MoE_AvePP {MoEClust} | R Documentation |
Calculates the per-component average posterior probabilities of a fitted MoEClust model.
MoE_AvePP(x)
x |
An object of class |
This function calculates AvePP, the average posterior probability of membership for each component for the observations assigned to that component via MAP probabilities.
A named vector of numbers, of length equal to the number of components (G), in the range [1/G,1], such that larger values indicate clearer separation of the clusters. Note that G=x$G
for models without a noise component and G=x$G + 1
for models with a noise component.
This function will always return values of 1
for all components for models fitted using the "CEM"
algorithm (see MoE_control
), or models with only one component.
Keefe Murphy - <keefe.murphy@mu.ie>
Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325. <doi:10.1007/s11634-019-00373-8>.
MoE_clust
, MoE_control
, MoE_entropy
data(ais)
res <- MoE_clust(ais[,3:7], G=3, gating= ~ BMI + sex,
modelNames="EEE", network.data=ais)
# Calculate the AvePP
MoE_AvePP(res)