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This technical manual provides a detailed description of statistical methods im-
plemented in the MCPModPack package. This package implements the Multiple
Comparison-Modeling (MCPMod) methodology in dose-finding trials with contin-
uous, binary and count endpoints.

To learn more about the MCPModPack package, visit its page on the CRAN
web site

https://CRAN.R-project.org/package=MCPModPack
The most current version of the package is available at

https://github.com/medianainc/MCPModPack

2 MCPMod methodology

The MCPMod method is an efficient dose-finding method, which combines frequen-
tist tests of dose-response signals (using multiple-contrast tests) with parametric
dose-response modeling approaches.

This method was introduced in Bretz, Pinheiro and Branson (2005) and was
later expanded in multiple directions. For a detailed discussion of the general MCP-
Mod methodology and related approaches, see Pinheiro, Bretz and Branson (2006),
Bretz, Tamhane and Pinheiro (2009), Bornkamp, Bezlyak and Bretz (2015) and
Nandakumar, Dmitrienko and Lipkovich (2017). Extensions of the original method
can be found in Klingenberg (2009), Pinheiro et al. (2013) and other publications.

2.1 Hypothesis testing and dose-response modeling

The objective of the MCPMod method is to improve dose-finding in drug develop-
ment by applying efficient statistical methodology that addresses model uncertainty.
At the end of a dose-finding Phase II trial, the trial’s sponsor is interested in estab-
lishing a dose-response relationship, while controlling the probability of continuing
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to the next development stage with a non-effective treatment. While parametric
dose-response modeling methods provide an efficient approach to the detection of
drug-related effects, they may not control the Type I error rate, e.g., when the
model is misspecified.

The key idea behind the MCPMod method is that the sponsor of a dose-finding
Phase II trial needs to simultaneously account for the uncertainty around the dose-
response model and protect the probability of an incorrect conclusion about the
dose-response (Type I error rate). The shape of the true dose-response function is
unknown at the beginning of a Phase II trial and thus model uncertainty needs to
be accounted for in dose-finding trials. Instead of considering a single dose-response
contrast that might not be representative of the true dose-response model, MCP-
Mod defines a set of candidate models (and corresponding dose-response contrasts)
and focuses on the goal of demonstrating that at least one contrast-based test
produces a significant result. The evaluation of relevant contrasts is performed as
part of the first component that can be referred to as the multiple comparison or
hypothesis testing component.

It is important to note that, within the contrast-based framework, a hypothe-
sis testing approach is emphasized with appropriate multiplicity adjustments, but
no estimation methods are supported, e.g., the functional form of the true dose-
response model is not explicitly estimated. The dose is treated as an ordinal variable
at best, rather than a continuous variable. After the global hypothesis of no treat-
ment effect is rejected and the experimental treatment is shown to be effective, it
is not clear how to approach the problem of estimating target doses. To address
this limitation of the contrast-based testing approach, the MCPMod method in-
cludes the dose-response modeling component, which expands the hypothesis test-
ing framework to obtain estimates of the underlying dose-response function and
target doses.

In general, the MCPMod method relies on the following algorithm:

Step 1: Derive the optimal contrasts from the candidate models.

Step 2: Carry out the dose-response tests based on the optimal contrasts.

Step 3: Select the dose-response models corresponding to the significant dose-
response tests.

Step 4: Estimate the target doses from the selected dose-response models.

Steps 1 through 3 are related to the hypothesis testing component and will be de-
fined in Section 3 and the last step, which is included in the dose-response modeling
component, will be described in Section 4.

2.2 General setting and dose-response models

Consider a dose-finding trial with m arms (m—1 doses of an experimental treatment
versus placebo). The dose levels are denoted by dy = 0, ..., d,,. In general, the trial’s
design does not have to be balanced and n; denotes the number of patients in the
tth arm, ¢« = 1,...,m, with the total sample size in the trial denoted by n. The
primary endpoint is a continuous, binary or count endpoint and the response of the
jth patient in the 7th arm is denoted by y;;. Let

1 m
Yi=— Zyij,
n; =1

denote the treatment effect estimate in the ith trial arm that corresponds to the
dose d;, ¢ = 1,...,m. This quantity serves as an estimate of the mean response in
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trials with continuous endpoints, the response rate in trials with binary endpoints
and the mean number of events in trials with count endpoints.

The set of candidate dose-response models supported by the MCPModPack pack-
age is presented in Table 1. Let r denote the number of candidate models. As shown
in the table, each model is defined using the dose-response function f(d,3) which
depends on the model-specific vector of parameters, i.e., 3 = (51,...,fk), where k
is the number of parameters in this particular model. The dose-response function
provides a link between the dose and an appropriate characteristic of the endpoint:

e Continuous endpoints: f(d, 3) = u(d), where p(d) is the mean of the continuous
response at the dose level d.

® Binary endpoints: f(d,3) = In[r(d)/(1 — 7(d))], where 7(d) is the probability of
the outcome of interest at the dose level d.

® Count endpoints: f(d,3) = Inv(d), where v(d) is the average number of events
at the dose level d.

TABLE 1 Dose-response models supported by the MCPModPack package

Name Dose-response model Coefficients
Linear f(d, ﬂ) = (1 + Bad b1 = Eo, B2 = 19
Quadratic f(d ﬂ) = f1 + fad + 53d2 B1 = Eo, B2 = 51, B3 = 02
Exponential  f(d,3) = 81 + B2(exp(d/B3) — 1) B1=Fgy, fo=FE1, B3 =96
Emax f(d,B) = B+ B2d/ (B3 + d) B1 = Eo, B2 = Emax,

Bs = EDso
Logistic f(d,B) = Br + B2/[1 + exp((Bs — d)/B4)]  Br = Ev, B2 = Emax,

B3 = EDso, fa =96
Sigmax  f(d, 8) = B + B2d™ /(8]* + d™) B = Eo, B2 = Einax,

B3 = EDso, Ba = h

The following notation will be used in the subsequent sections: z, denotes the
upper 100ath percentile of the standard normal distribution.

3 Hypothesis testing

3.1 Step 1: Dose-response contrasts

As the first step, a set of optimal dose-response contrasts is found. An optimal con-
trast under a particular dose-response model is defined as the contrast that results
in the highest probability of rejecting the null hypothesis of no effect. Optimal con-
trasts are easily derived as follows. Considering the ith model from the candidate
set defined in Table 1, let u;; denote the predicted effect at the jth dose based on
guesstimates of the model parameters (3y), i.e.,

Uij :fl(djaﬁo)a 7;:1,...,7’, ]Zlavm

The models are standardized in the sense that the linear parameters (81 and f2)
are chosen in each model to ensure that u;; =0 and u;, =1,i=1,...,r.

The optimal contrasts are found from the vector of predicted effects using the
variances of the adjusted treatment effect estimates. These estimates and their
variances are defined as follows:
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® (Continuous endpoints: The adjusted treatment effect is simply equal to the sam-
ple mean, i.e., §; = ¥;, and its variance is proportional to 1/n;, i.e., s?2 = 1/n;,
i=1,...,m.

® Binary endpoints: The adjusted treatment effect is defined as the logit of the
response rate, i.e., J; = In(y;) — In(1 — 4;), and its variance is equal to s? =
1/(”1@(1 - gi)), t1=1,...,m.

® Count endpoints: The adjusted treatment effect is defined as the logarithm of
the mean number of events, i.e., §; = In(7;), and its variance is equal to s? =
(0:+7i)/(n;0;7;), i = 1,...,m. Here 6; is the assumed value of the overdispersion
parameter in the ith arm.

To compute the coefficients of the optimal contrast for the ith model, let

u " —
uij:72’ Whereui: E uijsj/g Sj,lzl,...,T,jzl,...,m
J=1 j=1

and

3.2 Step 2: Dose-response tests

Using the model-specific optimal contrasts derived in Step 1, the significance of the
dose-response trend is evaluated based on the test statistics computed from these
contrasts. The test statistics are denoted by ¢1,...,t, and are defined for each class
of endpoints as shown below.

Continuous endpoints

The test statistic for assessing the significance of a dose-response trend for the ith
model is given by

m
ti= > cils/

Jj=1

where y; = 7; and s is the sample pooled standard deviation.
Furthermore, the 100(1 — «)% confidence interval for the mean effect in the ith
arm is given by

S S
Ui — Zoy———. Ts — i =1,...,m.
(yz Zoz\/n—iu yz+za\/n—i>7 ? ) , M

Binary endpoints

To define the test statistics, y; will denote the adjusted treatment effect in the ith
arm, i.e., the logit of the response rate, ¢ = 1,...,m. The sample response rate y;
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will be re-defined as follows in the extreme cases where there are no responders or
no non-responders in the ith arm:

Ui = 32 if no patient experienced the outcome of interest in the ith arm,
n;

o 3ng+ 1, . . . . .

Ui = ET— if all patients experienced the outcome of interest in the ith arm.
Uz

The test statistic for the 7th model is defined as

where 7 is the variance of §; defined in Step 1.
The 100(1 — )% confidence interval for the response rate in the ith arm is given

by
T 1 — a7 T 1 —
gi_za yZ( yl)v yl+za yl( yl) ) Zzlvam
\/ ng V ng

Count endpoints

As above, g; will denote the adjusted treatment effect in the ith arm, i.e., the log-
arithm of the mean number of events, i = 1, ..., m. When computing the adjusted
treatment effect, y; will re-defined if there are no events in the ith trial arm, i.e., y;
will be set to T'"1(0.5). The shape and scale parameters of this gamma distribution
are equal to 1/3 and 1/n;.

The test statistic for the ith model is given by

where s7 is the variance of ; defined in Step 1 based on 6, i.e., the assumed
overdispersion parameter in the jth arm.
The 100(1 — )% confidence interval for the mean number of events in the ith

arm is
), 1=1,....,m.

Joint distribution of the dose-response test statistics

Ing; + zo Z
n;0;y;

— y eXp
10 i

The test statistics t1, ..., t, are utilized to choose the set of relevant models (models
corresponding to significant dose-response contrasts) that play a key role in dose
selection decisions. To identify the relevant models, an adjustment for multiplicity
is applied to control the Type I error rate. The joint distribution of the r test
statistics is taken into account to compute an adjusted critical value that defines
the threshold for statistical significance.

Under the global null hypothesis of no treatment effect, the test statistics follow a
central multivariate ¢ distribution with v degrees of freedom and correlation matrix
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R. Here v = n — m, where n is the total sample size in the trial and m is the
number of trial arms. The correlation coeflicients are known at the design stage
and the correlation between the test statistics ¢; and ¢;, i # j, is given by

UL 2
> CiCjiS
=1

The multiplicity-adjusted critical value is calculated as the value ¢ that controls
the probability of rejecting the hypotheses of no dose-response at level a:

P{Ty >qor ... or T, > q} = a.

Here T1,...,T,, denote the random variables that have the same joint distribution
as ty,...,t, under the global null hypothesis of no treatment effect for any of
the r contrasts. Using the correlation matrix defined above, numerical integration
routines for computing multivariate ¢ probabilities (Genz and Bretz, 2002) are used
to compute the adjusted critical value. It is important to note that the adjusted
critical value ¢ depends on the initial values of the model parameters selected in
Step 1.

The set of relevant dose-response models is defined as the set of models that
correspond to significant dose-response contrasts after the multiplicity adjustment,
i.e., the set of models with ¢; > ¢, i =1,...,r. Let s denote the number of relevant
dose-response models.

3.3 Step 3: Best dose-response models

Using the set of s relevant dose-response models, the step deals with the process of
selecting an appropriate dose-response model based on appropriate model-selection
criteria. The best model can be chosen by finding the contrast that corresponds to
the maximum test statistic. This criterion relies only on the strength of evidence
against the null hypothesis of no effect and does not account for the number of
parameters in the underlying dose-response model. Alternatively, a rule that in-
corporates information on the functional form of each dose-response model can
be considered, e.g., a rule is based on the popular information criterion known as
the Akaike information criterion (AIC). In a general dose-response model with &
parameters, the AIC is given by:

-~

AIC = 2(L(B) + k),

-~

where L(8) is the negative log-likelihood function evaluated at the maximum like-
lihood estimate of the parameter vector 3. For more information on log-likelihood
functions for the candidate dose-response models defined in Table 1, see Section 4.
Under this criterion, the best model corresponds to the lowest value of the AIC. In
general, in addition to identifying the single best model, the trial’s sponsor can con-
sider examining a set of two or three most promising dose-response models based
on the same criterion.

4 Dose-response modeling

To implement Step 4, i.e., to identify the target doses based on the selected dose-
response models, the models defined in Table 1 are fitted using the method of
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maximum likelihood. The details of the model fitting algorithms are presented
in Sections 4.1 through 4.3 and identification of the target doses is discussed in
Section 4.4.

To simplify notation, the patients will be numbered sequentially and z; and y;
will denote the dose level and the endpoint’s value for the ith patient, i = 1,...,n.
Along the same line, f; = f(x;, ), i.e., the dependence on the dose level (x;) and
vector of dose-response parameters (3) will be suppressed.

4.1 Continuous endpoints

Assume that the endpoint follows a normal distribution, i.e., y; is normally dis-
tributed with the mean p; and common standard deviation o. The dose-response
parameters are estimated by minimizing the negative log-likelihood function. Since
wi = fi(B), this function is equal to

n

L(ﬁ,U)ann\/ﬂJrnlnaJrQ%QZ(f (8) -

To apply the BFGS algorithm, the gradient functions need to be evaluated. The
gradients are given by

AL n 1 & 1 ¢ \4:B)
== Z i) = — — i) ,j=1,... k.
do o o° gf o2 g dp; ’

The model-specific derivatives (df;(8)/d3;) can be found in the Appendix.

4.2 Binary endpoints

Assume that the endpoint is binary, i.e., y; = 0 or 1, and m; denotes the probability
of the outcome of interest (response rate) for the ith patient. In this case, f;(3) is
defined as the logit of the response rate for the ith patient, i.e.,

TG

1i(B) =logit m; =1n

1— T '
The negative log-likelihood as a function of the parameter vector 3 is given by

n

L(B) =Y (In(1+exp f(8)) — v fi(B))

i=1
and it is easy to verify that the gradients are given by

n

d dfi .
dé =Y (fiB) —w) J;é@, j=1,...,k
J i=1 j

The model-specific derivatives (df;(83)/dB;) are given in the Appendix.

4.3 Count endpoints

The endpoint is defined in terms of the number of events experienced by a patient,
i.e., y; is the number of events for the ith patient. It is assumed that y; follows
a Poisson distribution with the parameter \;, where \; is gamma-distributed with
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the shape parameter 6; and rate parameter 0;/v;. It is easy to show that the mean
number of events experienced by the ¢th patient is v; and it is assumed that v; =

exp fi(8).

Under the assumption that the overdispersion parameters 61, ..., 60, are fixed by
the user, the negative log-likelihood as a function of the parameter vector 3 is equal
to

L(B) = ;m Ot ;(y Inm; 4+ 6; In(1 — m;)),

where

= exp fi(0)
"0 +exp fi(B)’

and therefore

" 6;)y;! n
ZEEDY % #3000+ ) W0+ £.(8) ~if(8) 0

The gradients are given by

AL 5~ 0o 1(8) ~ ) B)
Oi+exp fiB) by

As before, the model-specific derivatives (df;(8)/df;) are defined in the Appendix.

j=1,....k

4.4 Step 4: Target doses

For each relevant dose-response model selected in Step 3, the next step is to esti-
mate the target dose or doses of interest, e.g., the minimum effective dose (MED).
The MED is defined as the lowest dose that results in a clinically meaningful im-
provement over placebo. Let A denote a threshold that corresponds to the clinically
relevant effect over placebo and, secondly, let f;(d) and f;(0) define the values of
the ith dose-response function at the dose d and in the placebo arm, ¢ =1,... 7.

Assume first a positive dose-response relationship, i.e., a larger value of the
primary endpoint corresponds to a beneficial treatment effect. Using the ith model,
the MED, denoted by d, is the lowest dose d for which the treatment difference is
greater than A, i.e.,

di = min{d: f;(d) > f;(0) + A}.
Similarly, under a negative dose-response relationship,
di = min{d : f;(d) < f;(0) — A}.

Under a positive dose-response relationship, the MED is computed for each of
the dose-response models defined in Table 1 as shown below. First, consider the
ith dose-response model and, if the primary endpoint is continuous, let A} = A.
Furthermore, if the primary endpoint is binary,

A7 = logit (fi(0,8) + A) —logit f;(0,8).
and, if the primary endpoint is a count endpoint,
A7 =In(fi(0,8) + A) —In fi(0, 8).
The MED is found as follows
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® Linear model: df = A}/Bs if B2 # 0, and d is undefined otherwise.

® Quadratic model:
dr = min(dl,dg),
where

di = (—V/ds — B2)/2B3, d2 = (\/d3 — B2)/2B3, d3 = B3 + 4B3A],
if d3 > 0, and d is undefined otherwise.

® Exponential model:
di = BsIn(A7/B2 +1)
if B2 # 0 and Af/B2 > 0, and df is undefined otherwise.

¢ Emax model:
di = 872/ (B2 — A7)
if A7 < 2, and d; is undefined otherwise.

® Logistic model:

di = B3 — BaIn(dz/d3),
where
dy = exp(B3/Ba), do = Pady — Aj(dy + 1), d3 = B2 + Aj(d1 + 1),
if A¥ < a(1 —dy), and df is undefined otherwise.

¢ SigEmax model:
* 1
dr = dl/Bz;7
where
di = A7 B3 /(B2 — A7),
if A < B2, and d; is undefined otherwise.

Finally, the MED estimate is computed by replacing the parameters of the dose-
response models with their estimates.

The discussion presented above assumed that a single model is identified at
the end of Step 3 to describe the dose-response relationship in the trial. If sev-
eral dose-response models are selected, model averaging techniques can be used to
define a weighted MED. Model weights are often computed using an information
criterion such as the AIC (Pinheiro et al., 2013). Suppose that s dose-response mod-
els were chosen in Step 3, and let pq,...,ps denote the prior model probabilities
(these probabilities quantify how well these models are believed to approximate
the true dose-response function). If a non-informative prior is assumed, p; = 1/s,
1=1,...,s.

Let AIC; denote the AIC value corresponding to the ith model in the set of
relevant dose-response models and let d denote the MED’s estimate computed
from the ith model, i = 1,...,s. The weight of the ith model is defined as

p; exp(—AIC;/2)
2;21 p; exp(—AIC;/2)
The estimated MED is defined as a weighted sum of the model-specific minimum
effective doses, i.e.,

w; =

s
d* = widi .
i=1

Note that the best dose-response model is not selected if model averaging is per-
formed.
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Dose-response modeling: Calculation of gradients

The gradients used in the derivation of maximum likelihood estimates for the dose-
response models listed in Table 1 are defined below.

Linear model

dpy " dBs v
Quadratic model
B, A, i
dp, " dps " dBs !

Exponential model

dfi . dfi . o dfi _ Boexp(wi/Bs)
as, U ag T ORI/ gy = e

Emax model

df;i 1 dfs oz df; Bow;

gy~ dps _B3+$i’d_ﬁ3:_(53+$i)2'

Logistic model

dfi dfi 1 dfi  (z=1)B dfi (2—=1)(Bs—x;)B2

B, dBa 2z dBs  22Bi  dBi 2232 ’

where
z=1+4exp((Bs — i)/B4).

SigEmax model

dfi . dfi o dfi  aBaBs B dfi  alBaBS (Inwi —InBs)
B T dBy oz dBs 22 TdBy 22 ’
where

z = f5* +xf4.



