%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname easyalluvial %global packver 0.3.2 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.3.2 Release: 1%{?dist}%{?buildtag} Summary: Generate Alluvial Plots with a Single Line of Code License: CC0 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.5 Requires: R-core >= 3.5 BuildArch: noarch BuildRequires: R-CRAN-ggplot2 >= 3.2.0 BuildRequires: R-CRAN-tidyr >= 1.0.0 BuildRequires: R-CRAN-ggalluvial >= 0.9.1 BuildRequires: R-CRAN-recipes >= 0.1.5 BuildRequires: R-CRAN-purrr BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-forcats BuildRequires: R-CRAN-ggridges BuildRequires: R-CRAN-RColorBrewer BuildRequires: R-CRAN-rlang BuildRequires: R-CRAN-stringr BuildRequires: R-CRAN-magrittr BuildRequires: R-CRAN-tibble BuildRequires: R-CRAN-gridExtra BuildRequires: R-CRAN-randomForest BuildRequires: R-CRAN-progressr BuildRequires: R-CRAN-progress Requires: R-CRAN-ggplot2 >= 3.2.0 Requires: R-CRAN-tidyr >= 1.0.0 Requires: R-CRAN-ggalluvial >= 0.9.1 Requires: R-CRAN-recipes >= 0.1.5 Requires: R-CRAN-purrr Requires: R-CRAN-dplyr Requires: R-CRAN-forcats Requires: R-CRAN-ggridges Requires: R-CRAN-RColorBrewer Requires: R-CRAN-rlang Requires: R-CRAN-stringr Requires: R-CRAN-magrittr Requires: R-CRAN-tibble Requires: R-CRAN-gridExtra Requires: R-CRAN-randomForest Requires: R-CRAN-progressr Requires: R-CRAN-progress %description Alluvial plots are similar to sankey diagrams and visualise categorical data over multiple dimensions as flows. (Rosvall M, Bergstrom CT (2010) Mapping Change in Large Networks. PLoS ONE 5(1): e8694. Their graphical grammar however is a bit more complex then that of a regular x/y plots. The 'ggalluvial' package made a great job of translating that grammar into 'ggplot2' syntax and gives you many options to tweak the appearance of an alluvial plot, however there still remains a multi-layered complexity that makes it difficult to use 'ggalluvial' for explorative data analysis. 'easyalluvial' provides a simple interface to this package that allows you to produce a decent alluvial plot from any dataframe in either long or wide format from a single line of code while also handling continuous data. It is meant to allow a quick visualisation of entire dataframes with a focus on different colouring options that can make alluvial plots a great tool for data exploration. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}