predict.PRISM {StratifiedMedicine} | R Documentation |
Predictions for PRISM algorithm. Given the training set (Y,A,X) or new test set (Xtest), output ple predictions and identified subgroups with correspond parameter estimates.
## S3 method for class 'PRISM'
predict(object, newdata = NULL, type = "all", ...)
object |
Trained PRISM model. |
newdata |
Data-set to make predictions at (Default=NULL, predictions correspond to training data). |
type |
Type of prediction. Default is "all" (ple, submod, and param predictions). Other options include "ple" (ple predictions), "submod" (submod predictions with associated parameter estimates). |
... |
Any additional parameters, not currently passed through. |
Data-frame with predictions (ple, submod, or both).
## Load library ##
library(StratifiedMedicine)
##### Examples: Continuous Outcome ###########
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A
# Run Default: filter_glmnet, ple_ranger, lmtree, param_ple #
res0 = PRISM(Y=Y, A=A, X=X)
summary(predict(res0, X)) # all #
summary(predict(res0, X, type="ple"))
summary(predict(res0, X, type="submod"))