%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname StepReg %global packver 1.5.5 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.5.5 Release: 1%{?dist}%{?buildtag} Summary: Stepwise Regression Analysis License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel Requires: R-core BuildArch: noarch BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-ggrepel BuildRequires: R-CRAN-MASS BuildRequires: R-CRAN-purrr BuildRequires: R-CRAN-stringr BuildRequires: R-CRAN-survival BuildRequires: R-CRAN-flextable BuildRequires: R-CRAN-cowplot BuildRequires: R-CRAN-shiny BuildRequires: R-CRAN-ggcorrplot BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-summarytools BuildRequires: R-CRAN-shinythemes BuildRequires: R-CRAN-rmarkdown BuildRequires: R-CRAN-DT BuildRequires: R-CRAN-shinycssloaders BuildRequires: R-CRAN-shinyjs Requires: R-CRAN-dplyr Requires: R-CRAN-ggplot2 Requires: R-CRAN-ggrepel Requires: R-CRAN-MASS Requires: R-CRAN-purrr Requires: R-CRAN-stringr Requires: R-CRAN-survival Requires: R-CRAN-flextable Requires: R-CRAN-cowplot Requires: R-CRAN-shiny Requires: R-CRAN-ggcorrplot Requires: R-CRAN-tidyr Requires: R-CRAN-summarytools Requires: R-CRAN-shinythemes Requires: R-CRAN-rmarkdown Requires: R-CRAN-DT Requires: R-CRAN-shinycssloaders Requires: R-CRAN-shinyjs %description The stepwise regression analysis is a statistical technique used to identify a subset of predictor variables essential for constructing predictive models. This package performs stepwise regression analysis across various regression models such as linear, logistic, Cox proportional hazards, Poisson, Gamma, and negative binomial regression. It incorporates diverse stepwise regression algorithms like forward selection, backward elimination, and bidirectional elimination alongside the best subset method. Additionally, it offers a wide range of selection criteria, including Akaike Information Criterion (AIC), Sawa Bayesian Information Criterion (BIC), and Significance Levels (SL). We validated the output accuracy of StepReg using public datasets within the SAS software environment. To facilitate efficient model comparison and selection, StepReg allows for multiple strategies and selection metrics to be executed in a single function call. Moreover, StepReg integrates a Shiny application for interactive regression analysis, broadening its accessibility. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}