
–– Manual v0.32 —

Benjamin Jurke and Thorsten Rahn

in collaboration with

Ralph Blumenhagen, Helmut Roschy

December 18, 2024

Contact info

Please send all C/C++ implementation (cohomCalg core program) related or other
technical questions to Benjamin Jurke, reachable via eMail: mail@benjaminjurke.com.

For all questions regarding the cohomCalg Koszul extension please refer to Thorsten Rahn
(thorsten.rahn@gmail.com).

1

https://benjaminjurke.com
mailto:mail@benjaminjurke.com?subject=cohomCalg
mailto:thorsten.rahn@gmail.com?subject=cohomCalg

Introduction
cohomCalg (an acronym pronounced “cohom-calc”) is an implementation of the
sheaf cohomology computation algorithm for line bundles on toric spaces pre-
sented in detail in [1] and subsequently proven in [2, 3]. Several applications are
discussed in [4, 5]. The program is freely available under the GNU General Public
Licence version 3.0 (GPLv3) on the repository site

https://github.com/BenjaminJurke/cohomCalg.

The main program is written in C++ and consists of a single main program
executable file. Due to the implementation structure of the program and the
ever-increasing spreading of 64-bit capable processors and operating systems, we
consider the 64-bit version of the application to be the natural choice with the 32-
bit version provided only as a fallback option for legacy computers. Furthermore,
the 64-bit version is considerably faster compared to the 32-bit version on the
same platform.

The Koszul extension of the cohomCalg package is a Mathematica 7 and 8
script and consists of a single file as well, but depends of the main program’s
executable.

Note: Throughout this manual we assume some basic knowledge of toric ge-
ometry. A concise introduction to the subject can be found in [1].

Acknowledgement: Thanks to Doug Torrance for several improvements and
reorganizing cohomCalg into a Debian package.

External dependencies: The cohomCalg package makes use of the following
external libraries:

• The Polyhedral Library (PolyLib); GPLv3 license; mathematical library
for computations involving polyhedra, used in the counting of monomials;
available for download at http://icps.u-strasbg.fr/polylib/

2

http://www.gnu.org/licenses/gpl.html
https://github.com/BenjaminJurke/cohomCalg
http://www2.piedmont.edu/math/dtorrance/
http://www.gnu.org/licenses/gpl.html
http://icps.u-strasbg.fr/polylib/

Contents
1 Installation Guidelines 4

1.1 Main program . 4
1.2 Koszul extension . 4
1.3 Package contents . 5
1.4 Version history . 5

I Main cohomCalg program 6

2 Usage 6
2.1 Command line parameters . 6
2.2 Input format and structure . 9
2.3 Output format . 10
2.4 Obtaining geometric data . 12

3 Implementation 13
3.1 Internal design . 13
3.2 Potential improvements . 14
3.3 Known problems . 15

II cohomCalg Koszul extension 16

4 Usage 16
4.1 Preparations . 16
4.2 Input format and structure . 16
4.3 Bundle types . 17

4.3.1 Line bundles . 17
4.3.2 Equivariant Cohomology of Line Bundles 18
4.3.3 Tangent bundle of a subvariety 19
4.3.4 Λk(Cotangent Bundle) of a subvariety for k = 0, 1, 2 19
4.3.5 Λk(Monad bundle) of a subvariety for k = 1, 2 20
4.3.6 Hodge diamond of a subvariety 21
4.3.7 Endomorphism bundle of the tangent bundle of a subvariety 22
4.3.8 Endomorphism Bundle of the monad bundle of a Subvariety 22

4.4 Verbose Level and Output Format 23

3

1 Installation Guidelines

1.1 Main program

Windows platform

The package comes with precompiled 64-bit and 32-bit binaries called cohom-
calg.exe or cohomcalg32.exe in the ‘/bin/’ subdirectory for Microsoft Windows,
which are statically linked to all required run-time libraries in order to avoid any
troubles you might have running them. No further steps are required.

Linux/Unix and Mac

On a Linux/Unix or MacOS X-platform you have to compile the binaries from the
source code yourself, which is a fully automated process. Providing precompiled
binaries would enlarge the package unnecessarily and not make use of platform-
specific speedups. In order to compile cohomCalg from source under a Unix-
based platform (e.g. Linux or MacOS X), just open a terminal, change into the
cohomCalg directory and use the

make

command. Now the script will compile the source files, link them together and
produce the new executable cohomcalg (without any extension) in the ‘/bin/’
subdirectory, where the shipped Windows binaries are found as well. Using

make clean

deletes the temporarily generated subdirectory ‘/build/’ which contains the in-
termediate object files from the compilation process.

General remarks

Unfortunately, there is no such automated build process available for the Mi-
crosoft Windows environment. The program code is fully cross-platform com-
patible, provided a few minor modifications (a limited number of preprocessor
definitions in the source header platform.h) are applied for other platforms.

1.2 Koszul extension

The Koszul extension of the cohomCalg package requires a running copy of Math-
ematica 7 or 8.1 Simply open the Mathematica notebook file from the program

1The script does not use any commands special to Version 7 or 8 of Mathematica, i.e. in
principle there are no obstacles to using an older version. However, lacking such older software,
we were unable to test such usage. Please understand that we cannot offer any help regarding
older versions of Mathematica.

4

and make sure that the cohomCalg main program is in the same directory. Right
in the beginning of the notebook file you find a variable containing the name of
the executable file that is used by the script. Change this variable to the correct
name of the main executable, e.g. cohomcalg.exe or cohomcalg32.exe. Then save
the file for future usage.

1.3 Package contents

Naturally, you can find the pre-compiled binaries in the directory ‘/bin/’ of the
package. The Windows binaries cohomcalg.exe and cohomcalg32.exe can be dis-
tinguished for the Unix/Linux/MacOS X binary cohomcalg by the file extension
‘.exe’, which is not required to be typed explicitly in the Windows command
prompt––Windows only considers files with certain extensions to be executable.
The binaries directory also contains the Mathematica 7 or 8 notebook file of the
Koszul extension.

Under ‘/source/’ the source code of cohomCalg is found. It also includes
the modified version of the PolyLib under ‘/source/polylib_mod/’, which was
stripped down to all necessary source files required for compilation.

1.4 Version history

Like most other open source projects, we started cohomCalg with a version number
below v1.0 in order to reflect ongoing development before reaching a suitable level
of stability. Each increase of the first digit after the dot reflects a major upgrade,
the second digit is used for medium changes that warrant a manual upgrade.
Furthermore, a lower-case letter may be added (like in v0.21d) to reflect minor
internal bug-fixing or upgrades that do not require any change on the user’s side.

v0.31 (May 25, 2011): Routines for discrete group actions, multi-core support,
significant performance improvements.

v0.21 (October 18, 2010): cohomCalg Koszul extension added.

v0.13 (July 23, 2010): Integration mode added.

v0.12 (June 25, 2010): Several minor bugfixes and improvements.

v0.11 (May 4, 2010): Original release of the cohomCalg C++ implementation.

v0.04 (March 29, 2010): Original public release of the Mathematica 7 script,
which is still available from the website.

5

Part I

Main cohomCalg program
2 Usage

2.1 Command line parameters

The program can be entirely controlled directly from the terminal. However, due
to the usually somewhat lengthy input and output data, it is strongly suggested
to use text input files. We make it a habit to append the extension .in to such
input files, e.g. dP3.in, however you are free to choose whatever name you like.
Furthermore, it is recommended to redirect the program’s standard output to a
file via ‘> dP3.out’. The most basic command line therefore takes the form

cohomcalg dP3.in > dP3.out

and effective uses the data in dP3.in for input and prints the output into dP3.out.
Instead of using an input file, you can also use the option ‘–in="..."’, where
everything between the quotation marks is treated exactly like the data from an
input file.

All command line options are always specified before the input file name,
i.e. the general command line syntax is

cohomcalg [–option1] [...] [–optionN] [inputfile] [> outputfile]

and calling the program without any additional parameters shows a concise
overview of all options. You can specify any combination of options from the
following list:

-?, /?, –?, -help, /help, –help Shows a concise list of command line options
and the general syntax structure. The program will terminate after showing
the list, so this option should not be paired with anything else.

–in="..." Treats everything between the quotation marks like input data from
a file. You may use both an input file and the ‘–in’ option, in which case
the input data from the command line is effectively analyzed after the file
contents. This is useful if you want to specify the geometry of a variety in
a file and want to compute a number of different line bundle cohomologies
subsequently without having to change the file each time.

–nomonomfile As the size of the Stanley-Reisner ideal powerset grows expo-
nentially with the number of generators, traversing all elements to compute
the secondary/remnant sequences is a rather time consuming process for

6

complicated geometries. Therefore, the program automatically looks for a
file inputfilename.monoms, e.g. dP3.in.monoms in order to skip this com-
putation. The filename can be changed using the ‘monomialfile’ input com-
mand, see sec. 2.2. Furthermore, in case this file is missing or could not be
read the program automatically saves the computed secondary sequences
to this file. Using the ‘–nomonomfile’ command line option deactivates the
usage of this file and also deactivates the generation of a new file. If due to
the sole usage of the ‘–in’ option without an input file no filename has been
specified via the ‘monomialfile’ input command, the program automatically
deactivates the usage of those intermediate files.

–checkserre When using this option, the program automatically computes the
cohomology for the Serre-dual line bundle and compares the results accord-
ing to Hk(O(D)) ∼= Hn−k(K⊗O(−D))∗. Note that this effectively doubles
the computation time in the second part of the program.

–noreduction Deactivates the Serre-duality reduction, which tries to reduce
the number of ambiguously contributing monomials by comparing to Serre-
dual complement monomials. If this reduction is deactivated and ambigu-
ous contributions are found, both the entire range of all possible “normal”
and Serre-dual cohomologies has to be computed and compared in order to
identify a consistent pair. Note that this requires huge amounts of memory
and might easily lead to the program quitting prematurely, see sec. 3.3. Use
with caution!

–hideinput Deactivates the formatted output of the entire input data. Re-
member that it might be rather useful to have the results along with the
input data in the same file, in particular if you make usage of the ‘–in’
option to supply additional input data.

–showtime Activates output of computation time statistics even for very short
runtimes. This option is automatically activated if the computation takes
longer than one second.

The following command line options are only useful for debugging or if you want
to know a little bit more, what is happening on the inside:

–showbits Activates an explicit output of the bit-masks used internally.

–mathematica Outputs the input data and the output data in a form directly
suitable for Copy&Paste into the legacy Mathematica 7 script.

–integrated If the integrated mode is activated the output passed to the stan-
dard output channel stdout is always a single line of the form

{True,Cohomology1,Cohomology2,. . . ,CohomologyN} or
{False,"Invalid command line parameters"}

7

The first boolean value tells if the application run was either entirely suc-
cessful (“True”) or if an error occured during the run (“False”). If an error
happens, a brief error message is supplied. In case of a successful run, a list-
ing of all computed cohomology group dimensions and some intermediate
information follows in the order requested in the input file. The cohomology
data is of the form

CohomologyM = {

cohomology group
dimensions h•︷ ︸︸ ︷
{0,2,0} ,

list of contributing denominator monomials︷ ︸︸ ︷
{ {1,1*u1*u2*u5}︸ ︷︷ ︸
u1u2u5 contributes with

factor 1 to cohomology h1

, {0,2*u2*u3*u5}︸ ︷︷ ︸
u2u3u5 contributes with

factor 2 to cohomology h0

} },

i.e. the final cohomology group dimensions h•(O(D)) are a list at the first
position inside the cohomology output vector.

Note that this option overrides any verbose level. Together with the ‘–in’
option this allows for simple integration of cohomCalg into external appli-
cations. It should, however, be emphazised that the output format of this
option is subject to potential changes in future version.

–verbose1, ..., –verbose5 Activates debug output, where a higher number pro-
duces more detailed information. The different levels are:

1) Shows the ultimately computed list of all contributing denominator
monomials with factors determined via the secondary/remnant coho-
mology and the number of rational functions. As it might become
internally necessary to use information from the Serre-dual cohomol-
ogy, this prints a two-column list of this data for both the “normal”
and Serre-dual contributions.

2) In order to reduce computation time and memory consumption, the
ambiguously contributing denominator monomials are mapped to their
complement monomials. This verbose level prints the list of all con-
tributing monomials before and after the reduction.

3) Prints the reduced list of secondary/remnant sequences, where all ob-
vious cases (exact sequences, or sequences containing just a single
non-zero entry) are removed. Note that this output only appears if
the secondary/remnant cohomology is actually computed, compare
option –nomonomfile.

4) Prints the full list of secondary/remnant sequences. Note that this
output only appears if the secondary/remnant cohomology is actually
computed, compare option –nomonomfile.

5) Shows all polyhedron condition matrices which are passed to PolyLib
in order to compute the number of rational functions for the corre-
sponding denominator monomial.

8

In most cases, passing no options at all will serve you just fine, i.e. it prints the
input data and the computed cohomology group dimensions.

2.2 Input format and structure

The input format is both the same for the input file and the input data passed
via terminal using the ‘–in’ command. Keep in mind, that the command line
data is always considered after the data read from the input file.

The general structure of the input is in the form of some rather basic data
commands. Each such command has to be terminated by a semicolon, just like
C/C++ code. Other than keeping the right syntax structure, you are free to
format your input data using spaces, tabulators or line breaks just as you like.
You may also use comments in the input file using the ‘%’ character. Everything
following a ‘%’ character till the end of the line is completely ignored. Note that
this effectively prohibits usage of comments when passing data via the command
line, as the entire remainder of the data after the percent sign will be ignored.
The following commands for providing input data are available:

vertex [name] | GLSM: ([GLSM charge 1], ..., [GLSM charge r]); This command
specifies a new coordinate (or vertex of the fan in the corresponding toric
description, thus the name) and its GLSM charges, i.e. for each coordinate
you use one corresponding ‘vertex’ command. The name of the coordinate
must be an alphanumeric sequence of characters not starting with a num-
ber. The number of GLSM charges must be equal for all coordinates and
the GLSM charge value has to stay within a certain range. As an example,
the following commands specify the coordinates and GLSM charges of the
del-Pezzo 1 surface:

vertex u1 | GLSM: (1, 0);
vertex u2 | GLSM: (1, 0);
vertex u3 | GLSM: (1, 1);
vertex u4 | GLSM: (0, 1);

Note that due to internal limitations the maximum number of vertices is
limited to 63.

srideal [[SR generator 1],...,[SR generator N]]; This command specifies the Stanley-
Reisner ideal, i.e. you have to specify the generators as products of the
coordinates like in the following dP1 example:

srideal [u1*u2, u3*u4];

Note that the coordinates used in the products have to be previously de-
clared, i.e. it only makes sense to use the ‘srideal’ command after the ‘vertex’
commands. The number of Stanley-Reisner ideal generators N is limited

9

to 63, however, on modern desktops computational time will explode at
around 40 generators, which is due to the exponential 2N growth of the
powerset of the Stanley-Reisner ideal generators.

ambientcohom O([charge 1], ...,[charge r]); Using this command you can spec-
ify the GLSM charges of the target divisorD that determines the line bundle
O(D) for which the sheaf cohomology on the ambient space is computed.
Please note the upper-case letter ‘O’ behind the command. For example,

ambientcohom O(0, 0);

computes the ambient space sheaf cohomology for the holomorphic line
bundle O(0, 0) = O. Obviously, the number of charges r has to be equal to
the number of GLSM charges specified in the ‘vertex’ commands. You may
specify several target line bundles for batch computation by simply using
the ‘ambientcohom’ command multiple times.

monomialfile "[filename]"; This command allows you to specify a different file-
name for the intermediate monomial file between the quotation marks:

monomialfile "my-dP1-monomial-file.dat";

This filename is both used for reading and saving of the monomial file.
Please keep in mind, that the intermediate data saved to file is crucially
dependant on the geometry data specified via the other commands, see
sec. 3.3. You can therefore turn off the usage and generation of those files
using the input command line

monomialfile off;

which might come in handy, when you frequently change the geometry of
the variety specified in the input file and want to avoid the usage of the
‘–nomonomfile’ parameter.

All commands are subject to a precise syntax, range and consistency check, so
it is basically impossible to run the program with invalid data. In such cases,
you will see a syntax error message indicating where the problem occured in the
input data.

2.3 Output format

Following the prior dP1 example, after saving the six input commands to file and
running the program via ‘cohomcalg dP1.in > dP1.out’, the output file contains
after the obligatory header the following data:

10

Input data:
===========

The described ambient space is of dimension 2.
There are 4 coordinates, each having 2 GLSM charges:

coord 1: u1 | 1 0
coord 2: u2 | 1 0
coord 3: u3 | 1 1
coord 4: u4 | 0 1

There are 2 generators of the Stanley-Reisner ideal:
SRgen 1: u1*u2
SRgen 2: u3*u4

There is 1 ambient space sheaf cohomology requested:
cohom 1: H^i(A; O(0, 0))

Cohomology dimensions:
======================

dim H^i(A; O(0, 0)) = (1, 0, 0)

This output is fairly self-explanatory and should not require further comment.
However, for more involved and complicated examples a couple of non-ideal things
may happen. You may see the line

The Serre dualization reduction was unable to uniquely resolve 88
of the original 1049 ambiguous monoms.

which indicates that the Serre-dual complement monomial reduction technique
(compare the command line option ‘–noreduction’) was unable to resolve all am-
biguously contributing denominator monomials. This is in principle not a prob-
lem, provided that the much more computationally expensive fallback technique,
which compares all possible cohomologies to the corresponding Serre dual coho-
mologies, is able to uniquely resolve the issue. However, if this fails as well you
will see an output like

dim H^i(A; O(2, 4, 1, ..., 3, -2, 1)) is ambiguous
candidate results are: = (580, 353, 171, 1, 919, 0)

= (580, 353, 0, 1,1090, 0)

which gives you all possible cohomology configurations the algorithm was able to

11

sort out. Unfortunately, you may also be graced by the message

dim H^i(A; O(2, ..., 1)) could not be determined.

but in all our extensive testing, we never encountered this problem. Finally, for
any computations longer than one second or if you use the ‘–showtime’ option
you will encounter runtime statistics like

Application run took 14.27 seconds, more precisely
11.02 seconds sec for the computation of the sec. cohom.
3.23 seconds sec for the counting of rational functions

which gives you an idea of the time consumption. Also, during longer runtimes,
you will see an output like

SR powerset traverse 14.54% done (12 secs remaining)...

which reports the progress of computing the secondary/remnant cohomologies
and gives a rough time estimate for this part of the program to finish.

2.4 Obtaining geometric data

Naturally, you need to get the input data from somewhere, and a couple of very
useful packages for those tasks are available freely on the net. In order to derive
the Stanley-Reisner ideal, which is a required input for the program, you may
want to take a look at

TOPCOM: http://www.rambau.wm.uni-bayreuth.de/TOPCOM/,

which can also enumerate all possible fans for a given set of vertices. The Maple
script package

SCHUBERT: http://folk.uib.no/nmasr/schubert/0.996/,

can be used to compute intersection numbers and further geometrical quanti-
ties of toric varieties, however, the software is somewhat dated at this point.
Furthermore, there is the package

PALP: http://hep.itp.tuwien.ac.at/ kreuzer/CY/CYpalp.html,

which is useful for computing invariants of hypersurfaces, Mori cone vectors etc.
You may also want to take a look at the

SAGE Library: http://www.sagemath.org/,

12

http://www.rambau.wm.uni-bayreuth.de/TOPCOM/
http://folk.uib.no/nmasr/schubert/0.996/
http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYpalp.html
http://www.sagemath.org/

of freely available mathematical software. Finally, the environment

Macaulay2: http://www.math.uiuc.edu/Macaulay2/,

which allows similar computations, was heavily used during the development
process.

3 Implementation

3.1 Internal design

This implementation heavily relies on the usage of bit-wise operations on 64-bit
integer variables. The ith coordinate of the input data is represented by the ith
bit of such a variable, such that a Stanley-Reisner ideal generator simply becomes
a bit-mask. Via this coding scheme, computing the union of Stanley-Reisner ideal
generators is equivalent to using the bit-wise non-exclusive OR operator, which
is a superfast operation on any 64-bit architecture machine. Furthermore, when
traversing the powerset of the Stanley-Reisner ideal, we also encode the presence
of the jth generator by the jth bit, such that running through all subsets of the
set of generators reduces to a simple loop running from 0 to 2N , where N is the
number of generators.

Using a couple of bit-mask buffers, those two elementary encoding techniques
allowed us to gain a speedup of several orders of magnitude on any other im-
plementation approach. On the other hand, this puts the strict upper limit of
63 on the number of coordinates and Stanley-Reisner ideal generators, but as
the number of Stanley-Reisner ideal generators is usually much larger and some-
what maxes out current computers at around 40 generators, those constraints are
currently rather theoretical and do not present any practical restrictions.

Since version 0.31 of the cohomCalg core program the computation of the
secondary sequences is carried out in a multi-threaded fashion, i.e. all available
(logical) processor cores of the machine are used simultaneously. Depending on
the hardware, this leads to a significant speed improvement factor scaling almost
linearly with the number of cores.

By computing the secondary sequences, a number of uniquely and ambigu-
ously contributing denominator monomials is found. Ambiguously in this sense
means that the secondary/remnant cohomology has more than one non-zero con-
tribution, i.e. the number of rational functions for this denominator monomial
might contribute to different groups of the cohomology, e.g. to H1 and H2. This
ambiguity arises due to the fact that the mappings in the secondary/remnant
sequences are currently not considered in the computation. It is therefore nec-
essary to employ the Serre duality in order to resolve this issue, which basically
means to take the complement monomial –– the monomial consisting of all the

13

http://www.math.uiuc.edu/Macaulay2/

remaining coordinates –– into account. This step is carried out during the Serre-
duality reduction, which can be turned off using the ‘–noreduction’ command line
option. In most cases, this eliminates all ambiguities by turning the ambiguous
contributions in unique contributions.

In the next step, the number of rational functions is computed for each mono-
mial using The Polyhedron Library.2 Basically, with PolyLib we are constructing
a polyhedron from a number of equalities and inqualities and then count the
number of integer lattice points inside of it using Ehrhart polynomial approxi-
mations. For the uniquely determined contributions, the resulting cohomology
group dimension is simply the factor derived from the secondary/remnant se-
quences times the number of rational functions. However, if there are still am-
bigous contributions leftover, this requires a branching of the current number of
possible cohomology dimensions by the ambiguity, i.e. if you have 10 ambiguous
contributions with 3 possibilities each, this already yields 310 = 59049 possible
configurations. In case of ambiguities it is necessary to entirely compute all those
possibilities both for the “normal” and Serre-dual configuration and then match
those possibilities in order to determine compatible ones. Unfortunately, due to
the rapid growth of the number of configurations, one quickly runs out of mem-
ory, which is a still unresolved issue of the implementation. Again, this problem
ultimately originates in the fact, that the mappings in the secondary/remnant
sequences are not implemented at the moment.

3.2 Potential improvements

The counting of monomials (rational functions) in the current algorithm is cur-
rently still implemented as a single-threaded application, i.e. it only makes use of
one processor core––whereas modern desktops already may have up to 6 cores per
processor with an increasing trend. While a parallelization has been attempted,
it appears that the PolyLib is not implemented in a thread-safe fashion, which
leads to a memory (heap) corruption as soon as more than one PolyLib thread is
executed at the same time. This problem is currently investigated in more detail
but may remain unsolved for the foreseeable future.

As a second improvement in the long run one might offer the option of
arbitrary-length bitmasks, which would effectively remove the 63 coordinates and
Stanley-Reisner generators upper limits. On the other hand, such a change would
most likely impair performance quite a bit, and for the moment those limits are
far out of reach for reasonable computation times.

2Note that we use a very slightly modified version of the PolyLib, where a number of standard
output responses are removed. It is therefore not recommended to simply replace the PolyLib
version included in the source package by another version.

14

3.3 Known problems

The implementation is rather robust aside from the potential memory-consump-
tion issue, when the number of ambiguous contributions becomes too large. For
the moment, we can only recommend the usage of the 64-bit version for such
cases (which is recommended anyways), as it somewhat alleviates the problem
and gives the program access to more memory. It should be mentioned however,
that without enforcing this issue via the ‘–noreduction’ option, the problem is
mostly kept in check even in extremely complicated cases.

A somewhat minor problem is the instability of the monomial files. As the
computed monomials are effectively stored via bit-masks, changing the geometry
of the variety in the input data (i.e. the order or number of the vertices as
well as the number of Stanley-Reisner generators) effectively corrupts this data.
Currently, there is no sophisticated check if the intermediate monomial data
stored in the file corresponds to the geometry specified via the input data. In
worst case scenarios such a corruption might crash the program. In case you are
worried about the results while using an intermediate monomial file try rebuilding
this one by deleting or renaming the old one or turning off the monomial file usage
alltogether.

Aside from that we are reasonably certain that quite a number of bugs and
problems are still included. Please let us know any problems you may find, see
page 1 for contact information.

15

Part II

cohomCalg Koszul extension
4 Usage

4.1 Preparations

The Mathematica Koszul extension serves as a wrapper for the cohomCalg pro-
gram. Simply open Mathematica 7 or 8 on your computer and load the notebook
file. Make sure that the cohomCalg executable variable at the top of the script
points to the correct executable file, e.g. cohomcalg32.exe on a Windows 32-bit
platform. Also make sure that the correct path of the executable is inserted.
There are no further parameters or options.

4.2 Input format and structure

The script in its current form consists of three parts:

1. The main portion of the file contains the actual routines used for the pro-
gram. Each time you open the script file, you briefly have to re-run this
part, such that the Mathematica kernel working in the background has all
the necessary definitions etc. available. This is done, for example, by press-
ing Shift+Enter while the cursor is still in the upper part of the script.

2. The second portion is clearly marked by the words “Ambient geometry
data”. Here you have to specify the relevant toric data for the ambient
space variety X. The following data is required in list form:

• Coordinates: A list of the coordinate names like the seven variables in
{x1,x2,x3,x4,x5,x6,x7}.

• Stanley-Reisner ideal: A list of lists corresponding to the generators
of the Stanley-Reisner ideal, e.g. {{x1,x6},{x2,x3,x4,x5,x7}}.

• GLSM relations: A list of lists corresponding to the GLSM charges or
projective relations associated to each coordinate, for example
{{1,3},{0,1},{0,1},{0,1},{0,1},{1,0},{0,1}}. The number of those lists
obviously has to be equal to the number of coordinates.

This data is assigned to a list variable, which for book-keeping purposes
should carry a name suggesting the described toric variety, e.g. P111113.

3. Finally the command part follows, where the user can access the functions
provided by the cohomCalg Koszulextension. Here depending on what kind

16

of bundle one wants to calculate the program needs some additional input
parameters:

• Complete intersection charges: A list of divisor charges for the com-
plete intersection like {{1,4},{1,4}}. An empty list {} always returns
the result for the ambient space.

• Line bundle charges: A list that specifies the required line bundle
charges, e.g. {22,30}.

• Monad bundle charges : A list of lists corresponding to the monad
bundle charges Nk in (1), for example {{1,0},{0,1},{0,1},{0,1},{0,2}}.

• Monad bundle constraints: A list of lists of the required monad bundle
constraints Mi in (1), for instance {{1,5}}.

• Vr: Power of the OS bundle in the monad sequence (1), e.g. 2.

0 −→ O⊕Vr
S −→

Vn⊕
k=1

OS(Nk)−→
Vl⊕
i=1

OS(Mi) , (1)

• Zn-action: A list that specifies how the involution acts on the coordi-
nates, e.g. {x1,x2,x3,x4,x5,x6,-x7} for a Z2 action

4.3 Bundle types

Various different bundle types are provided by the cohomCalg Koszul extension.
The structure of the input is similar for all bundles and looks like:

CohomologyOf[[Bundle Type], [Ambient Space], [Additional Input],
[Optional: Type of Subvariety], [Optional: Verbose Level],

[Optional: Output Type], [Optional: Line Bundle Collector]]

The optional input can be inserted in an arbitrary order. In the following we
describe how the different bundle types can be evaluated. Here we will not use
the last two of the optional input parameters and explain their use afterwards.
From the mandatory part of the input data only the [Bundle Type] and the
[Additional Input] change:

4.3.1 Line bundles

• [Bundle Type]: ”LineBundle“

• [Additional Input]: {Complete intersection charges, Line bundle charges}

This command is the main routine of the cohomCalg Koszul extension. Given an
ambient space X and a set of divisors S1, . . . , Sl ⊂ X as well as a line bundle

17

divisor E it computes the sheaf cohomology group dimensions dimH i(S;OS(E))
on the hypersurface or complete intersection S = S1 ∩ · · · ∩ Sl. Note that
there is no checking if the intersection geometry is actually well-defined, i.e. the
cohomCalg Koszul extension does not test for transversality or other conditions.
Furthermore, it does not actually evaluate the mappings in the Koszul complex,
but rather attempts to derive the dimensions from indirect exactness arguments
and constraints. However, as those methods may not always lead to a solution,
the output may contain parameters which are unresolved. The input data for
the ambient space, the complete intersection and the line bundle charges has to
be specified as explained above. Here the additional input is a list of two lists,
namely the data specifying the complete intersection as well as the charges of
the line bundle you want to compute. For the complete intersection data, an
empty list {} of divisors return the cohomology of the ambient space itself, i.e. it
computes dimH i(X;OX(E)).

Example: Consider the ambient space P̃5
111113 described before. If you type

P111113={
(*Coordinates*){x1,x2,x3,x4,x5,x6,x7},
(*Stanley␣Reisner*){{x1,x6},{x2,x3,x4,x5,x7}},
(*Equivalence␣Relations*){{1,3},{0,1},{0,1},{0,1},{0,1},{1,0},{0,1}}};

CohomologyOf["LineBundle",P111113,{{{1,4},{1,4}},{2,8}}]

you will get the result {487,0,0,0}, which means that dimH0(S;OS(E)) =
487 and dimHj(S;OS(E)) = 0 for j = 1, 2, 3.

4.3.2 Equivariant Cohomology of Line Bundles

If you consider an ambient space that allows for a discrete action your cohomology
obtains a grading into invariant and non-invariant parts under this action. You
can compute this equivariant cohomology of line bundles. To do that the following
input parameters are needed:

• [Bundle Type]: ”EquivariantLineBundle“

• [Additional Input]: {{}, Line bundle charges, Zn-action}

The program then returns two cohomology vectors where the first contains the
invariant part of the cohomology, dimH•

inv(X;OX(E)) and the non-invariant part
of the cohomology dimH•

non-inv(X;OX(E)). Note that the program does not check
whether such an action is allowed on this space, so you have to figure that out
yourself beforehand. You can also ask the program to print the representatives
of the cohomology by using the verbose options described below.

18

Example: Consider the ambient space P̃5
111113 as specified above. If you evaluate

the order

CohomologyOf[
(*Bundle␣specification*)"EquivariantLineBundle",
(*Ambient␣Space*)P111113,
(*Remaining␣Data:Complete␣Intersection,LineBundle␣Charges,Discrete␣Action*)
{{},{5,3},{x1␣x2,x3,x4,x5,x6,-x7}}
];

you will get the result two resulting line bundle cohomology vectors where
the first one denotes the invariant part of the equivariant cohomology and
the second one the non-invariant part. For this explicit example you will
get {{25,0,0,0,155,0},{11,0,0,0,250,0}}. So we have the only non-vanishing
contibutions

h0
inv(X;O(5, 3)) = 25 , h4

inv(X;O(5, 3)) = 155,

h0
non-inv(X;O(5, 3)) = 11 , h4

non-inv(X;O(5, 3)) = 250 .

4.3.3 Tangent bundle of a subvariety

• [Bundle Type]: ”TangentBundle“

• [Additional Input]: {Complete intersection charges}

• [Optional: Type of Subvariety]: ”Calabi-Yau“/ ”Unknown”

Computes the cohomology dimensions of the tangent bundle of S, i.e. dimH i(S;TS).
If you choose the type of the subvariety to be “Calabi-Yau”, this will be taken
into account in the calculation. As always an empty list of intersecting surfaces
returns the cohomology of the tangent bundle of the ambient toric variety.

Example: Consider the ambient space P̃5
111113 as specified above. If you evaluate

the order

CohomologyOf["TangentBundle",P111113,{{1,4},{1,4}},“Calabi-Yau”];

you will get the result {0,86,2,0} which means that dimH0(S;TS) = dimH3(S;TS) =
0, dimH1(S;TS) = 86 and dimH2(S;TS) = 2.

4.3.4 Λk(Cotangent Bundle) of a subvariety for k = 0, 1, 2

• [Bundle Type]: ”LambdakCotangentBundle“

• [Additional Input]: {Complete intersection charges}

19

• [Optional: Type of Subvariety]: ”Calabi-Yau“ / ”Unknown”

Those three commands compute the exterior powers k = 0, 1, 2 of the cotangent
bundle of the hypersurface or complete intersection S = D1 ∩ · · · ∩Dn:

dimH i(S; ΛkT ∗
S),

The input data is exactly the same as for the tangent bundle cohomology.

Example: Consider the ambient space P̃5
111113 as specified above. If you type

CohomologyOf["Lambda0CotangentBundle",P111113,
{{1,4},{1,4}},“Calabi-Yau”];

you will get {1,0,0,1}.

4.3.5 Λk(Monad bundle) of a subvariety for k = 1, 2

• [Bundle Type]: ”LambdakMonadBundle“

• [Additional Input]: {Complete intersection charges, Bundle charges, Bundle
Constraints, Vr}

Those two commands compute the exterior powers k = 1, 2 of the specified monad
bundle (1) of the hypersurface or complete intersection S = S1 ∩ · · · ∩ Sl. Here
in addition to the charges of the complete intersection we also need the bundle
charges Nk as well as the bundle constraints Mk and the power Vr, all defined in
(1) .

Example: Consider the ambient space P̃5
111113 as specified above.

CohomologyOf["Lambda1MonadBundle",P111113,{{{1,4},{1,4}},
(*BundleCharges*){{1,0},{0,1},{0,1},{0,1},{0,2}},
(*BundleConstraints*){{1,5}}},"Calabi-Yau"];

The result will be {0, 2, 102+ A70, A70}. Here the A70 is a constant which
could not be determined using only the dimensions of the line bundle co-
homologies in the long exact sequences. A method that actually evaluates
the maps in order to evaluate this constant is currently not included in the
program. But one can use the verbose function described below to have an
explicit look at the long exact sequences. In certain cases, properties of the
maps of the monad may be chosen in order to determine such a parameter
in an easy way.

20

So far we have only considered monads that are non-exact sequences. If you
want to calculate the cohomology of an exact monad, you can simply do that by
putting the parameter Vr to zero. Then the non-exact sequence becomes exact
and the vector bundle is given as the kernel of the corresponding map:

0 −→ V−→
Vn⊕
k=1

OS(Nk)−→
Vl⊕
i=1

OS(Mi) , (2)

4.3.6 Hodge diamond of a subvariety

• [Bundle Type]: ”HodgeDiamond“

• [Additional Input]: {Complete intersection charges}

• [Optional: Type of Subvariety]: ”Calabi-Yau“/ ”Unknown”

Computes the entire Hodge diamond of the hyper surface or complete intersection
S. Up to 4 dimensions one usually gets a unique result which may not be the
case for higher dimensions. The output contains the Hodge diamond, the Betti
numbers as well as the Euler character of the requested subvariety.

Example: The following example for a Calabi-Yau 4-fold is taken from the paper
arXiv:0912.3524 and describes a compact complete intersection Calabi-Yau
4-fold used in the construction of F-theory GUT vacua. The toric data
of the ambient space (found in table B.1 of the aforementioned paper) is
specified by the following variable:

Example4Fold = {
(*Coordinates*){v1, v2, v3, v4, v5, v6, v1s, v7, v8, v9, v10},
(*Stanley Reisner*) {{v3,v9},{v5,v9},{v7,v10},{v1,v2,v3},
{v4,v1s,v8},{v4,v7,v8},{v4,v8,v9},
{v5,v6,v1s},{v5,v6,v10},{v1,v2,v6,v1s}},
(*Equivalence Relations*){{3, 3, 3, 3, 0}, {2, 2, 2, 2, 0},
{1, 0, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0},
{0, 1, 0, 0, 0}, {0, 1, 1, 0, 0}, {0, 0, 1, 0, 1},
{0, 0, 1, 0, 0}, {0,-1,-1, 1,-1}, {0, 0, 0, 0, 1}}
};

The 4-fold is given by the intersection of two divisors in the ambient space,
which are specified in the variable

ComplInt = {{6, 6, 6, 6, 0}, {0, 0, 2, 1, 1}};

21

and the actual command for the computation of the Hodge diamond is then

CohomologyOf[“HodgeDiamond”,Example4Fold,ComplInt,“Calabi-Yau”];

which takes around 20 seconds on a current desktop computer and computes
264 intermediate ambient space line bundle cohomologies via cohomCalg.
The full Hodge diamond as well as the Betti numbers and the Euler char-
acter are then printed in a very readable form:

1 1

0 0 0

0 5 0 5

0 0 0 0 0

1 1115 4524 1115 1 6756 χ = 6768

0 0 0 0 0

0 5 0 5

0 0 0

1 1

4.3.7 Endomorphism bundle of the tangent bundle of a subvariety

• [Bundle Type]: ”EndTangentBundle“

• [Additional Input]: {Complete intersection charges}

Computes the cohomology dimensions dimH i(S; End(TS)) of the endomorphism
bundle End(TS), which represents the bundle deformations of the hypersurface /
complete intersection S. For such calculations it is usually not necessary only to
consider the dimensions of the line bundles, but more is needed. The routine is
still useful since you can choose a verbose level in order to obtain the long exact
sequences. So if you know about certain map properties you may be able to put
parameters to zero manually and see how the result changes.

4.3.8 Endomorphism Bundle of the monad bundle of a Subvariety

• [Bundle Type]: ”EndMonadBundle“

• [Additional Input]: {Complete intersection charges, Bundle charge, Bundle
Constraints, Vr}

Computes the cohomology dimensions dimH i(S; End(V)) of the endomorphism
bundle End(V), which represents the bundle deformations of the monad bundle
(1). As for the endomorphism bundle of the tangent bundle, here one usually
needs additional information about the maps in the monad.

22

4.4 Verbose Level and Output Format

Since it may be useful to see how the long exact sequences involved in the internal
computations actually look like–– especially if one does not get a unique result in
the end–– there is an option in the cohomCalg Koszul extension to do so. In total
there are 6 different verbose levels.

• “Verbose-1”: Only the final result is returned.

• “Verbose0”: The result is printed along with a small statistic about calcu-
lation time.

• “Verbose1”: All long exact sequences coming from the Euler sequence will
be shown.

• “Verbose2”: Like “Verbose1” with more details.

• “Verbose3”: All long exact sequences coming from the Koszul sequence will
be shown.

• “Verbose4”: All long exact sequences coming from the Euler and the Koszul
sequence will be shown.

• “Verbose5”: Like “Verbose4” with more details.

• “Verbose6”: This Verbose function only works for the equivariant cohomol-
ogy calculation and shows you the representatives of the cohomology of the
corresponding line bundle. It also prints how the Zn-action acts on them
and which of the Laurent monomials are invariant.

There is one more optional input parameter in which you can let the program
know if you are using Mathematica 7 in a terminal or with the graphical inter-
face. Chose ”Terminal“ for [Optional: Input Type] if you are using the terminal
interface.

23

Proper citation
If you find the cohomCalg package useful to your project please have a look into
the file Proper Citation.txt located in the package archive’s main directory. There
you find a ready-to-use BibTeX entry for cohomCalg [6].

Acknowledgements
We would like to thank Jim Halverson for bug reporting and general feedback as
well as Fabian Rühle for pointing out compatibility issues with Mathematica 8.
Furthermore, we are grateful to Prof. Alois Kabelschacht for his help in the
distribution of this project.

References
[1] R. Blumenhagen, B. Jurke, T. Rahn, and H. Roschy, “Cohomology of Line

Bundles: A Computational Algorithm,” J. Math. Phys. 51 no. 10, (2010)
103525, arXiv:1003.5217 [hep-th].

[2] T. Rahn and H. Roschy, “Cohomology of Line Bundles: Proof of the
Algorithm,” J. Math. Phys. 51 no. 10, (2010) 103520, arXiv:1006.2392
[hep-th].

[3] S.-Y. Jow, “Cohomology of toric line bundles via simplicial Alexander
duality,” arXiv:1006.0780 [math.AG].

[4] R. Blumenhagen, B. Jurke, T. Rahn, and H. Roschy, “Cohomology of Line
Bundles: Applications,” arXiv:1010.3717 [hep-th].

[5] R. Blumenhagen, B. Jurke, and T. Rahn, “Computational Tools for
Cohomology of Toric Varieties,” arXiv:1104.1187 [hep-th].

[6] “cohomCalg package.” Download link, 2010.
https://github.com/BenjaminJurke/cohomCalg. High-performance line
bundle cohomology computation based on [1].

Mathematica is a registered trademark of Wolfram Research, Inc. All rights reserved. Windows
is a registered trademark of Microsoft Corporation in the United States and other countries.
The lightbulb image used in the application logo was made by DragonArt and is used under
the Creative Commons Attribution-Noncommercial-Share Alike 3.0 license.

24

http://dx.doi.org/10.1063/1.3501132
http://dx.doi.org/10.1063/1.3501132
http://arxiv.org/abs/1003.5217
http://dx.doi.org/10.1063/1.3501135
http://arxiv.org/abs/1006.2392
http://arxiv.org/abs/1006.2392
http://arxiv.org/abs/1006.0780
http://arxiv.org/abs/1010.3717
http://arxiv.org/abs/1104.1187
https://github.com/BenjaminJurke/cohomCalg
http://dragonartz.wordpress.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

	1 Installation Guidelines
	1.1 Main program
	1.2 Koszul extension
	1.3 Package contents
	1.4 Version history

	I Main cohomCalg program
	2 Usage
	2.1 Command line parameters
	2.2 Input format and structure
	2.3 Output format
	2.4 Obtaining geometric data

	3 Implementation
	3.1 Internal design
	3.2 Potential improvements
	3.3 Known problems

	II cohomCalg Koszul extension
	4 Usage
	4.1 Preparations
	4.2 Input format and structure
	4.3 Bundle types
	4.3.1 Line bundles
	4.3.2 Equivariant Cohomology of Line Bundles
	4.3.3 Tangent bundle of a subvariety
	4.3.4 Exterior powers of the Cotangent Bundle of a subvariety
	4.3.5 Exterior powers of the Monad Bundle of a subvariety
	4.3.6 Hodge diamond of a subvariety
	4.3.7 Endomorphism bundle of the tangent bundle of a subvariety
	4.3.8 Endomorphism Bundle of the monad bundle of a Subvariety

	4.4 Verbose Level and Output Format

