as (X, y, z)-tuple.

Parameters

pos — 0-based (row, col)-tuple.

__setitem__ (pos: tuple[int, int], location: UVec) — None

Get mesh vertex location as (X, y, z)-tuple.

Parameters

¢ pos — 0-based (row, col)-tuple.

¢ location - (X, Yy, z)-tuple

Polyface
Subclass of ezdxf.entities.Polyline
DXF type '"POLYLINE'
Factory function ezdxf.layouts.BaseLayout.add _polyface ()
Inherited DXF Attributes Common graphical DXF attributes
See also:

Tutorial for Polyface

9.9. Reference

483

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.Polyface

Ray

A polyface consist of multiple 3D areas called faces, only faces with 3 or 4 vertices are supported. The Poly—
face is a subclass of Polyline, the DXF type is also “POLYLINE”, the get_mode () returns “AcDbPoly-
FaceMesh”.

append_face (face: FaceType, dxfattribs=None) — None
Append a single face. A face is a sequence of (X, y, z) tuples.

Parameters
» face - sequence of (X, y, z) tuples
e dxfattribs - dict of DXF attributes for the VERTEX objects

append_faces (faces: Iterable[FaceType], dxfattribs=None) — None
Append multiple faces. faces is a list of single faces and a single face is a sequence of (x, y, z) tuples.

Parameters
» faces - iterable of sequences of (X, y, z) tuples
e dxfattribs —dict of DXF attributes for the VERTEX entity

faces () — Iterator[listf DXFVertex]]

Iterable of all faces, a face is a tuple of vertices.

Returns
list of [vertex, vertex, vertex, [vertex,] face_record]

optimize (precision: int = 6) — None
Rebuilds the Po1yface by merging vertices with nearly same vertex locations.

Parameters
precision - floating point precision for determining identical vertex locations

The RAY entity (DXF Reference) starts at Ray . dxf .point and continues to infinity (construction line).

Subclass of ezdxf.entities.XLine
DXEF type 'RAY'
Factory function ezdxf.layouts.BaseLayout.add ray ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.Ray

dxf.start
Start point as (3D Point in WCS)
dxf.unit_vector

Unit direction vector as (3D Point in WCS)

transform (m: Matrix44) — XLine
Transform the XLINE/RAY entity by transformation matrix m inplace.

484

Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-638B9F01-5D86-408E-A2DE-FA5D6ADBD415

ezdxf Documentation, Release 1.2.0

translate (dx: float, dy: float, dz: float) — XLine
Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.

Region

REGION entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.

See also:

Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXF type '"REGION'
Factory function ezdxf.layouts.BaseLayout.add_region ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ("AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Region

Same attributes and methods as parent class Body.

Shape

The SHAPE entity (DXF Reference) is used like a block references, each SHAPE reference can be scaled and rotated
individually. The SHAPE definitions are stored in external shape files (*.SHX), and ezdxf can not load or create these
shape files.

Subclass of ezdxf.entities.DXFGraphic
DXF type ' SHAPE'
Factory function ezdxf.layouts.BaseLayout .add_shape ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Shape
dxf.insert
Insertion location as (2D/3D Point in WCS)

dxf .name

Shape name (str)

dxf.size

Shape size (float)

9.9. Reference 485

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-644BF0F0-FD79-4C5E-AD5A-0053FCC5A5A4
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0988D755-9AAB-4D6C-8E26-EC636F507F2C

ezdxf Documentation, Release 1.2.0

dxf.rotation

Rotation angle in degrees; default value is 0

dxf.xscale

Relative X scale factor (float); default value is 1

dxf.oblique
Oblique angle in degrees (float); default value is O

transform (m: Matrix44) — Shape

Transform the SHAPE entity by transformation matrix m inplace.

Solid

The SOLID entity (DXF Reference) is a filled triangle or quadrilateral. Access vertices by name (entity.dxf.vtx0
= (1.7, 2.3))orbyindex (entity[0] = (1.7, 2.3)).If only 3 vertices are provided the last (3rd) vertex
will be repeated in the DXF file.

The SOLID entity stores the vertices in an unusual way, the last two vertices are reversed:

msp.add_solid([(0, O), (10, 0O), (10, 10), (0, 10)1)

Reverse the last two vertices to get the expected square:

486 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E0C5F04E-D0C5-48F5-AC09-32733E8848F2

ezdxf Documentation, Release 1.2.0

msp.add_solid([(O, 0), (10, 0), (0, 10), (10, 10)])

Note: The quirky vertex order is preserved at the lowest access level because ezdxf is intended as a DXF file format
interface and presents the content of the DXF document to the package user as natively as possible.

The Solid.vertices () and Solid.wcs_vertices () methods return the vertices in the expected (reversed)
order.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'SOLID'
Factory function ezdxf.layouts.BaseLayout.add_solid()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Solid

dxf.vtx0
Location of 1. vertex (2D/3D Point in OCS)

9.9. Reference 487

ezdxf Documentation, Release 1.2.0

dxf.vtxl
Location of 2. vertex (2D/3D Point in OCS)

dxf.vtx2
Location of 3. vertex (2D/3D Point in OCS)
dxf.vtx3
Location of 4. vertex (2D/3D Point in OCS)
transform (m: Matrix44) — Solid
Transform the SOLID/TRACE entity by transformation matrix m inplace.

vertices (close: bool = False) — list] Vec3]

Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

wes_vertices (close: bool = False) — list[Vec3]

Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

Spline

The SPLINE entity (DXF Reference) is a 3D curve, all coordinates have to be 3D coordinates even if the spline is just a
2D planar curve.

The spline curve is defined by control points, knot values and weights. The control points establish the spline, the various
types of knot vector determines the shape of the curve and the weights of rational splines define how strong a control
point influences the shape.

A SPLINE can be created just from fit points - knot values and weights are optional (tested with AutoCAD 2010). If you
add additional data, be sure you know what you do, because invalid data may invalidate the whole DXF file.

The function ezdxf.math.fit_points_to_cad_cv () calculates control vertices from given fit points. This
control vertices define a cubic B-spline which matches visually the SPLINE entities created by BricsCAD and AutoCAD
from fit points.

See also:
» Wikipedia article about B_splines
* Department of Computer Science and Technology at the Cambridge University

e Tutorial for Spline

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'SPLINE'
Factory function see table below

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

488 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E1F884F8-AA90-4864-A215-3182D47A9C74
https://en.wikipedia.org/wiki/Spline_%28mathematics%29
https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node4.html

ezdxf Documentation, Release 1.2.0

Factory Functions

Basic spline entity

Spline control frame from fit points
Open uniform spline

Closed uniform spline

Open rational uniform spline
Closed rational uniform spline

add_spline ()
add_spline_control_frame ()
add_open_spline ()
add_closed_spline ()
add_rational_spline()
add_closed_rational_spline()

class ezdxf.entities.Spline

All points in WCS as (x, y, z) tuples
dxf .degree

Degree of the spline curve (int).

dxf.flags

Bit coded option flags, constants defined in ezdxf. 11dxf.const:

dxf.flags

Value Description

CLOSED_SPLINE

Spline is closed

PERIODIC_SPLINE

PLANAR_SPLINE

1
2
RATIONAL_SPLINE 4
8
1

LINEAR_SPLINE

6 planar bit is also set

dxf.n_knots

Count of knot values (int), automatically set by ezdxf (read only)

dxf.n_fit_points

Count of fit points (int), automatically set by ezdxf (read only)

dxf.n_control_points

Count of control points (int), automatically set by ezdxf (read only)

dxf.knot_tolerance
Knot tolerance (float); default is 1e-10

dxf.fit_tolerance
Fit tolerance (float); default is 1e-10

dxf.control_point_tolerance

Control point tolerance (float); default is le-10

dxf.start_tangent
Start tangent vector as 3D vector in WCS

dxf.end_tangent
End tangent vector as 3D vector in WCS

closed

True if spline is closed. A closed spline has a connection from the last control point to the first control point.

(read/write)

9.9. Reference

489

ezdxf Documentation, Release 1.2.0

control_points

VertexArray of control points in WCS.
fit_points

VertexArray of fit points in WCS.
knots

Knot values as array.array ('d'").
weights

Control point weights as array.array ('d').
control_point_count () — int

Count of control points.
fit_point_count () — int

Count of fit points.
knot_count () — int

Count of knot values.
construction_tool () — BSpline

Returns the construction tool ezdxf.math.BSpline.
apply_construction_tool (s) — Spline

Apply SPLINE data from a BSp ine construction tool or from a geomdl .BSpline.Curve object.

flattening (distance: float, segments: int = 4) — Iterator[Vec3]

Adaptive recursive flattening. The argument segments is the minimum count of approximation segments
between two knots, if the distance from the center of the approximation segment to the curve is bigger than
distance the segment will be subdivided.

Parameters
¢ distance — maximum distance from the projected curve point onto the segment chord.
* segments — minimum segment count between two knots

set_open_uniform (control_points: Sequence[UVec], degree: int = 3) — None
Open B-spline with a uniform knot vector, start and end at your first and last control points.

set_uniform (control_points: Sequence[UVec], degree: int = 3) — None
B-spline with a uniform knot vector, does NOT start and end at your first and last control points.

set_closed (control_points: Sequence[UVec], degree=3) — None
Closed B-spline with a uniform knot vector, start and end at your first control point.

set_open_rational (control_points: Sequence[UVec], weights: Sequence[float], degree: int = 3) — None
Open rational B-spline with a uniform knot vector, start and end at your first and last control points, and has
additional control possibilities by weighting each control point.
set_uniform_rational (control_points: Sequence[UVec], weights: Sequence[float], degree: int = 3) —
None

Rational B-spline with a uniform knot vector, does NOT start and end at your first and last control points, and
has additional control possibilities by weighting each control point.

490 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

set_closed_rational (control_points: Sequence[UVec], weights: Sequence[float], degree: int = 3) —
None

Closed rational B-spline with a uniform knot vector, start and end at your first control point, and has additional
control possibilities by weighting each control point.

transform (m: Matrix44) — Spline
Transform the SPLINE entity by transformation matrix m inplace.

classmethod from_arc (entity: DXFGraphic) — Spline
Create a new SPLINE entity from a CIRCLE, ARC or ELLIPSE entity.

The new SPLINE entity has no owner, no handle, is not stored in the entity database nor assigned to any
layout!

Surface

SURFACE entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.

See also:

Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXEF type ' SURFACE'
Factory function ezdxf.layouts.BaseLayout.add_surface ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Surface

Same attributes and methods as parent class Body.

dxf.u_count

Number of U isolines.

dxf.v_count

Number of V2 isolines.

ExtrudedSurface
(DXF Reference)
Subclass of ezdxf.entities.Surface
DXEF type 'EXTRUDEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add extruded_surface ()

Inherited DXF attributes =~ Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021")

9.9. Reference 491

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.ExtrudedSurface

Same attributes and methods as parent class Surface.

dxf.class_id

dxf .sweep_vector
dxf.draft_angle
dxf.draft_start_distance
dxf.draft_end_distance
dxf.twist_angle
dxf.scale_factor
dxf.align_angle
dxf.solid

dxf.sweep_alignment_flags

No alignment

Align sweep entity to path
Translate sweep entity to path
Translate path to sweep entity

W = O

dxf.align_start

dxf.bank

dxf .base_point_set

dxf.sweep_entity_ transform_computed
dxf.path_entity_ transform_computed
dxf.reference_vector_for_controlling twist

transformation_matrix_extruded_entity

type: Matrix44

sweep_entity_ transformation_matrix

type: Matrix44

path_entity transformation_matrix

type: Matrix44

492

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

LoftedSurface
(DXF Reference)
Subclass of ezdxf.entities.Surface
DXF type 'LOFTEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add lofted surface ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021")

class ezdxf.entities.LoftedSurface

Same attributes and methods as parent class Surface.

dxf.plane_normal_lofting type
dxf.start_draft_angle
dxf.end_draft_angle
dxf.start_draft_magnitude
dxf.end_draft_magnitude
dxf.arc_length_parameterization
dxf.no_twist
dxf.align_direction
dxf.simple_surfaces
dxf.closed_surfaces

dxf.solid

dxf.ruled_surface
dxf.virtual_guide

set_transformation_matrix_lofted_entity

type: Matrix44

RevolvedSurface

(DXF Reference)
Subclass of ezdxf.entities.Surface
DXF type 'REVOLVEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add revolved_surface ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021")

9.9. Reference 493

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 1.2.0

class ezdxf.entities.RevolvedSurface

Same attributes and methods as parent class Surface.

dxf

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf

dxf

dxf.

dxf.

.class_id

axis_point
axis_vector
revolve_angle
start_angle
draft_angle

start_draft_distan

.end_draft_distance

.twist_angle

solid

close_to_axis

ce

transformation_matrix_revolved_entity

type: Matrix44

SweptSurface

(DXF Reference)

Subclass of

DXEF type

Factory function
Inherited DXF attributes
Required DXF version

ezdxf.entities.Surface
'SWEPTSURFACE'

ezdxf.layouts.BaseLayout.add swept_surface ()

Common graphical DXF attributes
DXF R2007 ('AC1021")

class ezdxf.entities.SweptSurface

Same attributes and methods as parent class Surface.

dxf

dxf

dxf

.swept_entity_id
.path_entity_id

.draft_angle

draft_start_distance

dxf.

dxf.

dxf.

dxf.

draft_end_distance
twist_angle
scale_factor

align_angle

494

Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 1.2.0

dxf.solid

dxf.sweep_alignment

dxf.align_start

dxf .bank

dxf.base_point_set
dxf.sweep_entity_transform_computed
dxf.path_entity_transform_computed
dxf.reference_vector_for_controlling_ twist
transformation_matrix_sweep_entity

type: Matrix44

transformation_matrix_path_entity ()
type: Matrix44

sweep_entity transformation_matrix ()

type: Matrix44

path_entity transformation_matrix ()

type: Matrix44

Text

The TEXT entity (DXF Reference) represents a single line of text. The style attribute stores the associated
Textstyle entity as string, which defines the basic font properties. The text size is stored as cap-height in the he i ght
attribute in drawing units. Text alignments are defined as enums of type ezdxf.enums. TextEntityAlignment.

See also:
See the documentation for the Text st y 1 e class to understand the limitations of text representation in the DXF format.

Tutorial for Text

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'TEXT'
Factory function ezdxf.layouts.BaseLayout.add_ text ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Text
dxf.text
Text content as string.

dxf.insert
First alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT, ALIGNED and FIT.

9.9. Reference 495

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-62E5383D-8A14-47B4-BFC4-35824CAE8363

ezdxf Documentation, Release 1.2.0

dxf.align_point
The main alignment point of text (2D/3D Point in OCS), if the alignment is anything else than LEFT, or the
second alignment point for the ALIGNED and FIT alignments.

dxf.height
Text height in drawing units as float value, the default value is 1.

dxf.rotation
Text rotation in degrees as float value, the default value is 0.
dxf.oblique
Text oblique angle (slanting) in degrees as float value, the default value is O (straight vertical text).

dxf.style
Textstyle name as case insensitive string, the default value is “Standard”

dxf.width
Width scale factor as float value, the default value is 1.

dxf.halign

Horizontal alignment flag as int value, use the set_placement () and get_align_enum () methods
to handle text alignment, the default value is 0.

Left

Right

Aligned (if vertical alignment = 0)
Middle (if vertical alignment = 0)
Fit (if vertical alignment = 0)

W kWO

dxf.valign

Vertical alignment flag as int value, use the set_placement () and get_align_enum () methods to
handle text alignment, the default value is O.

0 Baseline
1 Bottom
2 Middle
3 Top

dxf.text_generation_flag
Text generation flags as int value, use the is_backwardand is_upside_down attributes to handle this
flags.

2 text is backward (mirrored in X)
4 text is upside down (mirrored in Y)

property is_backward: bool

Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.
property is_upside_down: bool

Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.

496 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

set_placement (pl: UVec, p2: UVec | None = None, align: TextEntityAlignment | None = None) — Text

Set text alignment and location.

The alignments ALIGNED and FIT are special, they require a second alignment point, the text is aligned on
the virtual line between these two points and sits vertically at the baseline.

* ALIGNED: Text is stretched or compressed to fit exactly between pl and p2 and the text height is also
adjusted to preserve height/width ratio.

e FIT: Textis stretched or compressed to fit exactly between p/ and p2 but only the text width is adjusted,
the text height is fixed by the dxf. height attribute.

* MIDDLE: also a special adjustment, centered text like MIDDLE_CENTER, but vertically centred at the
total height of the text.
Parameters
e pl —first alignment point as (X, y[, z])
* p2 —second alignment point as (X, y[, z]), required for ALIGNED and FIT else ignored
* align—new alignment as enum TextEntityAlignment,None to preserve the exist-

ing alignment.

get_placement () — tuple[TextEntityAlignment, Vec3, Vec3 | None]
Returns a tuple (align, pl, p2), align is the alignment enum TextEntityAlignment, pl is the alignment
point, p2 is only relevant if align is ALIGNED or FIT, otherwise it is None.

get_align_enum () — TextEntityAlignment

Returns the current text alignment as TextEntityAlignment, see also set_placement ().

set_align_enum (align="TextEntityAlignment. LEFT) — Text

Just for experts: Sets the text alignment without setting the alignment points, set adjustment points
attr:dxf.insert and dxf.align_point manually.

Parameters
align - TextEntityAlignment
transform (m: Matrix44) — Text
Transform the TEXT entity by transformation matrix m inplace.
translate (dx: float, dy: float, dz: float) — Text
Optimized TEXT/ATTRIB/ATTDEEF translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self.
plain_text () — str

Returns text content without formatting codes.
font_name () — str

Returns the font name of the associated Textstyle.
fit_length () — float

Returns the text length for alignments TextEntityAlignment .FIT and TextEntityAlignment.
ALIGNED, defined by the distance from the insertion point to the align point or O for all other alignments.

9.9.

Reference 497

ezdxf Documentation, Release 1.2.0

Trace

The TRACE entity (DXF Reference) is solid filled triangle or quadrilateral. Access vertices by name (entity.dxf.
vtx0 = (1.7, 2.3))orbyindex (entity[0] = (1.7, 2.3)).If only 3 vertices are provided the last (3rd)
vertex will be repeated in the DXF file.

The TRACE entity stores the vertices in an unusual way, the last two vertices are reversed:

msp.add_solid([(0, 0), (10, 0), (10, 10), (O, 10)1)

Reverse the last two vertices to get the expected square:

msp.add_solid([(0, O), (10, O0), (0, 10), (10, 10)1])

498 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EA6FBCA8-1AD6-4FB2-B149-770313E93511

ezdxf Documentation, Release 1.2.0

Note: The quirky vertex order is preserved at the lowest access level because ezdxf is intended as a DXF file format
interface and presents the content of the DXF document to the package user as natively as possible.

The Trace.vertices () and Trace.wcs_vertices () methods return the vertices in the expected (reversed)
order.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'TRACE'
Factory function ezdxf.layouts.BaseLayout.add_trace ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Trace

dxf.vtx0
Location of 1. vertex (2D/3D Point in OCS)

dxf.vtxl
Location of 2. vertex (2D/3D Point in OCS)

9.9. Reference 499

ezdxf Documentation, Release 1.2.0

dxf.vtx2
Location of 3. vertex (2D/3D Point in OCS)

dxf.vtx3
Location of 4. vertex (2D/3D Point in OCS)

transform (m: Matrix44) — Solid
Transform the SOLID/TRACE entity by transformation matrix m inplace.

vertices (close: bool = False) — list] Vec3]
Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

wes_vertices (close: bool = False) — list[Vec3]

Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

Underlay

The UNDERLAY entity (DXF Reference) links an underlay file to the DXF file, the file itself is not embedded into the
DXF file, it is always a separated file. The (PDF)UNDERLAY entity is like a block reference, you can use it multiple
times to add the underlay on different locations with different scales and rotations. But therefore you need a also a
(PDF)DEFINITION entity, see UnderlayDefinition.

The DXF standard supports three different file formats: PDF, DWF (DWFx) and DGN. An Underlay can be clipped by
a rectangle or a polygon path. The clipping coordinates are 2D OCS coordinates in drawing units but without scaling.

Subclass of ezdxf.entities.DXFGraphic
DXEF type internal base class
Factory function ezdxf.layouts.BaseLayout.add_underlay ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.Underlay

Base class of PdfUnderlay, DwfUnderlay and DgnUnderlay

dxf.insert

Insertion point, lower left corner of the image in OCS.

dxf.scale_x

Scaling factor in x-direction (float)

dxf.scale_y

Scaling factor in y-direction (float)

dxf.scale_z

Scaling factor in z-direction (float)

dxf.rotation

ccw rotation in degrees around the extrusion vector (float)

dxf.extrusion

extrusion vector, default is (0, 0, 1)

500 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3EC8FBCC-A85A-4B0B-93CD-C6C785959077

ezdxf Documentation, Release 1.2.0

dxf.underlay_def handle

Handle to the underlay definition entity, see UnderlayDefinition

dxf.flags

dxf.flags

Value Description

UNDERLAY_CLIPPING

UNDERLAY_ON

UNDERLAY_MONOCHROME
UNDERLAY_ADJUST_FOR_BACKGROUND

1 clipping is on/off

2 underlay is on/off

4 Monochrome

8 Adjust for background

dxf.contrast

Contrast value (20 - 100; default is 100)

dxf.fade
Fade value (0 - 80; default is 0)

clipping
True or False (read/write)

on

True or False (read/write)

monochrome

True or False (read/write)

adjust_for_background

True or False (read/write)

scale

Scaling (%, y, z) tuple (read/write)

boundary_path

Boundary path as list of vertices (read/write).

Two vertices describe a rectangle (lower left and upper right corner), more than two vertices is a polygon as

clipping path.
get_underlay_def ()

Returns the associated DEFINITION entity. see UnderlayDefinition.

set_underlay_def ()

Set the associated DEFINITION entity. see UnderlayDefinition.

reset_boundary_path () — None
Removes the clipping path.

9.9.

Reference

501

ezdxf Documentation, Release 1.2.0

PdfUnderlay

Subclass of

DXEF type

Factory function
Inherited DXF attributes
Required DXF version

ezdxf.entities.Underlay

'PDFUNDERLAY'

ezdxf.layouts.BaseLayout.add underlay ()
Common graphical DXF attributes

DXF R2000 ("AC1015")

class ezdxf.entities.PdfUnderlay

PDF underlay.

DwfUnderlay

Subclass of

DXEF type

Factory function
Inherited DXF attributes
Required DXF version

ezdxf.entities.Underlay

'DWEFUNDERLAY'

ezdxf.layouts.BaseLayout.add underlay ()
Common graphical DXF attributes

DXF R2000 ('AC1015")

class ezdxf.entities.DwfUnderlay

DWF underlay.

DgnUnderlay

Subclass of

DXEF type

Factory function
Inherited DXF attributes
Required DXF version

ezdxf.entities.Underlay

'DGNUNDERLAY'

ezdxf.layouts.BaseLayout.add underlay ()
Common graphical DXF attributes

DXF R2000 ('AC1015")

class ezdxf.entities.DgnUnderlay

DGN underlay.

Viewport

The VIEWPORT entity (DXF Reference) is a window from a paperspace layout to the modelspace.

Subclass of

DXEF type

Factory function
Inherited DXF attributes

ezdxf.entities.DXFGraphic

'VIEWPORT'

ezdxf.layouts.Paperspace.add _viewport ()
Common graphical DXF attributes

502

Chapter 9

. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-2602B0FB-02E4-4B9A-B03C-B1D904753D34

ezdxf Documentation, Release 1.2.0

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Viewport

dxf.center

Center point of the viewport located in the paper space layout in paper space units stored as 3D point. (Error
in the DXF reference)

dxf.width

Viewport width in paperspace units (float)
dxf.height

Viewport height in paperspace units (float)

dxf.status
Viewport status field (int)

-1 On, but is fully off screen, or is one of the viewports that is not active because the SMAXACTVP
count is currently being exceeded.

0 Off

>0 On and active. The value indicates the order of stacking for the viewports, where 1 is the active
viewport, 2 is the next, and so forth.

dxf.id
Viewport id (int)

dxf.view_center_point

View center point in modelspace stored as 2D point, but represents a WCS point. (Error in the DXF reference)

dxf.snap_base_point
dxf.snap_spacing
dxf.snap_angle
dxf.grid_spacing

dxf.view_direction_vector

View direction (3D vector in WCS).

dxf.view_target_point
View target point (3D point in WCS).

dxf.perspective_lens_length

Lens focal length in mm as 35mm film equivalent.

dxf.front_clip_plane_z_value
dxf.back_clip_plane_z_value

dxf.view_height
View height in WCS.

dxf.view_twist_angle

9.9. Reference 503

ezdxf Documentation, Release 1.2.0

dxf.circle_zoom

dxf.flags

Viewport status bit-coded flags:

Bit value Constant in Description
ezdxf.const
1 (0x1) VSF_PERSPECTIVE Enables perspective mode
2 (0x2) VSF_FRONT_CLIPP Enables front clipping
4 (0x4) VSF_BACK_CLIPPI Enables back clipping
8 (0x8) VSF_USC_FOLLOW Enables UCS follow
16 (0x10) VSF_FRONT_CLIPP Enables front clip not at eye
32(0x20) VSF_UCS_ICON_VI' Enables UCS icon visibility
64 (0x40) VSF_UCS_ICON_AT Enables UCS icon at origin
128 VSF_FAST_ZOOM Enables fast zoom
(0x80)
256 VSF_SNAP_MODE Enables snap mode
(0x100)
512 VSF_GRID_MODE Enables grid mode
(0x200)
1024 VSF_ISOMETRIC_S Enables isometric snap style
(0x400)
2048 VSF_HIDE_PLOT_N Enables hide plot mode
(0x800)
4096 VSF_KISOPAIR_TO:. klsoPairTop. If set and klsoPairRight is not set, then isopair top is
(0x1000) enabled. If both kIsoPairTop and klsoPairRight are set, then isopair
left is enabled
8192 VSF_KISOPAIR_RIC klIsoPairRight. If set and kIsoPairTop is not set, then isopair right is
(0x2000) enabled
16384 VSF_LOCK_ZOOM Enables viewport zoom locking
(0x4000)
32768 VSF_CURRENTLY_ Currently always enabled
(0x8000)
65536 VSF_NON_RECTAN Enables non-rectangular clipping
(0x10000)
131072 VSF_TURN_VIEWP' Turns the viewport off
(0x20000)
262144 VSF_NO_GRID_LIV Enables the display of the grid beyond the drawing limits
(0x40000)
524288 VSF_ADAPTIVE_GI Enable adaptive grid display
(0x80000)
1048576 VSF_SUBDIVIDE_G Enables subdivision of the grid below the set grid spacing when the
(0x100000 grid display is adaptive
2097152 VSF_GRID_FOLLOY Enables grid follows workplane switching
(0x200000

Use helper method set_flag_state () to set and clear viewport flags, e.g. lock viewport:

vp.set_flag_state (ezdxf.const.VSF_LOCK_ZOOM, True)

dxf.clipping_boundary_handle

dxf.plot_style_name

504

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

dxf.render_mode

Flat shaded with wireframe
Gouraud shaded with wireframe

0 2D Optimized (classic 2D)
1 Wireframe

2 Hidden line

3 Flat shaded

4 Gouraud shaded

5

6

dxf.ucs_per_viewport
dxf.uecs_icon
dxf.ucs_origin

UCS origin as 3D point.

dxf.ucs_x_axis

UCS x-axis as 3D vector.

dxf.ucs_y_axis

UCS y-axis as 3D vector.

dxf.ucs_handle
Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed.

dxf.ucs_ortho_type

0 not orthographic
1 Top

2 Bottom

3 Front

4 Back

5 Left

6 Right

dxf.ucs_base_handle

Handle of UCSTable of base UCS if UCS is orthographic (Viewport.dxf.ucs_ortho_type is
non-zero). If not present and Viewport.dxf.ucs_ortho_type is non-zero, then base UCS is taken
to be WORLD.

dxf.elevation

dxf .shade_plot_mode

(DXF R2004)
0 As Displayed
1 Wireframe
2 Hidden
3 Rendered

9.9. Reference 505

ezdxf Documentation, Release 1.2.0

dxf.grid_frequency
Frequency of major grid lines compared to minor grid lines. (DXF R2007)

dxf .background_handle
dxf.shade_plot_handle
dxf.visual_style_handle
dxf.default_lighting_flag

dxf.default_lighting_style

0 One distant light
1 Two distant lights

dxf.view_brightness
dxf.view_contrast
dxf.ambient_light_color_1
as AutoCAD Color Index (ACI)
dxf.ambient_light_color_2

as true color value

dxf.ambient_light_color_3

as true color value

dxf.sun_handle
dxf.ref_vp_object_1
dxf.ref_vp_object_2
dxf.ref_ vp_object_3
dxf.ref_vp_object_4
frozen_layers

Set/get frozen layers as list of layer names.
is_frozen (layer_name: str) — bool
Returns True if layer_name id frozen in this viewport.

freeze (layer_name: str) — None

Freeze layer_name in this viewport.

thaw (layer_name: str) — None

Thaw layer_name in this viewport.

has_extended_clipping_ path
Returns True if a non-rectangular clipping path is defined.
clipping rect () — tuple[Vec2, Vec2]
Returns the lower left and the upper right corner of the clipping rectangle in paperspace coordinates.

506 Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

clipping_rect_corners () — list[Vec2]
Returns the default rectangular clipping path as list of vertices. Use function ezdxf.path.
make_path () to get also non-rectangular shaped clipping paths if defined.

get_aspect_ratio () — float
Returns the aspect ratio of the viewport, return 0.0 if width or height is zero.

get_modelspace_limits () — tuple[float, float, float, float]

Returns the limits of the modelspace to view in drawing units as tuple (min_x, min_y, max_X, max_y).

get_scale () — float
Returns the scaling factor from modelspace to viewport.

get_transformation_matrix () — Matrix44
Returns the transformation matrix from modelspace to paperspace coordinates.

Wipeout

The WIPEOUT entity (DXF Reference) is a polygonal area that masks underlying objects with the current background
color. The WIPEOUT entity is based on the IMAGE entity, but usage does not require any knowledge about the IMAGE
entity.

The handles to the support entities TmageDef and ImageDefReactor are always “0”, both are not needed by the
WIPEOUT entity.

Subclass of ezdxf.entities.Image
DXF type '"WIPEOUT'
Factory function ezdxf.layouts.BaseLayout .add_wipeout ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Wipeout

set_masking_area (vertices: Iterable[UVec]) — None

Set a new masking area, the area is placed in the layout xy-plane.

XLine

The XLINE entity (DXF Reference) is a construction line that extents to infinity in both directions.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'XLINE'
Factory function ezdxf.layouts.BaseLayout.add_xline ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.XLine

9.9. Reference 507

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-2229F9C4-3C80-4C67-9EDA-45ED684808DC
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-55080553-34B6-40AA-9EE2-3F3A3A2A5C0A

ezdxf Documentation, Release 1.2.0

dxf.start

Location point of line as (3D Point in WCS)

dxf.unit_vector

Unit direction vector as (3D Point in WCS)

transform (m: Matrix44) — XLine
Transform the XLINE/RAY entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — XLine
Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.

DXF Objects

All DXF objects can only reside in the OBJECTS section of a DXF document.

The purpose of the OBJECTS section is to allow CAD software developers to define and store custom objects that are
not included in the basic DXF file format. These custom objects can be used to represent complex data structures, such
as database tables or project management information, that are not easily represented by basic DXF entities.

By including custom objects in the OBJECTS section, CAD software developers can extend the functionality of their
software to support new types of data and objects. For example, a custom application might define a new type of block
or dimension style that is specific to a particular industry or workflow. By storing this custom object definition in the
OBJECTS section, the CAD software can recognize and use the new object type in a drawing.

In summary, the OBJECTS section is an important part of the DXF file format because it allows CAD software developers
to extend the functionality of their software by defining and storing custom objects and entity types. This makes it possible
to represent complex data structures and workflows in CAD drawings, and allows CAD software to be customized to meet
the specific needs of different industries and applications.

Dictionary

The DICTIONARY entity is a general storage entity.

AutoCAD maintains items such as MLINE_STYLES and GROUP definitions as objects in dictionaries. Other applica-
tions are free to create and use their own dictionaries as they see fit. The prefix ' ACAD_ ' is reserved for use by AutoCAD
applications.

Dictionary entries are (key, DXFEnt it y) pairs for fully loaded or new created DXF documents. The referenced entities
are owned by the dictionary and cannot be graphical entities that always belong to the layout in which they are located.

Loading DXF files is done in two passes, because at the first loading stage not all referenced objects are already stored in
the entity database. Therefore the entities are stored as handles strings at the first loading stage and have to be replaced
by the real entity at the second loading stage. If the entity is still a handle string after the second loading stage, the entity
does not exist.

Dictionary keys are handled case insensitive by AutoCAD, but not by ezdxf, in doubt use an uppercase key. AutoCAD
stores all keys in uppercase.

Subclass of ezdxf.entities.DXFObject
DXF type '"DICTIONARY'
Factory function ezdxf.sections.objects.ObjectsSection.add_dictionary ()

508 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-40B92C63-26F0-485B-A9C2-B349099B26D0

ezdxf Documentation, Release 1.2.0

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.Dictionary

dxf.hard_owned

If set to 1, indicates that elements of the dictionary are to be treated as hard-owned.

dxf.cloning

Duplicate record cloning flag (determines how to merge duplicate entries, ignored by ezdxf):

0 not applicable

1 keep existing

2 use clone

3 <xref>0<name>
4 0<name>

5 Unmangle name

is_hard_owner
Returns True if the dictionary is hard owner of entities. Hard owned entities will be destroyed by deleting
the dictionary.

len__ () —int

Returns count of dictionary entries.

__contains___ (key: str) — bool
Returns key in self.

__getitem__ (key: str) — DXFEntity
Return self[key].

The returned value can be a handle string if the entity does not exist.

Raises
DXFKeyError — key does not exist
__setitem__ (key: str, entity: DXFObject) — None
Set self[key] = entity.

Only DXF objects stored in the OBJECTS section are allowed as content of Dictionary objects. DXF
entities stored in layouts are not allowed.

Raises
DXFTypeError — invalid DXF type
__delitem__ (key: str) — None
Delete self[key].
Raises
DXFKeyError — key does not exist
keys ()

Returns a KeysView of all dictionary keys.

items ()

Returns an TtemsView for all dictionary entries as (key, entity) pairs. An entity can be a handle string if
the entity does not exist.

9.9.

Reference 509

ezdxf Documentation, Release 1.2.0

count () — int
Returns count of dictionary entries.

get (key: str, default: DXFObject | None = None) — DXFObject | None

Returns the DXFEnt ity for key, if key exist else default. An entity can be a handle string if the entity does
not exist.

add (key: str, entity: DXFObject) — None
Add entry (key, value).

If the DICTIONARY is hard owner of its entries, the add () does NOT take ownership of the entity auto-
matically.

Raises
e DXFValueError — invalid entity handle
* DXFTypeError —invalid DXF type

remove (key: str) — None
Delete entry key. Raises DXFKeyError, if key does not exist. Destroys hard owned DXF entities.

discard (key: str) — None

Delete entry key if exists. Does not raise an exception if key doesn’t exist and does not destroy hard owned
DXF entities.

clear () — None
Delete all entries from the dictionary and destroys hard owned DXF entities.

add_new_dict (key: str, hard_owned: bool = False) — Dictionary

Create a new sub-dictionary of type Dictionary.
Parameters
* key —name of the sub-dictionary
* hard_owned - entries of the new dictionary are hard owned

get_required_dict (key: str, hard_owned=False) — Dictionary

Get entry key or create a new Dictionary, if Key not exist.

add_dict_var (key: str, value: str) — DictionaryVar
Addanew DictionaryVar.

Parameters
* key — entry name as string
¢ value - entry value as string

add_xrecord (key: str) — XRecord
Add anew XRecord.

Parameters
key — entry name as string

link_dxf_object (name: str, obj: DXFObject) — None
Add obj and set owner of obj to this dictionary.

Graphical DXF entities have to reside in a layout and therefore can not be owned by a Dictionary.

Raises
DXFTypeError — obj has invalid DXF type

510

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

DictionaryWithDefault

Subclass of ezdxf.entities.Dictionary

DXF type 'ACDBDICTIONARYWDFLT'

Factory func- ezdxf.sections.objects.ObjectsSection.add dictionary_with_default ()
tion

class ezdxf.entities.DictionaryWithDefault

dxf.default
Handle to default entry as hex string like FF00.

get (key: str, default: DXFODbject | None = None) — DXFObject | None

Returns DXFEnt ity for key or the predefined dictionary wide dxf. default entity if key does not exist
or None if default value also not exist.

set_default (default: DXFObject) — None

Set dictionary wide default entry.

Parameters
default —default entry as DXFEntity

DictionaryVar

Subclass of ezdxf.entities.DXFObject
DXEF type 'DICTIONARYVAR'
Factory function ezdxf.entities.Dictionary.add_dict_var()

class ezdxf.entities.DictionaryVar
dxf.schema
Object schema number (currently set to 0)

dxf.value

Value as string.

property value: str

Get/set the value of the DictionaryVar as string.

DXFLayout

LAYOUT entity is part of a modelspace or paperspace layout definitions.

Subclass of ezdxf.entities.PlotSettings
DXF type 'LAYOUT'
Factory function internal data structure, use Layout s to manage layout objects.

class ezdxf.entities.DXFLayout

9.9. Reference 511

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-433D25BF-655D-4697-834E-C666EDFD956D

ezdxf Documentation, Release 1.2.0

dxf

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf

dxf.

dxf

dxf

dxf.

dxf

.name

Layout name as shown in tabs by CAD applications

layout_flags

1 Indicates the PSLTSCALE value for this layout when this layout is current
2 Indicates the LIMCHECK value for this layout when this layout is current

tab_order
default is 1

limmin
default is Vec2(0, 0)

limmax
default is Vec2(420, 297)

insert_base

default is Vec3(0, 0, 0)

extmin

default is Vec3(1e20, 120, 1e20)

extmax

default is Vec3(-1e20, -1e20, -1e20)

elevation
default is O

ucs_origin
default is Vec3(0, 0, 0)

ucs_xaxis
default is Vec3(1, 0, 0)

.ucs_yaxis

default is Vec3(0, 1, 0)

ucs_type

default is 1

.block_record_handle

.viewport_handle

ucs_handle

.base_ucs_handle

NNk W~ O

UCS is not orthographic
Top

Bottom

Front

Back

Left

Right

512

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

DXFObiject

Common base class for all non-graphical DXF objects.

class ezdxf.entities.DXFObject

A class hierarchy marker class and subclass of ezdxf.entities.DXFEntity

GeoData

The GEODATA entity is associated to the Modelspace object. The GEODATA entity is supported since the DXF
version R2000, but was officially documented the first time in the DXF reference for version R2009.

Subclass of ezdxf.entities.DXFObject
DXF type ' GEODATA'
Factory function ezdxf.layouts.Modelspace.new_geodata ()

Required DXF version R2010 ('AC1024")

See also:

geodata_setup_local_grid.py

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.GeoData

dxf.version

1 R2009

2 R2010
dxf.coordinate_type
0 unknown
1 local grid
2 projected grid
3 geographic (latitude/longitude)

dxf.block_record handle
Handle of host BLOCK_RECORD table entry, in general the Modelspace.

dxf.design_point
Reference point in WCS coordinates.

dxf.reference_point

Reference point in geo coordinates, valid only when coordinate type is local grid. The difference between
dxf.design_point and dxf.reference_point defines the translation from WCS coordinates to geo-coordinates.

9.9. Reference 513

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-104FE0E2-4801-4AC8-B92C-1DDF5AC7AB64
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-104FE0E2-4801-4AC8-B92C-1DDF5AC7AB64
https://github.com/mozman/ezdxf/blob/master/examples/entities/geodata_setup_local_grid.py

ezdxf Documentation, Release 1.2.0

dxf

dxf.

dxf

dxf.

dxf

dxf.

dxf.

dxf

dxf.

dxf

dxf

dxf

dxf.

dxf.

dxf

.north_direction

North direction as 2D vector. Defines the rotation (about the dxf.design_point) to transform from WCS
coordinates to geo-coordinates

horizontal_unit_scale

Horizontal unit scale, factor which converts horizontal design coordinates to meters by multiplication.

.vertical_unit_scale

Vertical unit scale, factor which converts vertical design coordinates to meters by multiplication.

horizontal_units

Horizontal units (see B1ockRecord). Will be 0 (Unitless) if units specified by horizontal unit scale is not
supported by AutoCAD enumeration.

.vertical_units

Vertical units (see B1ockRecord). Will be O (Unitless) if units specified by vertical unit scale is not sup-
ported by AutoCAD enumeration.

up_direction

Up direction as 3D vector.

scale_estimation_method

none
user specified scale factor
grid scale at reference point
prismoidal

AW~

.sea_level_correction

Bool flag specifying whether to do sea level correction.

user_scale_factor

.sea_level_elevation
.coordinate_projection_radius

.geo_rss_tag

observation_from_tag

observation_to_tag

.mesh_faces_count

source_vertices

2D source vertices in the CRS of the GeoData as VertexArray. Used together with farget_vertices to
define the transformation from the CRS of the GeoData to WGS84.

target_vertices

2D target vertices in WGS84 (EPSG:4326) as VertexArray. Used together with source_vertices to define
the transformation from the CRS of the geoData to WGS84.

faces

List of face definition tuples, each face entry is a 3-tuple of vertex indices (0-based).

514

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

coordinate_system_definition
The coordinate system definition string. Stored as XML. Defines the CRS used by the GeoData. The EPSG
number and other details like the axis-ordering of the CRS is stored.

get_crs () — tuple[int, bool]
Returns the EPSG index and axis-ordering, axis-ordering is True if fist axis is labeled “E” or “W” and
False if first axis is labeled “N” or “S”.

If axis-ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON (see
chapter 3.1.1).

Raises
InvalidGeoDataException — for invalid or unknown XML data

The EPSG number is stored in a tag like:

<Alias id="27700" type="CoordinateSystem">
<ObjectId>0SGB1936.NationalGrid</ObjectId>
<Namespace>EPSG Code</Namespace>

</Alias>

The axis-ordering is stored in a tag like:

<Axis uom="METER">
<CoordinateSystemAxis>
<AxisOrder>1</AxisOrder>
<AxisName>Easting</AxisName>
<AxisAbbreviation>E</AxisAbbreviation>
<AxisDirection>east</AxisDirection>
</CoordinateSystemAxis>
<CoordinateSystemAxis>
<AxisOrder>2</AxisOrder>
<AxisName>Northing</AxisName>
<AxisAbbreviation>N</AxisAbbreviation>
<AxisDirection>north</AxisDirection>
</CoordinateSystemAxis>
</Axis>

get_crs_transformation (* no_checks: bool = False) — tuple[Matrix44, int]

Returns the transformation matrix and the EPSG index to transform WCS coordinates into CRS coordinates.
Because of the lack of proper documentation this method works only for tested configurations, set argument
no_checks to True to use the method for untested geodata configurations, but the results may be incorrect.

Supports only “Local Grid” transformation!

Raises
InvalidGeoDataException — for untested geodata configurations

setup_local_grid (*, design_point: UVec, reference_point: UVec, north_direction: UVec = (0, 1), crs: str
= EPSG_3395)

Setup local grid coordinate system. This method is designed to setup CRS similar to EPSG:3395 World
Mercator, the basic features of the CRS should fulfill these assumptions:

¢ base unit of reference coordinates is 1 meter
* right-handed coordinate system: +Y=north/+X=east/+Z=up

The CRS string is not validated nor interpreted!

9.9.

Reference 515

ezdxf Documentation, Release 1.2.0

Hint: The reference point must be a 2D cartesian map coordinate and not a globe (lon/lat) coordinate like
stored in GeoJSON or GPS data.

Parameters
¢ design_point — WCS coordinates of the CRS reference point
* reference_point — CRS reference point in 2D cartesian coordinates
¢ north_direction — north direction a 2D vertex, default is (0, 1)

¢ crs - Coordinate Reference System definition XML string, default is the definition string
for EPSG:3395 World Mercator

ImageDef

The IMAGEDETF entity defines an image file, which can be placed by the Image entity.

Subclass of ezdxf.entities.DXFObject

DXF type ' IMAGEDEF '

Factory function (1) ezdxf.document.Drawing.add_image_def ()

Factory function (2) ezdxf.sections.objects.ObjectsSection.add _image_def ()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.ImageDef
dxf.class_version
Current version is 0.

dxf.filename

Relative (to the DXF file) or absolute path to the image file as string.
dxf.image_size

Image size in pixel as (X, y) tuple.
dxf.pixel_size

Default size of one pixel in drawing units as (X, y) tuple.
dxf.loaded

0 = unloaded; 1 = loaded, default is 1

dxf.resolution_units

0 No units
2 Centimeters
5 Inch

default is 0

516 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EFE5319F-A71A-4612-9431-42B6C7C3941F

ezdxf Documentation, Release 1.2.0

ImageDefReactor

class ezdxf.entities.ImageDefReactor
dxf.class_version

dxf.image_handle

MLeaderStyle

The MLEADERSTYLE entity (DXF Reference) stores all attributes required to create new Mult i Leader entities.
The meaning of these attributes are not really documented in the DXF Reference. The default style “Standard” always
exist.

See also:
* ezdxf.entities.MultiLeader
¢ ezdxf.render.MultiLeaderBuilder
* Tutorial for MultiLeader

Create anew MLeaderStyle:

import ezdxf

doc = ezdxf.new/()
new_style = doc.mleader_styles.new ("NewStyle")

Duplicate an existing style:

duplicated_style = doc.mleader_styles.duplicate_entry("Standard", "DuplicatedStyle")
Subclass of ezdxf.entities.DXFObject
DXEF type 'MLEADERSTYLE'

Factory function ezdxf.document.Drawing.mleader_styles.new ()

class ezdxf.entities.MLeaderStyle

dxf.align_space

unknown meaning

dxf.arrow_head_handle

handle of default arrow head, see also ezdxf . render. arrows module, by default no handle is set, which
mean default arrow “closed filled”

dxf.arrow_head_size
default arrow head size in drawing units, default is 4.0

dxf.block_color
default block color as ;term:raw color value, default is BY_ BLOCK_RAW_VALUE

9.9. Reference 517

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0E489B69-17A4-4439-8505-9DCE032100B4
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0E489B69-17A4-4439-8505-9DCE032100B4

ezdxf Documentation, Release 1.2.0

dxf .block_connection_type

0
1

center extents
insertion point

dxf.block_record_handle

handle to block record of the BLOCK content, not set by default

dxf.block_rotation

default BLOCK rotation in radians, default is 0.0

dxf.block_scale_x
default block x-axis scale factor, default is 1.0

dxf.block_scale_y
default block y-axis scale factor, default is 1.0

dxf.block_scale_z
default block z-axis scale factor, default is 1.0

dxf .break_gap_size
default break gap size, default is 3.75

dxf.char_height
default MTEXT char height, default is 4.0

dxf.content_type

W N = O

none

BLOCK
MTEXT
TOLERANCE

default is MTEXT (2)

dxf.default_text_content
default MTEXT content as string, default is

dxf.dogleg_length
default dogleg length, default is 8.0
dxf.draw_leader_order_type

unknown meaning

dxf.draw_mleader_order_type

unknown meaning

dxf.first_segment_angle_constraint

angle of fist leader segment in radians, default is 0.0

dxf.has_block_rotation

dxf.has_block_scaling

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

dxf.has_dogleg
default is 1

dxf.has_landing
default is 1

dxf.is_annotative
default is 0

dxf.landing_gap_size

default landing gap size, default is 2.0

dxf.leader_line_color
default leader line color as raw-color value, default is BY BLOCK_RAW_VALUE

dxf.leader_linetype_ handle
handle of default leader linetype

dxf.leader_lineweight
default leader lineweight, default is LINEWEIGHT_BYBLOCK

dxf.leader_type

0 invisible
1 straight line leader
2 spline leader

default is 1

dxf.max_leader_segments_points

max count of leader segments, default is 2

dxf .name
MLEADERSTYLE name

dxf.overwrite_property_value

unknown meaning

dxf.scale

overall scaling factor, default is 1.0

dxf.second_segment_angle_constraint

angle of fist leader segment in radians, default is 0.0

dxf.text_align_always_left

use always left side to attach leaders, default is O

dxf.text_alignment_type

unknown meaning - its not the MTEXT attachment point!

dxf.text_angle_type

0 text angle is equal to last leader line segment angle

text is horizontal

2 text angle is equal to last leader line segment angle, but potentially rotated by 180 degrees so the right
side is up for readability.

—

9.9. Reference 519

ezdxf Documentation, Release 1.2.0

default is 1

dxf.text_attachment_direction

defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top &

bottom:

0 horizontal - left & right of content
1 vertical - top & bottom of content

default is O

dxf.text_bottom_attachment_type

9 center
10 overline and center

default is 9

dxf.text_color
default MTEXT color as raw-color value, default is BY BLOCK_RAW_VALUE

dxf.text_left_attachment_type

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line
bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

01NN A W~ O

dxf.text_right_attachment_type

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line
bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

0NNk WD = O

dxf.text_style_handle
handle of the default MTEXT text style, not set by default, which means “Standard”

520 Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

dxf.text_top_attachment_type

9 center
10 overline and center

Placeholder

The ACDBPLACEHOLDER object for internal usage.

Subclass of ezdxf.entities.DXFObject
DXF type ' ACDBPLACEHOLDER'
Factory function ezdxf.sections.objects.ObjectsSection.add _placeholder ()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.Placeholder

PlotSettings

All PLOTSETTINGS attributes are part of the DXFLayout entity, I don’t know if this entity also appears as standalone
entity.

Subclass of ezdxf.entities.DXFObject
DXEF type 'PLOTSETTINGS'
Factory function internal data structure

class ezdxf.entities.PlotSettings
dxf .page_setup_name
default is “”

dxf.plot_configuration_file
default is “Adobe PDF”
dxf.paper_size
default is “A3”

dxf.plot_view_name
default is *”

dxf.left_margin

default is 7.5 mm
dxf.bottom_margin

default is 20 mm
dxf.right_margin

default is 7.5 mm

9.9. Reference 521

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3BC75FF1-6139-49F4-AEBB-AE2AB4F437E4
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1113675E-AB07-4567-801A-310CDE0D56E9

ezdxf Documentation, Release 1.2.0

dxf.top_margin

default is 20 mm

dxf.paper_width

default is 420 mm

dxf .paper_height

default is 297 mm

dxf.plot_origin_x_offset

default is 0

dxf.plot_origin_y_ offset

default is 0

dxf.plot_window_x1

default is 0

dxf.plot_window_yl

default is 0

dxf.plot_window_x2

default is 0

dxf.plot_window_y2

default is 0

dxf.scale_numerator

default is 1

dxf.scale_denominator

default is 1

dxf.plot_layout_flags

128
512
1024
2048
4096
8192
16384

plot viewport borders
show plot-styles

plot centered

plot hidden == hide paperspace entities?
use standard scale

plot with plot-styles
scale lineweights

plot entity lineweights
draw viewports first
model type

update paper

zoom to paper on update
initializing

prev plot-init

default is 688
dxf.plot_paper_units

522

Chapter 9

. Contents

ezdxf Documentation, Release 1.2.0

dxf.plot_rotation

dxf.plot_type

0 Plot in inches
1 Plot in millimeters
2 Plot in pixels

No rotation

90 degrees counterclockwise
Upside-down

90 degrees clockwise

W = O

DN A W= O

Last screen display

Drawing extents

Drawing limits

View specified by code 6

Window specified by codes 48, 49, 140, and 141
Layout information

dxf.current_style_sheet
default is “”

dxf.standard_scale_type

0 Scaled to Fit
1 1/1287=1"
2 1/647=1
3 1/327=1
4 1/167=1"
5 3/327=1
6 1/87=1"
7 3/167=1
8 1/47=1
9 3/87=I"
10 1/27=1
11 3/47=1
12 17=I
13 37=I"
14 6=

15 1=r

16 1:1

17 12

18 14

19 18

20 1:10

21 1:16

22 1:20

continues on next page

9.9. Reference

523

ezdxf Documentation, Release 1.2.0

Table 1 - continued from previous page

23
24
25
26
27
28
29
30
31
32

1:30
1:40
1:50
1:100
2:1
4:1

8:1
10:1
100:1
1000:1

dxf.shade_plot_mode

[OSTN SR)

As Displayed
Wireframe
Hidden
Rendered

dxf.shade_plot_resolution_level

wn A W= O

Draft
Preview
Normal
Presentation
Maximum
Custom

dxf.shade_plot_custom_dpi
default is 300

dxf.unit_factor
default is 1

dxf.paper_image_origin_x
default is 0

dxf.paper_image_origin_y
default is O

dxf.shade_plot_handle

524

Chapter 9. Contents

ezdxf Documentation, Release 1.2.0

SpatialFilter

The SPATIAL_FILTER object stores the clipping path for external references and block references. For more information
about getting, setting and removing clippings paths read the docs for the ezdxf. xclip.XC1ip class.

The HEADER variable $XCLIPFRAME determines if the clipping path is displayed and plotted:

0 not displayed, not plotted
1 displayed, not plotted
2 displayed and plotted

See also:
* ezdxf.xclip

» Knowledge Graph: https://ezdxf.mozman.at/notes/#/page/spatial_filter

Subclass of ezdxf.entities.DXFObject
DXEF type 'SPATIAL_FILTER'
Factory function internal data structure

class ezdxf.entities.SpatialFilter
dxf .back_clipping_plane_distance
Defines the distance of the back clipping plane from the origin in direction of the extrusion vector.

dxf.is_clipping_enabled
Block reference clipping is enabled when 1 and disabled when 0.

dxf.extrusion
Defines the orientation of the OCS

dxf.front_clipping plane_distance
Defines the distance of the front clipping plane from the origin in direction of the extrusion vector.

dxf.has_back_clipping_plane
dxf.has_front_clipping plane
dxf.origin

Defines the origin of the OCS

property boundary_ vertices: tuple[Vec2, ...]
Returns the clipping path vertices in OCS coordinates.
property inverse_insert_matrix: Matrix44

Returns the inverse insert matrix.

This matrix is the inverse of the original block reference (insert entity) transformation. The original block
reference transformation is the one that is applied to all entities in the block when the block reference is
regenerated.

property transform_matrix: Matrix44

Returns the transform matrix.

This matrix