AusCredit {SVMMaj} | R Documentation |
Australian Credit Approval Dataset
Description
This file concerns credit card applications of 690 households.
Format
This data set has been split into two components for the convenience of the model training.
data.frame
-object X
consists of with 6 numerical and 8
categorical attributes. The labels have been changed for the convenience of
the statistical algorithms. For example, attribute 4 originally had 3 labels
p,g,gg and these have been changed to labels 1,2,3.
Factor y
indicates whether the application has been Accepted
or Rejected
The training set AusCredit.tr
contains a randomly selected set of 400
subjects, and AusCredit.te
contains the remaining 290 subjects.
AusCredit
contains all 690 objects.
Details
All attribute names and values have been changed to meaningless symbols to protect confidentiality of the data.
This dataset is interesting because there is a good mix of attributes – continuous, nominal with small numbers of values, and nominal with larger numbers of values. There are also a few missing values.
Source
Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001. Software available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
Examples
attach(AusCredit)
summary(X)
summary(y)
detach(AusCredit)