PowerNormal {powdist} | R Documentation |
Density, distribution function, quantile function and random generation for the power normal distribution with parameters mu, sigma and lambda.
dpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
ppnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rpnorm(n, lambda = 1, mu = 0, sigma = 1)
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power Normal distribution has density
f(x)=\lambda \left [ \Phi \left ( \frac{x-\mu}{\sigma} \right ) \right]^{\lambda - 1} \left[\frac{e^{ -\frac{1}{2}\left ( \frac{x-\mu}{\sigma} \right )^2}}{\sigma\sqrt{2\pi}} \right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Bazán, J. L., Romeo, J. S. and Rodrigues, J. (2014) Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics. 28(4), 467–482.
Gupta, R. D. and Gupta, R. C. (2008) Analyzing skewed data by power normal model. Test 17, 197–210.
Kundu, D. and Gupta, R. D. (2013) Power-normal distribution. Statistics 47, 110–125.
dpnorm(1, 1, 3, 4)
ppnorm(1, 1, 3, 4)
qpnorm(0.2, 1, 3, 4)
rpnorm(5, 2, 3, 4)