%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname konfound %global packver 0.5.1 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.5.1 Release: 1%{?dist}%{?buildtag} Summary: Quantify the Robustness of Causal Inferences License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 2.10 Requires: R-core >= 2.10 BuildArch: noarch BuildRequires: R-CRAN-lme4 >= 1.1.35.1 BuildRequires: R-CRAN-broom BuildRequires: R-CRAN-broom.mixed BuildRequires: R-CRAN-crayon BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-lavaan BuildRequires: R-CRAN-purrr BuildRequires: R-CRAN-rlang BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-tibble BuildRequires: R-CRAN-ggrepel BuildRequires: R-CRAN-pbkrtest Requires: R-CRAN-lme4 >= 1.1.35.1 Requires: R-CRAN-broom Requires: R-CRAN-broom.mixed Requires: R-CRAN-crayon Requires: R-CRAN-dplyr Requires: R-CRAN-ggplot2 Requires: R-CRAN-lavaan Requires: R-CRAN-purrr Requires: R-CRAN-rlang Requires: R-CRAN-tidyr Requires: R-CRAN-tibble Requires: R-CRAN-ggrepel Requires: R-CRAN-pbkrtest %description Statistical methods that quantify the conditions necessary to alter inferences, also known as sensitivity analysis, are becoming increasingly important to a variety of quantitative sciences. A series of recent works, including Frank (2000) and Frank et al. (2013) extend previous sensitivity analyses by considering the characteristics of omitted variables or unobserved cases that would change an inference if such variables or cases were observed. These analyses generate statements such as "an omitted variable would have to be correlated at xx with the predictor of interest (e.g., treatment) and outcome to invalidate an inference of a treatment effect". Or "one would have to replace pp percent of the observed data with null hypothesis cases to invalidate the inference". We implement these recent developments of sensitivity analysis and provide modules to calculate these two robustness indices and generate such statements in R. In particular, the functions konfound(), pkonfound() and mkonfound() allow users to calculate the robustness of inferences for a user's own model, a single published study and multiple studies respectively. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}