Truncated F distribution {shannon} | R Documentation |
Relative loss for various entropy measures using the truncated F distribution
Description
Compute the relative information loss of the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the truncated F distribution.
Usage
rlse_f(p, alpha, beta)
rlre_f(p, alpha, beta, delta)
rlhce_f(p, alpha, beta, delta)
rlae_f(p, alpha, beta, delta)
Arguments
alpha |
The strictly positive parameter (first degree of freedom) of the F distribution ( |
beta |
The strictly positive parameter (second degree of freedom) of the F distribution ( |
p |
The truncation time |
delta |
The strictly positive parameter ( |
Value
The functions rlse_f, rlre_f, rlhce_f, and rlae_f provide the relative information loss based on the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the truncated F distribution, p
and \delta
.
Author(s)
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
References
Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2 (Vol. 289). John Wiley & Sons.
See Also
Examples
p <- c(1.25, 1.50, 1.75)
rlse_f(p, 4, 6)
rlre_f(p, 4, 6, 0.5)
rlhce_f(p, 4, 6, 0.5)
rlae_f(p, 4, 6, 0.5)