hwe.ibf {HWEintrinsic} | R Documentation |
This function implements the exact calculation of the Bayes factor based on intrinsic priors for the Hardy-Weinberg testing problem as described in Consonni et al. (2011).
hwe.ibf(y, t)
y |
|
t |
training sample size. |
This function implements the exact formula for the Bayes factor based on intrinsic priors.
hwe.ibf
returns the value of the Bayes factor based on intrinsic priors.
The Bayes factor computed here is for the unrestricted model (M_1
) against the Hardy-Weinberg case (M_0
). This function provides the output only for the two alleles case.
Sergio Venturini sergio.venturini@unicatt.it
Consonni, G., Moreno, E., and Venturini, S. (2011). "Testing Hardy-Weinberg equilibrium: an objective Bayesian analysis". Statistics in Medicine, 30, 62–74. https://onlinelibrary.wiley.com/doi/10.1002/sim.4084/abstract
## Not run:
# ATTENTION: the following code may take a long time to run! #
data(Lindley)
hwe.ibf.exact <- Vectorize(hwe.ibf, "t")
f <- seq(.05, 1, .05)
n <- sum(dataL1@data.vec, na.rm = TRUE)
# Dataset 1 #
plot(dataL1)
npp.exact <- 1/(1 + hwe.ibf.exact(round(f*n), y = dataL1))
npp.std <- 1/(1 + hwe.bf(dataL1))
plot(f, npp.exact, type="l", lwd = 2, xlab = "f = t/n",
ylab = "Null posterior probability")
abline(h = npp.std, col = gray(.5), lty = "longdash")
# Dataset 2 #
plot(dataL2)
npp.exact <- 1/(1 + hwe.ibf.exact(round(f*n), y = dataL2))
npp.std <- 1/(1 + hwe.bf(dataL2))
plot(f, npp.exact, type="l", lwd = 2, xlab = "f = t/n",
ylab = "Null posterior probability")
abline(h = npp.std, col = gray(.5), lty = "longdash")
# Dataset 3 #
plot(dataL3)
npp.exact <- 1/(1 + hwe.ibf.exact(round(f*n), y = dataL3))
npp.std <- 1/(1 + hwe.bf(dataL3))
plot(f, npp.exact, type="l", lwd = 2, xlab = "f = t/n",
ylab = "Null posterior probability")
abline(h = npp.std, col = gray(.5), lty = "longdash")
# Dataset 4 #
plot(dataL4)
npp.exact <- 1/(1 + hwe.ibf.exact(round(f*n), y = dataL4))
npp.std <- 1/(1 + hwe.bf(dataL4))
plot(f, npp.exact, type="l", lwd = 2, xlab = "f = t/n",
ylab = "Null posterior probability")
abline(h = npp.std, col = gray(.5), lty = "longdash")
## End(Not run)