SKNN-package {SKNN} | R Documentation |
Super K-Nearest Neighbor (SKNN) Classification
Description
It's a Super K-Nearest Neighbor classification method with using kernel density to describe the weight of the distance between a training observation and the sample to be classified.
Details
Package: | SKNN |
Type: | Package |
Version: | 4.1 |
Date: | 2024-10-09 |
License: | GPL-2 |
Author(s)
Yarong Yang, Nader Ebrahimi, Yoram Rubin, and Jacob Zhang
References
Yarong Yang, Nader Ebrahimi, and Yoram Rubin.(2024) SKNN: A Super K-Nearest Neighbor Classification Algorithm.
Yarong Yang, Matt Over, and Yoram Rubin.(2012) Strategic Placement of Localization Devices (such as Pilot Points and Anchors) in Inverse Modeling Schemes. Water Resources Research, 48, W08519, doi:10.1029/2012WR011864.
B.B.W. Silverman.(1986) Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
Examples
Sepal.Length<-c(4.8, 5.1, 4.6, 5.3, 5.0, 5.7, 5.7, 6.2, 5.1, 5.7, 6.7, 6.3, 6.5, 6.2, 5.9)
Sepal.Width<-c(3.0, 3.8, 3.2, 3.7, 3.3, 3.0, 2.9, 2.9, 2.5, 2.8, 3.0, 2.5, 3.0, 3.4, 3.0)
Petal.Length<-c(1.4, 1.6, 1.4, 1.5, 1.4, 4.2, 4.2, 4.3, 3.0, 4.1, 5.2, 5.0, 5.2, 5.4, 5.1)
Petal.Width<-c(0.3, 0.2, 0.2, 0.2, 0.2, 1.2, 1.3, 1.3, 1.1, 1.3, 2.3, 1.9, 2.0, 2.3, 1.8)
Species<-as.factor(c(rep("red",5),rep("blue",5),rep("green",5)))
iris<-cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)
Res<-length(nrow(iris))
k<-10
for(i in 1:nrow(iris))
Res[i]<-SKNN(data=iris,Class=as.vector(Species),k=k,test=iris[i,])
accuracy<-length(which(Res==Species))/length(Species)
plot(x=1:15,y=rep(1,15),col=as.vector(Species),lwd=4,ylim=c(0,3),xlab="",ylab="",
yaxt = "n",xaxt="n")
par(new=TRUE)
plot(x=1:15,y=rep(2,15),col=Res,lwd=4,ylim=c(0,3),xlab="",ylab="",yaxt = "n",xaxt="n")
ind<-which(Res!=Species)
if(length(ind)>0) {
for(j in 1:length(ind))
lines(x=c(ind[j],ind[j]),y=c(1+0.05,2-0.05))
}
text(5,0.3,paste("SKNN Misclassified:",length(ind)))
axis(2,at=2,labels="SKNN",las=1)
text(10,2.5,paste("k: ",k))
[Package SKNN version 4.1 Index]