%global __brp_check_rpaths %{nil} %global packname rrecsys %global packver 0.9.7.3.1 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.9.7.3.1 Release: 3%{?dist}%{?buildtag} Summary: Environment for Evaluating Recommender Systems License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.1.2 Requires: R-core >= 3.1.2 BuildRequires: R-CRAN-registry BuildRequires: R-MASS BuildRequires: R-stats BuildRequires: R-CRAN-knitr BuildRequires: R-CRAN-ggplot2 BuildRequires: R-methods BuildRequires: R-CRAN-Rcpp Requires: R-CRAN-registry Requires: R-MASS Requires: R-stats Requires: R-CRAN-knitr Requires: R-CRAN-ggplot2 Requires: R-methods Requires: R-CRAN-Rcpp %description Processes standard recommendation datasets (e.g., a user-item rating matrix) as input and generates rating predictions and lists of recommended items. Standard algorithm implementations which are included in this package are the following: Global/Item/User-Average baselines, Weighted Slope One, Item-Based KNN, User-Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology (Shani, et al. (2011) ) for recommender systems using measures such as MAE, RMSE, Precision, Recall, F1, AUC, NDCG, RankScore and coverage measures. The package (Coba, et al.(2017) ) is intended for rapid prototyping of recommendation algorithms and education purposes. %prep %setup -q -c -n %{packname} %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %{rlibdir}/%{packname}