%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname daltoolbox %global packver 1.0.787 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.0.787 Release: 1%{?dist}%{?buildtag} Summary: Leveraging Experiment Lines to Data Analytics License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel Requires: R-core BuildArch: noarch BuildRequires: R-CRAN-FNN BuildRequires: R-CRAN-MLmetrics BuildRequires: R-CRAN-caret BuildRequires: R-CRAN-class BuildRequires: R-CRAN-cluster BuildRequires: R-CRAN-dbscan BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-e1071 BuildRequires: R-CRAN-elmNNRcpp BuildRequires: R-CRAN-forecast BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-nnet BuildRequires: R-CRAN-randomForest BuildRequires: R-CRAN-reshape BuildRequires: R-CRAN-tree BuildRequires: R-CRAN-reticulate Requires: R-CRAN-FNN Requires: R-CRAN-MLmetrics Requires: R-CRAN-caret Requires: R-CRAN-class Requires: R-CRAN-cluster Requires: R-CRAN-dbscan Requires: R-CRAN-dplyr Requires: R-CRAN-e1071 Requires: R-CRAN-elmNNRcpp Requires: R-CRAN-forecast Requires: R-CRAN-ggplot2 Requires: R-CRAN-nnet Requires: R-CRAN-randomForest Requires: R-CRAN-reshape Requires: R-CRAN-tree Requires: R-CRAN-reticulate %description The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) . %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}