This function calculates various length-based indicators for fish stock assessment using length frequency data and bootstrap resampling.

FishPar(data, resample, progress)

Arguments

data

A data frame containing two columns: Length and Frequency.

resample

An integer indicating the number of bootstrap resamples.

progress

A logical value indicating whether to display progress.

Value

A list containing estimated length parameters, Froese indicators, and other relevant metrics.

Examples

data <- data.frame(Length = c(10, 20, 30, 40, 50), Frequency = c(5, 10, 15, 20, 25))
FishPar(data, 100, progress = FALSE)



#> Warning: span too small.   fewer data values than degrees of freedom.
#> Warning: pseudoinverse used at 9.8
#> Warning: neighborhood radius 20.2
#> Warning: reciprocal condition number  0
#> Warning: There are other near singularities as well. 408.04




#> $estimated_length_par
#>   Parameter Mean_estimate Lower_CI Upper_CI
#> 1      Lmax      44.60000 30.00000 50.00000
#> 2      Linf      46.94737 31.57895 52.63158
#> 3      Lmat      26.43348 18.53998 29.32967
#> 4      Lopt      27.62597 19.00286 30.80168
#> 5  Lopt_p10      30.38857 20.90314 33.88185
#> 6  Lopt_m10      24.86337 17.10257 27.72151
#> 
#> $estimated_froese_par
#>   Parameter Estimate
#> 1      Pmat 46.66667
#> 2      Popt 20.00000
#> 3     Pmega 26.66667
#> 
#> $estimated_freq_par
#>   Parameter Estimate
#> 1      sumT       75
#> 2   sum_mat       35
#> 3   sum_opt       15
#> 4  sum_mega       20
#> 
#> $forese_ind_vs_target
#>   Parameters Froese_catch Froese_tar
#> 1       Pmat     46.66667        100
#> 2       Popt     20.00000        100
#> 3      Pmega     26.66667         20
#> 
#> $LM_ratio
#> [1] 0.9568343
#> 
#> $Pobj
#> [1] 93.33333
#>