%global __brp_check_rpaths %{nil} %global packname samurais %global packver 0.1.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.1.0 Release: 3%{?dist}%{?buildtag} Summary: Statistical Models for the Unsupervised Segmentation ofTime-Series ('SaMUraiS') License: GPL (>= 3) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 2.10 Requires: R-core >= 2.10 BuildRequires: R-methods BuildRequires: R-stats BuildRequires: R-MASS BuildRequires: R-CRAN-Rcpp BuildRequires: R-CRAN-RcppArmadillo Requires: R-methods Requires: R-stats Requires: R-MASS Requires: R-CRAN-Rcpp %description Provides a variety of original and flexible user-friendly statistical latent variable models and unsupervised learning algorithms to segment and represent time-series data (univariate or multivariate), and more generally, longitudinal data, which include regime changes. 'samurais' is built upon the following packages, each of them is an autonomous time-series segmentation approach: Regression with Hidden Logistic Process ('RHLP'), Hidden Markov Model Regression ('HMMR'), Multivariate 'RHLP' ('MRHLP'), Multivariate 'HMMR' ('MHMMR'), Piece-Wise regression ('PWR'). For the advantages/differences of each of them, the user is referred to our mentioned paper references. %prep %setup -q -c -n %{packname} %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %{rlibdir}/%{packname}