Burr XII distribution {shannon} | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Burr XII distribution
Description
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Burr XII distribution.
Usage
se_burr(k, c)
re_burr(k, c, delta)
hce_burr(k, c, delta)
ae_burr(k, c, delta)
Arguments
k |
The strictly positive shape parameter of the Burr XII distribution ( |
c |
The strictly positive shape parameter of the Burr XII distribution ( |
delta |
The strictly positive parameter ( |
Details
The following is the probability density function of the Burr XII distribution:
f(x)=kcx^{c-1}\left(1+x^{c}\right)^{-k-1},
where x > 0
, c > 0
and k > 0
.
Value
The functions se_burr, re_burr, hce_burr, and ae_burr provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Burr XII distribution and \delta
.
Author(s)
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
References
Rodriguez, R. N. (1977). A guide to the Burr type XII distributions. Biometrika, 64(1), 129-134.
Zimmer, W. J., Keats, J. B., & Wang, F. K. (1998). The Burr XII distribution in reliability analysis. Journal of Quality Technology, 30(4), 386-394.
See Also
Examples
se_burr(0.2, 1.4)
delta <- c(2, 3)
re_burr(1.2, 1.4, delta)
hce_burr(1.2, 1.4, delta)
ae_burr(1.2, 1.4, delta)