dataPanelbeta {saeHB.panel.beta} | R Documentation |
rho = 0
Dataset under Beta Distribution to simulate Small Area Estimation using Hierarchical Bayesian Method for Rao-Yu Model with rho = 0 This data is generated by these following steps:
Generate random effect area v
, random effect for area i at time point j u
, epsilon \epsilon
, variance of ydi vardir
, sampling error e
, auxiliary xdi1
and xdi2
Set coefficient \beta_{0}=\beta_{1}=\beta_{2}=2
Generate random effect area v_{i}~N(0,1)
Generate auxiliary variable xdi1_{ij}~U(0,1)
Generate auxiliary variable xdi2_{ij}~U(0,1)
Generate epsilon \epsilon_{ij}
~N(0,1)
Generate \phi_{ij}
~Gamma(1,0.5)
Calculate \mu_{ij}=\frac{\exp{\beta_{0}+\beta_{1}xdi1_{ij}+\beta_{2}xdi2_{ij}+v_{i}+\epsilon_{ij}}}{(1+\exp{\beta_{0}+\beta_{1}xdi1_{ij}+\beta_{2}xdi2_{ij}+v_{i}+\epsilon_{ij}})}
Calculate A_{ij}=\mu_{ij}*\phi_{ij}
Calculate B_{ij}=(1-\mu_{ij})*\phi_{ij}
Generate ydi y_{ij}~Beta(A_{ij},B_{ij})
Calculate variance of ydi with vardir_{ij}=\frac{(A_{ij})(B_{ij})}{(A_{ij}+B_{ij})^2(A_{ij}+B_{ij}+1)}
Set area=20
and period=5
Auxiliary variables xdi1,xdi2
, direct estimation y
, area
, period
, and vardir
are combined in a dataframe called dataPanel
dataPanelbeta
A data frame with 100 rows and 6 variables:
Direct Estimation of y
Area (domain) of the data
Period (subdomain) of the data
Sampling Variance of y
Auxiliary variable of xdi1
Auxiliary variable of xdi2