%global __brp_check_rpaths %{nil} %global packname catseyes %global packver 0.2.5 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.2.5 Release: 3%{?dist}%{?buildtag} Summary: Create Catseye Plots Illustrating the Normal Distribution of theMeans License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel Requires: R-core BuildArch: noarch %description Provides the tools to produce catseye plots, principally by catseyesplot() function which calls R's standard plot() function internally, or alternatively by the catseyes() function to overlay the catseye plot onto an existing R plot window. Catseye plots illustrate the normal distribution of the mean (picture a normal bell curve reflected over its base and rotated 90 degrees), with a shaded confidence interval; they are an intuitive way of illustrating and comparing normally distributed estimates, and are arguably a superior alternative to standard confidence intervals, since they show the full distribution rather than fixed quantile bounds. The catseyesplot and catseyes functions require pre-calculated means and standard errors (or standard deviations), provided as numeric vectors; this allows the flexibility of obtaining this information from a variety of sources, such as direct calculation or prediction from a model. Catseye plots, as illustrations of the normal distribution of the means, are described in Cumming (2013 & 2014). Cumming, G. (2013). The new statistics: Why and how. Psychological Science, 27, 7-29. pmid:24220629. %prep %setup -q -c -n %{packname} find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %{rlibdir}/%{packname}