mlr_learners_classif.fairzlrm {mlr3fairness} | R Documentation |
Classification Fair Logistic Regression With Covariance Constraints Learner
Description
Calls fairml::zlrm from package fairml.
Details
Generalized fair regression model from Zafar et al., 2019 implemented via package fairml
.
The 'unfairness' parameter is set to 0.05 as a default.
The optimized fairness metric is statistical parity.
Dictionary
This Learner can be instantiated via the
dictionary mlr_learners or with the associated
sugar function lrn()
:
mlr_learners$get("classif.fairzlrm") lrn("classif.fairzlrm")
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Parameters
Id | Type | Default | Levels | Range |
unfairness | numeric | - | [0, 1] |
|
intersect | logical | TRUE | TRUE, FALSE | - |
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifFairzlrm
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClassifFairzlrm$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClassifFairzlrm$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Author(s)
pfistfl
References
BJ Z, I V, M G, KP G (2019). “Fairness Constraints: a Flexible Approach for Fair Classification.” In Journal of Machine Learning Research, 30, 1-42.
See Also
Dictionary of Learners: mlr3::mlr_learners
Other fairness_learners:
mlr_learners_classif.fairfgrrm
,
mlr_learners_regr.fairfrrm
,
mlr_learners_regr.fairnclm
,
mlr_learners_regr.fairzlm
Examples
library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("classif.fairzlrm"))
print(learner)
# available parameters:
learner$param_set$ids()