session_run_hook {tfestimators} | R Documentation |
Create Custom Session Run Hooks
Description
Create a set of session run hooks, used to record information during
training of an estimator. See Details for more information on the
various hooks that can be defined.
Usage
session_run_hook(
begin = function() { },
after_create_session = function(session, coord) { },
before_run = function(context) { },
after_run = function(context, values) { },
end = function(session) { }
)
Arguments
begin |
function() : An R function, to be called once before using the session.
|
after_create_session |
function(session, coord) : An R function, to be called
once the new TensorFlow session has been created.
|
before_run |
function(run_context) : An R function to be called before a run.
|
after_run |
function(run_context, run_values) : An R function to be called
after a run.
|
end |
function(session) : An R function to be called at the end of the session.
Typically, you'll want to define a before_run() hook that defines the set
of tensors you're interested in for a particular run, and then you'll use the
resulting values of those tensors in your after_run() hook. The tensors
requested in your before_run() hook will be made available as part of the
second argument in the after_run() hook (the values argument).
|
See Also
session_run_args()
Other session_run_hook wrappers:
hook_checkpoint_saver()
,
hook_global_step_waiter()
,
hook_history_saver()
,
hook_logging_tensor()
,
hook_nan_tensor()
,
hook_progress_bar()
,
hook_step_counter()
,
hook_stop_at_step()
,
hook_summary_saver()
[Package
tfestimators version 1.9.2
Index]