Warning: Permanently added '18.208.179.235' (ED25519) to the list of known hosts. Running (timeout=18000): unbuffer mock --spec /var/lib/copr-rpmbuild/workspace/workdir-bjjebqdw/R-CRAN-blavaan/R-CRAN-blavaan.spec --sources /var/lib/copr-rpmbuild/workspace/workdir-bjjebqdw/R-CRAN-blavaan --resultdir /var/lib/copr-rpmbuild/results --uniqueext 1736389068.891202 -r /var/lib/copr-rpmbuild/results/configs/child.cfg INFO: mock.py version 6.0 starting (python version = 3.13.0, NVR = mock-6.0-1.fc41), args: /usr/libexec/mock/mock --spec /var/lib/copr-rpmbuild/workspace/workdir-bjjebqdw/R-CRAN-blavaan/R-CRAN-blavaan.spec --sources /var/lib/copr-rpmbuild/workspace/workdir-bjjebqdw/R-CRAN-blavaan --resultdir /var/lib/copr-rpmbuild/results --uniqueext 1736389068.891202 -r /var/lib/copr-rpmbuild/results/configs/child.cfg Start: init plugins INFO: tmpfs initialized INFO: selinux enabled INFO: chroot_scan: initialized INFO: compress_logs: initialized Finish: init plugins INFO: Signal handler active Start: run INFO: Start(/var/lib/copr-rpmbuild/workspace/workdir-bjjebqdw/R-CRAN-blavaan/R-CRAN-blavaan.spec) Config(fedora-40-x86_64) Start: clean chroot Finish: clean chroot Mock Version: 6.0 INFO: Mock Version: 6.0 Start: chroot init INFO: mounting tmpfs at /var/lib/mock/fedora-40-x86_64-1736389068.891202/root. INFO: calling preinit hooks INFO: enabled root cache INFO: enabled package manager cache Start: cleaning package manager metadata Finish: cleaning package manager metadata INFO: enabled HW Info plugin INFO: Package manager dnf5 detected and used (fallback) INFO: Buildroot is handled by package management from host and used with --installroot: rpm-4.20.0-1.fc41.x86_64 rpm-sequoia-1.7.0-2.fc41.x86_64 python3-dnf-4.22.0-1.fc41.noarch python3-dnf-plugins-core-4.10.0-1.fc41.noarch dnf5-5.2.8.1-2.fc41.x86_64 dnf5-plugins-5.2.8.1-2.fc41.x86_64 Start: installing minimal buildroot with dnf5 Updating and loading repositories: updates 100% | 50.4 MiB/s | 12.2 MiB | 00m00s fedora 100% | 24.4 MiB/s | 20.6 MiB | 00m01s Copr repository 100% | 133.1 MiB/s | 12.4 MiB | 00m00s Repositories loaded. Package Arch Version Repository Size Installing group/module packages: bash x86_64 5.2.26-3.fc40 fedora 8.1 MiB bzip2 x86_64 1.0.8-18.fc40 fedora 91.7 KiB coreutils x86_64 9.4-9.fc40 updates 5.8 MiB cpio x86_64 2.15-1.fc40 fedora 1.1 MiB diffutils x86_64 3.10-5.fc40 fedora 1.6 MiB fedora-release-common noarch 40-40 updates 19.2 KiB findutils x86_64 1:4.9.0-9.fc40 updates 1.5 MiB gawk x86_64 5.3.0-3.fc40 fedora 1.7 MiB glibc-minimal-langpack x86_64 2.39-33.fc40 updates 0.0 B grep x86_64 3.11-7.fc40 fedora 1.0 MiB gzip x86_64 1.13-1.fc40 fedora 385.0 KiB info x86_64 7.1-2.fc40 fedora 357.8 KiB patch x86_64 2.7.6-24.fc40 fedora 262.8 KiB redhat-rpm-config noarch 288-1.fc40 updates 185.2 KiB rpm-build x86_64 4.19.1.1-1.fc40 fedora 173.7 KiB sed x86_64 4.9-1.fc40 fedora 861.5 KiB shadow-utils x86_64 2:4.15.1-4.fc40 updates 4.1 MiB tar x86_64 2:1.35-3.fc40 fedora 2.9 MiB unzip x86_64 6.0-63.fc40 fedora 382.8 KiB util-linux x86_64 2.40.2-1.fc40 updates 3.7 MiB which x86_64 2.21-41.fc40 fedora 80.2 KiB xz x86_64 1:5.4.6-3.fc40 fedora 2.0 MiB Installing dependencies: alternatives x86_64 1.27-1.fc40 updates 66.3 KiB ansible-srpm-macros noarch 1-16.fc40 updates 35.7 KiB audit-libs x86_64 4.0.2-1.fc40 updates 327.4 KiB authselect x86_64 1.5.0-6.fc40 updates 153.6 KiB authselect-libs x86_64 1.5.0-6.fc40 updates 818.2 KiB basesystem noarch 11-20.fc40 fedora 0.0 B binutils x86_64 2.41-38.fc40 updates 26.4 MiB binutils-gold x86_64 2.41-38.fc40 updates 2.0 MiB bzip2-libs x86_64 1.0.8-18.fc40 fedora 80.7 KiB ca-certificates noarch 2024.2.69_v8.0.401-1.0.fc40 updates 2.4 MiB coreutils-common x86_64 9.4-9.fc40 updates 11.4 MiB cracklib x86_64 2.9.11-5.fc40 fedora 238.9 KiB crypto-policies noarch 20241011-1.git5930b9a.fc40 updates 158.0 KiB curl x86_64 8.6.0-10.fc40 updates 738.6 KiB cyrus-sasl-lib x86_64 2.1.28-19.fc40 fedora 2.3 MiB debugedit x86_64 5.0-18.fc40 updates 199.3 KiB dwz x86_64 0.15-8.fc40 updates 294.9 KiB ed x86_64 1.20.2-1.fc40 updates 146.9 KiB efi-srpm-macros noarch 5-11.fc40 fedora 40.1 KiB elfutils x86_64 0.192-7.fc40 updates 2.7 MiB elfutils-debuginfod-client x86_64 0.192-7.fc40 updates 80.2 KiB elfutils-default-yama-scope noarch 0.192-7.fc40 updates 1.8 KiB elfutils-libelf x86_64 0.192-7.fc40 updates 1.2 MiB elfutils-libs x86_64 0.192-7.fc40 updates 670.3 KiB fedora-gpg-keys noarch 40-2 updates 124.7 KiB fedora-release noarch 40-40 updates 0.0 B fedora-release-identity-basic noarch 40-40 updates 654.0 B fedora-repos noarch 40-2 updates 4.9 KiB file x86_64 5.45-4.fc40 fedora 103.5 KiB file-libs x86_64 5.45-4.fc40 fedora 9.9 MiB filesystem x86_64 3.18-8.fc40 fedora 106.0 B fonts-srpm-macros noarch 1:2.0.5-14.fc40 fedora 55.3 KiB forge-srpm-macros noarch 0.4.0-1.fc40 updates 38.9 KiB fpc-srpm-macros noarch 1.3-12.fc40 fedora 144.0 B gdb-minimal x86_64 15.2-3.fc40 updates 13.0 MiB gdbm x86_64 1:1.23-6.fc40 fedora 460.9 KiB gdbm-libs x86_64 1:1.23-6.fc40 fedora 121.9 KiB ghc-srpm-macros noarch 1.9.1-1.fc40 updates 747.0 B glibc x86_64 2.39-33.fc40 updates 6.6 MiB glibc-common x86_64 2.39-33.fc40 updates 1.0 MiB glibc-gconv-extra x86_64 2.39-33.fc40 updates 7.8 MiB gmp x86_64 1:6.2.1-8.fc40 fedora 794.6 KiB gnat-srpm-macros noarch 6-5.fc40 fedora 1.0 KiB go-srpm-macros noarch 3.5.0-1.fc40 fedora 60.6 KiB jansson x86_64 2.13.1-9.fc40 fedora 88.3 KiB json-c x86_64 0.17-3.fc40 fedora 82.4 KiB kernel-srpm-macros noarch 1.0-23.fc40 fedora 1.9 KiB keyutils-libs x86_64 1.6.3-3.fc40 fedora 54.4 KiB krb5-libs x86_64 1.21.3-2.fc40 updates 2.3 MiB libacl x86_64 2.3.2-1.fc40 fedora 40.0 KiB libarchive x86_64 3.7.2-7.fc40 updates 922.6 KiB libattr x86_64 2.5.2-3.fc40 fedora 28.5 KiB libblkid x86_64 2.40.2-1.fc40 updates 258.6 KiB libbrotli x86_64 1.1.0-3.fc40 fedora 829.5 KiB libcap x86_64 2.69-8.fc40 updates 219.8 KiB libcap-ng x86_64 0.8.4-4.fc40 fedora 73.1 KiB libcom_err x86_64 1.47.0-5.fc40 fedora 67.2 KiB libcurl x86_64 8.6.0-10.fc40 updates 776.8 KiB libeconf x86_64 0.6.2-2.fc40 updates 58.0 KiB libevent x86_64 2.1.12-12.fc40 fedora 895.6 KiB libfdisk x86_64 2.40.2-1.fc40 updates 362.9 KiB libffi x86_64 3.4.4-7.fc40 fedora 81.6 KiB libgcc x86_64 14.2.1-3.fc40 updates 274.6 KiB libgomp x86_64 14.2.1-3.fc40 updates 523.6 KiB libidn2 x86_64 2.3.7-1.fc40 fedora 329.1 KiB libmount x86_64 2.40.2-1.fc40 updates 355.8 KiB libnghttp2 x86_64 1.59.0-3.fc40 updates 166.1 KiB libnsl2 x86_64 2.0.1-1.fc40 fedora 57.9 KiB libpkgconf x86_64 2.1.1-2.fc40 updates 74.2 KiB libpsl x86_64 0.21.5-3.fc40 fedora 80.5 KiB libpwquality x86_64 1.4.5-9.fc40 fedora 417.8 KiB libselinux x86_64 3.7-5.fc40 updates 177.0 KiB libsemanage x86_64 3.7-2.fc40 updates 293.5 KiB libsepol x86_64 3.7-2.fc40 updates 817.9 KiB libsmartcols x86_64 2.40.2-1.fc40 updates 180.4 KiB libssh x86_64 0.10.6-5.fc40 fedora 509.3 KiB libssh-config noarch 0.10.6-5.fc40 fedora 277.0 B libstdc++ x86_64 14.2.1-3.fc40 updates 2.8 MiB libtasn1 x86_64 4.19.0-6.fc40 fedora 175.7 KiB libtirpc x86_64 1.3.6-1.rc3.fc40 updates 202.7 KiB libtool-ltdl x86_64 2.4.7-10.fc40 fedora 66.2 KiB libunistring x86_64 1.1-7.fc40 fedora 1.7 MiB libutempter x86_64 1.2.1-13.fc40 fedora 57.7 KiB libuuid x86_64 2.40.2-1.fc40 updates 37.5 KiB libverto x86_64 0.3.2-8.fc40 fedora 29.5 KiB libxcrypt x86_64 4.4.37-4.fc40 updates 267.7 KiB libxml2 x86_64 2.12.9-1.fc40 updates 1.7 MiB libzstd x86_64 1.5.6-1.fc40 updates 787.9 KiB lua-libs x86_64 5.4.6-5.fc40 fedora 281.1 KiB lua-srpm-macros noarch 1-13.fc40 fedora 1.3 KiB lz4-libs x86_64 1.9.4-6.fc40 fedora 129.4 KiB mpfr x86_64 4.2.1-4.fc40 updates 832.0 KiB ncurses-base noarch 6.4-12.20240127.fc40 fedora 326.2 KiB ncurses-libs x86_64 6.4-12.20240127.fc40 fedora 963.2 KiB ocaml-srpm-macros noarch 9-3.fc40 fedora 1.9 KiB openblas-srpm-macros noarch 2-16.fc40 fedora 104.0 B openldap x86_64 2.6.8-1.fc40 updates 640.3 KiB openssl-libs x86_64 1:3.2.2-3.fc40 updates 7.8 MiB p11-kit x86_64 0.25.5-1.fc40 updates 2.2 MiB p11-kit-trust x86_64 0.25.5-1.fc40 updates 391.4 KiB package-notes-srpm-macros noarch 0.5-11.fc40 fedora 1.6 KiB pam x86_64 1.6.1-5.fc40 updates 1.8 MiB pam-libs x86_64 1.6.1-5.fc40 updates 135.0 KiB pcre2 x86_64 10.44-1.fc40 updates 653.5 KiB pcre2-syntax noarch 10.44-1.fc40 updates 251.6 KiB perl-srpm-macros noarch 1-53.fc40 fedora 861.0 B pkgconf x86_64 2.1.1-2.fc40 updates 82.9 KiB pkgconf-m4 noarch 2.1.1-2.fc40 updates 13.9 KiB pkgconf-pkg-config x86_64 2.1.1-2.fc40 updates 989.0 B popt x86_64 1.19-6.fc40 fedora 136.9 KiB publicsuffix-list-dafsa noarch 20240107-3.fc40 fedora 67.5 KiB pyproject-srpm-macros noarch 1.16.3-1.fc40 updates 1.9 KiB python-srpm-macros noarch 3.12-8.fc40 updates 50.6 KiB qt5-srpm-macros noarch 5.15.15-1.fc40 updates 500.0 B qt6-srpm-macros noarch 6.7.2-2.fc40 updates 456.0 B readline x86_64 8.2-8.fc40 fedora 489.2 KiB rpm x86_64 4.19.1.1-1.fc40 fedora 3.0 MiB rpm-build-libs x86_64 4.19.1.1-1.fc40 fedora 198.4 KiB rpm-libs x86_64 4.19.1.1-1.fc40 fedora 709.9 KiB rpm-sequoia x86_64 1.7.0-3.fc40 updates 2.4 MiB rust-srpm-macros noarch 26.3-1.fc40 updates 4.8 KiB setup noarch 2.14.5-2.fc40 fedora 720.4 KiB sqlite-libs x86_64 3.45.1-2.fc40 fedora 1.4 MiB systemd-libs x86_64 255.15-1.fc40 updates 1.9 MiB util-linux-core x86_64 2.40.2-1.fc40 updates 1.5 MiB xxhash-libs x86_64 0.8.3-1.fc40 updates 90.2 KiB xz-libs x86_64 1:5.4.6-3.fc40 fedora 209.8 KiB zig-srpm-macros noarch 1-2.fc40 fedora 1.1 KiB zip x86_64 3.0-40.fc40 fedora 703.2 KiB zlib-ng-compat x86_64 2.1.7-2.fc40 updates 134.0 KiB zstd x86_64 1.5.6-1.fc40 updates 1.7 MiB Installing groups: Buildsystem building group Transaction Summary: Installing: 153 packages Total size of inbound packages is 53 MiB. Need to download 53 MiB. After this operation, 179 MiB extra will be used (install 179 MiB, remove 0 B). [ 1/153] bzip2-0:1.0.8-18.fc40.x86_64 100% | 3.9 MiB/s | 52.4 KiB | 00m00s [ 2/153] bash-0:5.2.26-3.fc40.x86_64 100% | 90.3 MiB/s | 1.8 MiB | 00m00s [ 3/153] cpio-0:2.15-1.fc40.x86_64 100% | 13.6 MiB/s | 292.2 KiB | 00m00s [ 4/153] diffutils-0:3.10-5.fc40.x86_6 100% | 56.6 MiB/s | 405.6 KiB | 00m00s [ 5/153] grep-0:3.11-7.fc40.x86_64 100% | 97.7 MiB/s | 300.2 KiB | 00m00s [ 6/153] info-0:7.1-2.fc40.x86_64 100% | 59.4 MiB/s | 182.3 KiB | 00m00s [ 7/153] gzip-0:1.13-1.fc40.x86_64 100% | 41.7 MiB/s | 170.6 KiB | 00m00s [ 8/153] patch-0:2.7.6-24.fc40.x86_64 100% | 42.5 MiB/s | 130.7 KiB | 00m00s [ 9/153] rpm-build-0:4.19.1.1-1.fc40.x 100% | 38.2 MiB/s | 78.2 KiB | 00m00s [ 10/153] sed-0:4.9-1.fc40.x86_64 100% | 103.6 MiB/s | 318.2 KiB | 00m00s [ 11/153] unzip-0:6.0-63.fc40.x86_64 100% | 45.1 MiB/s | 184.5 KiB | 00m00s [ 12/153] which-0:2.21-41.fc40.x86_64 100% | 6.7 MiB/s | 41.4 KiB | 00m00s [ 13/153] tar-2:1.35-3.fc40.x86_64 100% | 93.0 MiB/s | 856.6 KiB | 00m00s [ 14/153] fedora-release-common-0:40-40 100% | 7.0 MiB/s | 21.5 KiB | 00m00s [ 15/153] xz-1:5.4.6-3.fc40.x86_64 100% | 49.5 MiB/s | 557.4 KiB | 00m00s [ 16/153] coreutils-0:9.4-9.fc40.x86_64 100% | 114.2 MiB/s | 1.1 MiB | 00m00s [ 17/153] findutils-1:4.9.0-9.fc40.x86_ 100% | 68.6 MiB/s | 491.4 KiB | 00m00s [ 18/153] gawk-0:5.3.0-3.fc40.x86_64 100% | 133.9 MiB/s | 1.1 MiB | 00m00s [ 19/153] glibc-minimal-langpack-0:2.39 100% | 16.8 MiB/s | 86.2 KiB | 00m00s [ 20/153] redhat-rpm-config-0:288-1.fc4 100% | 16.0 MiB/s | 82.1 KiB | 00m00s [ 21/153] shadow-utils-2:4.15.1-4.fc40. 100% | 220.0 MiB/s | 1.3 MiB | 00m00s [ 22/153] util-linux-0:2.40.2-1.fc40.x8 100% | 150.7 MiB/s | 1.2 MiB | 00m00s [ 23/153] filesystem-0:3.18-8.fc40.x86_ 100% | 120.7 MiB/s | 1.1 MiB | 00m00s [ 24/153] ncurses-libs-0:6.4-12.2024012 100% | 81.2 MiB/s | 332.5 KiB | 00m00s [ 25/153] bzip2-libs-0:1.0.8-18.fc40.x8 100% | 20.0 MiB/s | 40.9 KiB | 00m00s [ 26/153] libattr-0:2.5.2-3.fc40.x86_64 100% | 8.8 MiB/s | 18.0 KiB | 00m00s [ 27/153] file-0:5.45-4.fc40.x86_64 100% | 15.9 MiB/s | 49.0 KiB | 00m00s [ 28/153] popt-0:1.19-6.fc40.x86_64 100% | 21.7 MiB/s | 66.7 KiB | 00m00s [ 29/153] readline-0:8.2-8.fc40.x86_64 100% | 69.4 MiB/s | 213.3 KiB | 00m00s [ 30/153] rpm-0:4.19.1.1-1.fc40.x86_64 100% | 105.5 MiB/s | 540.1 KiB | 00m00s [ 31/153] rpm-build-libs-0:4.19.1.1-1.f 100% | 23.2 MiB/s | 95.0 KiB | 00m00s [ 32/153] rpm-libs-0:4.19.1.1-1.fc40.x8 100% | 75.4 MiB/s | 308.9 KiB | 00m00s [ 33/153] libacl-0:2.3.2-1.fc40.x86_64 100% | 11.9 MiB/s | 24.4 KiB | 00m00s [ 34/153] xz-libs-1:5.4.6-3.fc40.x86_64 100% | 35.8 MiB/s | 110.0 KiB | 00m00s [ 35/153] gmp-1:6.2.1-8.fc40.x86_64 100% | 61.0 MiB/s | 312.5 KiB | 00m00s [ 36/153] glibc-common-0:2.39-33.fc40.x 100% | 40.2 MiB/s | 370.5 KiB | 00m00s [ 37/153] efi-srpm-macros-0:5-11.fc40.n 100% | 1.7 MiB/s | 22.3 KiB | 00m00s [ 38/153] coreutils-common-0:9.4-9.fc40 100% | 97.7 MiB/s | 2.1 MiB | 00m00s [ 39/153] fonts-srpm-macros-1:2.0.5-14. 100% | 1.6 MiB/s | 26.5 KiB | 00m00s [ 40/153] fpc-srpm-macros-0:1.3-12.fc40 100% | 602.5 KiB/s | 7.8 KiB | 00m00s [ 41/153] gnat-srpm-macros-0:6-5.fc40.n 100% | 882.3 KiB/s | 8.8 KiB | 00m00s [ 42/153] kernel-srpm-macros-0:1.0-23.f 100% | 3.2 MiB/s | 9.7 KiB | 00m00s [ 43/153] lua-srpm-macros-0:1-13.fc40.n 100% | 2.8 MiB/s | 8.7 KiB | 00m00s [ 44/153] go-srpm-macros-0:3.5.0-1.fc40 100% | 2.4 MiB/s | 27.5 KiB | 00m00s [ 45/153] ocaml-srpm-macros-0:9-3.fc40. 100% | 4.4 MiB/s | 9.1 KiB | 00m00s [ 46/153] openblas-srpm-macros-0:2-16.f 100% | 3.7 MiB/s | 7.5 KiB | 00m00s [ 47/153] package-notes-srpm-macros-0:0 100% | 9.7 MiB/s | 9.9 KiB | 00m00s [ 48/153] perl-srpm-macros-0:1-53.fc40. 100% | 8.2 MiB/s | 8.4 KiB | 00m00s [ 49/153] zig-srpm-macros-0:1-2.fc40.no 100% | 3.9 MiB/s | 8.0 KiB | 00m00s [ 50/153] setup-0:2.14.5-2.fc40.noarch 100% | 75.6 MiB/s | 154.7 KiB | 00m00s [ 51/153] zip-0:3.0-40.fc40.x86_64 100% | 86.2 MiB/s | 264.8 KiB | 00m00s [ 52/153] libcap-ng-0:0.8.4-4.fc40.x86_ 100% | 15.9 MiB/s | 32.6 KiB | 00m00s [ 53/153] libutempter-0:1.2.1-13.fc40.x 100% | 12.9 MiB/s | 26.4 KiB | 00m00s [ 54/153] ncurses-base-0:6.4-12.2024012 100% | 43.4 MiB/s | 88.8 KiB | 00m00s [ 55/153] util-linux-core-0:2.40.2-1.fc 100% | 58.2 MiB/s | 536.6 KiB | 00m00s [ 56/153] lua-libs-0:5.4.6-5.fc40.x86_6 100% | 32.2 MiB/s | 131.9 KiB | 00m00s [ 57/153] file-libs-0:5.45-4.fc40.x86_6 100% | 124.1 MiB/s | 762.7 KiB | 00m00s [ 58/153] sqlite-libs-0:3.45.1-2.fc40.x 100% | 98.4 MiB/s | 705.1 KiB | 00m00s [ 59/153] glibc-gconv-extra-0:2.39-33.f 100% | 165.8 MiB/s | 1.7 MiB | 00m00s [ 60/153] basesystem-0:11-20.fc40.noarc 100% | 1.4 MiB/s | 7.2 KiB | 00m00s [ 61/153] glibc-0:2.39-33.fc40.x86_64 100% | 156.7 MiB/s | 2.2 MiB | 00m00s [ 62/153] libselinux-0:3.7-5.fc40.x86_6 100% | 28.6 MiB/s | 88.0 KiB | 00m00s [ 63/153] libsepol-0:3.7-2.fc40.x86_64 100% | 83.6 MiB/s | 342.2 KiB | 00m00s [ 64/153] libcap-0:2.69-8.fc40.x86_64 100% | 20.9 MiB/s | 85.7 KiB | 00m00s [ 65/153] libzstd-0:1.5.6-1.fc40.x86_64 100% | 100.6 MiB/s | 309.2 KiB | 00m00s [ 66/153] zlib-ng-compat-0:2.1.7-2.fc40 100% | 12.6 MiB/s | 77.7 KiB | 00m00s [ 67/153] elfutils-libs-0:0.192-7.fc40. 100% | 128.7 MiB/s | 263.6 KiB | 00m00s [ 68/153] elfutils-libelf-0:0.192-7.fc4 100% | 50.9 MiB/s | 208.5 KiB | 00m00s [ 69/153] rpm-sequoia-0:1.7.0-3.fc40.x8 100% | 146.8 MiB/s | 902.0 KiB | 00m00s [ 70/153] elfutils-debuginfod-client-0: 100% | 22.7 MiB/s | 46.5 KiB | 00m00s [ 71/153] elfutils-0:0.192-7.fc40.x86_6 100% | 133.4 MiB/s | 546.4 KiB | 00m00s [ 72/153] json-c-0:0.17-3.fc40.x86_64 100% | 14.3 MiB/s | 44.0 KiB | 00m00s [ 73/153] libgcc-0:14.2.1-3.fc40.x86_64 100% | 43.4 MiB/s | 133.3 KiB | 00m00s [ 74/153] libgomp-0:14.2.1-3.fc40.x86_6 100% | 115.2 MiB/s | 353.9 KiB | 00m00s [ 75/153] jansson-0:2.13.1-9.fc40.x86_6 100% | 21.6 MiB/s | 44.2 KiB | 00m00s [ 76/153] debugedit-0:5.0-18.fc40.x86_6 100% | 39.1 MiB/s | 80.0 KiB | 00m00s [ 77/153] pkgconf-pkg-config-0:2.1.1-2. 100% | 3.2 MiB/s | 9.8 KiB | 00m00s [ 78/153] pkgconf-0:2.1.1-2.fc40.x86_64 100% | 14.2 MiB/s | 43.7 KiB | 00m00s [ 79/153] pkgconf-m4-0:2.1.1-2.fc40.noa 100% | 3.4 MiB/s | 14.0 KiB | 00m00s [ 80/153] libpkgconf-0:2.1.1-2.fc40.x86 100% | 12.3 MiB/s | 37.9 KiB | 00m00s [ 81/153] zstd-0:1.5.6-1.fc40.x86_64 100% | 156.0 MiB/s | 479.4 KiB | 00m00s [ 82/153] lz4-libs-0:1.9.4-6.fc40.x86_6 100% | 13.1 MiB/s | 67.2 KiB | 00m00s [ 83/153] curl-0:8.6.0-10.fc40.x86_64 100% | 73.1 MiB/s | 299.2 KiB | 00m00s [ 84/153] ed-0:1.20.2-1.fc40.x86_64 100% | 40.0 MiB/s | 81.9 KiB | 00m00s [ 85/153] libarchive-0:3.7.2-7.fc40.x86 100% | 79.8 MiB/s | 408.5 KiB | 00m00s [ 86/153] binutils-0:2.41-38.fc40.x86_6 100% | 208.0 MiB/s | 6.2 MiB | 00m00s [ 87/153] pcre2-syntax-0:10.44-1.fc40.n 100% | 24.4 MiB/s | 149.8 KiB | 00m00s [ 88/153] pcre2-0:10.44-1.fc40.x86_64 100% | 29.7 MiB/s | 242.9 KiB | 00m00s [ 89/153] forge-srpm-macros-0:0.4.0-1.f 100% | 9.7 MiB/s | 19.8 KiB | 00m00s [ 90/153] mpfr-0:4.2.1-4.fc40.x86_64 100% | 113.6 MiB/s | 348.9 KiB | 00m00s [ 91/153] libblkid-0:2.40.2-1.fc40.x86_ 100% | 60.6 MiB/s | 124.1 KiB | 00m00s [ 92/153] libstdc++-0:14.2.1-3.fc40.x86 100% | 173.1 MiB/s | 886.5 KiB | 00m00s [ 93/153] libuuid-0:2.40.2-1.fc40.x86_6 100% | 9.3 MiB/s | 28.6 KiB | 00m00s [ 94/153] libmount-0:2.40.2-1.fc40.x86_ 100% | 50.5 MiB/s | 155.2 KiB | 00m00s [ 95/153] libsmartcols-0:2.40.2-1.fc40. 100% | 40.6 MiB/s | 83.2 KiB | 00m00s [ 96/153] libxcrypt-0:4.4.37-4.fc40.x86 100% | 38.6 MiB/s | 118.6 KiB | 00m00s [ 97/153] audit-libs-0:4.0.2-1.fc40.x86 100% | 30.7 MiB/s | 125.8 KiB | 00m00s [ 98/153] systemd-libs-0:255.15-1.fc40. 100% | 115.1 MiB/s | 707.1 KiB | 00m00s [ 99/153] authselect-libs-0:1.5.0-6.fc4 100% | 26.6 MiB/s | 217.9 KiB | 00m00s [100/153] libfdisk-0:2.40.2-1.fc40.x86_ 100% | 25.9 MiB/s | 159.3 KiB | 00m00s [101/153] pam-0:1.6.1-5.fc40.x86_64 100% | 77.3 MiB/s | 554.4 KiB | 00m00s [102/153] authselect-0:1.5.0-6.fc40.x86 100% | 35.5 MiB/s | 145.5 KiB | 00m00s [103/153] pam-libs-0:1.6.1-5.fc40.x86_6 100% | 18.6 MiB/s | 57.2 KiB | 00m00s [104/153] gdbm-libs-1:1.23-6.fc40.x86_6 100% | 27.4 MiB/s | 56.2 KiB | 00m00s [105/153] libnsl2-0:2.0.1-1.fc40.x86_64 100% | 9.6 MiB/s | 29.6 KiB | 00m00s [106/153] libpwquality-0:1.4.5-9.fc40.x 100% | 29.2 MiB/s | 119.7 KiB | 00m00s [107/153] cracklib-0:2.9.11-5.fc40.x86_ 100% | 30.1 MiB/s | 92.5 KiB | 00m00s [108/153] libeconf-0:0.6.2-2.fc40.x86_6 100% | 10.4 MiB/s | 32.0 KiB | 00m00s [109/153] libsemanage-0:3.7-2.fc40.x86_ 100% | 37.8 MiB/s | 116.1 KiB | 00m00s [110/153] ansible-srpm-macros-0:1-16.fc 100% | 10.1 MiB/s | 20.7 KiB | 00m00s [111/153] dwz-0:0.15-8.fc40.x86_64 100% | 45.2 MiB/s | 138.7 KiB | 00m00s [112/153] ghc-srpm-macros-0:1.9.1-1.fc4 100% | 2.9 MiB/s | 8.9 KiB | 00m00s [113/153] openssl-libs-1:3.2.2-3.fc40.x 100% | 209.9 MiB/s | 2.3 MiB | 00m00s [114/153] pyproject-srpm-macros-0:1.16. 100% | 3.4 MiB/s | 13.9 KiB | 00m00s [115/153] python-srpm-macros-0:3.12-8.f 100% | 7.6 MiB/s | 23.4 KiB | 00m00s [116/153] qt6-srpm-macros-0:6.7.2-2.fc4 100% | 8.8 MiB/s | 9.0 KiB | 00m00s [117/153] qt5-srpm-macros-0:5.15.15-1.f 100% | 8.7 MiB/s | 8.9 KiB | 00m00s [118/153] rust-srpm-macros-0:26.3-1.fc4 100% | 12.2 MiB/s | 12.5 KiB | 00m00s [119/153] libcom_err-0:1.47.0-5.fc40.x8 100% | 24.8 MiB/s | 25.4 KiB | 00m00s [120/153] libtirpc-0:1.3.6-1.rc3.fc40.x 100% | 46.0 MiB/s | 94.2 KiB | 00m00s [121/153] gdbm-1:1.23-6.fc40.x86_64 100% | 74.5 MiB/s | 152.5 KiB | 00m00s [122/153] crypto-policies-0:20241011-1. 100% | 48.3 MiB/s | 98.9 KiB | 00m00s [123/153] krb5-libs-0:1.21.3-2.fc40.x86 100% | 148.3 MiB/s | 759.5 KiB | 00m00s [124/153] ca-certificates-0:2024.2.69_v 100% | 121.5 MiB/s | 871.2 KiB | 00m00s [125/153] keyutils-libs-0:1.6.3-3.fc40. 100% | 6.1 MiB/s | 31.5 KiB | 00m00s [126/153] libverto-0:0.3.2-8.fc40.x86_6 100% | 10.0 MiB/s | 20.5 KiB | 00m00s [127/153] fedora-repos-0:40-2.noarch 100% | 9.3 MiB/s | 9.5 KiB | 00m00s [128/153] libxml2-0:2.12.9-1.fc40.x86_6 100% | 134.4 MiB/s | 688.0 KiB | 00m00s [129/153] elfutils-default-yama-scope-0 100% | 4.1 MiB/s | 12.5 KiB | 00m00s [130/153] fedora-gpg-keys-0:40-2.noarch 100% | 25.8 MiB/s | 132.1 KiB | 00m00s [131/153] libffi-0:3.4.4-7.fc40.x86_64 100% | 19.2 MiB/s | 39.4 KiB | 00m00s [132/153] p11-kit-0:0.25.5-1.fc40.x86_6 100% | 159.9 MiB/s | 491.2 KiB | 00m00s [133/153] libtasn1-0:4.19.0-6.fc40.x86_ 100% | 24.0 MiB/s | 73.7 KiB | 00m00s [134/153] p11-kit-trust-0:0.25.5-1.fc40 100% | 64.4 MiB/s | 132.0 KiB | 00m00s [135/153] alternatives-0:1.27-1.fc40.x8 100% | 19.9 MiB/s | 40.7 KiB | 00m00s [136/153] fedora-release-0:40-40.noarch 100% | 10.7 MiB/s | 11.0 KiB | 00m00s [137/153] binutils-gold-0:2.41-38.fc40. 100% | 152.7 MiB/s | 782.0 KiB | 00m00s [138/153] xxhash-libs-0:0.8.3-1.fc40.x8 100% | 18.5 MiB/s | 37.8 KiB | 00m00s [139/153] fedora-release-identity-basic 100% | 5.7 MiB/s | 11.7 KiB | 00m00s [140/153] libcurl-0:8.6.0-10.fc40.x86_6 100% | 84.2 MiB/s | 344.8 KiB | 00m00s [141/153] libbrotli-0:1.1.0-3.fc40.x86_ 100% | 66.1 MiB/s | 338.4 KiB | 00m00s [142/153] libidn2-0:2.3.7-1.fc40.x86_64 100% | 29.0 MiB/s | 118.7 KiB | 00m00s [143/153] libpsl-0:0.21.5-3.fc40.x86_64 100% | 20.8 MiB/s | 63.9 KiB | 00m00s [144/153] libssh-0:0.10.6-5.fc40.x86_64 100% | 68.6 MiB/s | 210.6 KiB | 00m00s [145/153] gdb-minimal-0:15.2-3.fc40.x86 100% | 215.4 MiB/s | 4.3 MiB | 00m00s [146/153] libunistring-0:1.1-7.fc40.x86 100% | 66.6 MiB/s | 545.5 KiB | 00m00s [147/153] publicsuffix-list-dafsa-0:202 100% | 9.5 MiB/s | 58.1 KiB | 00m00s [148/153] libssh-config-0:0.10.6-5.fc40 100% | 8.8 MiB/s | 9.0 KiB | 00m00s [149/153] libnghttp2-0:1.59.0-3.fc40.x8 100% | 24.5 MiB/s | 75.3 KiB | 00m00s [150/153] openldap-0:2.6.8-1.fc40.x86_6 100% | 83.1 MiB/s | 255.3 KiB | 00m00s [151/153] cyrus-sasl-lib-0:2.1.28-19.fc 100% | 154.2 MiB/s | 789.3 KiB | 00m00s [152/153] libevent-0:2.1.12-12.fc40.x86 100% | 83.7 MiB/s | 257.2 KiB | 00m00s [153/153] libtool-ltdl-0:2.4.7-10.fc40. 100% | 17.7 MiB/s | 36.2 KiB | 00m00s -------------------------------------------------------------------------------- [153/153] Total 100% | 79.2 MiB/s | 52.8 MiB | 00m01s Running transaction Importing OpenPGP key 0xA15B79CC: UserID : "Fedora (40) " Fingerprint: 115DF9AEF857853EE8445D0A0727707EA15B79CC From : file:///usr/share/distribution-gpg-keys/fedora/RPM-GPG-KEY-fedora-40-primary The key was successfully imported. [ 1/155] Verify package files 100% | 827.0 B/s | 153.0 B | 00m00s [ 2/155] Prepare transaction 100% | 3.8 KiB/s | 153.0 B | 00m00s [ 3/155] Installing libgcc-0:14.2.1-3. 100% | 134.9 MiB/s | 276.3 KiB | 00m00s [ 4/155] Installing crypto-policies-0: 100% | 37.2 MiB/s | 190.6 KiB | 00m00s [ 5/155] Installing libssh-config-0:0. 100% | 0.0 B/s | 816.0 B | 00m00s [ 6/155] Installing publicsuffix-list- 100% | 0.0 B/s | 68.3 KiB | 00m00s [ 7/155] Installing fedora-release-ide 100% | 0.0 B/s | 912.0 B | 00m00s [ 8/155] Installing fedora-gpg-keys-0: 100% | 41.4 MiB/s | 169.7 KiB | 00m00s [ 9/155] Installing fedora-repos-0:40- 100% | 0.0 B/s | 5.7 KiB | 00m00s [ 10/155] Installing fedora-release-com 100% | 22.8 MiB/s | 23.4 KiB | 00m00s [ 11/155] Installing fedora-release-0:4 100% | 0.0 B/s | 124.0 B | 00m00s [ 12/155] Installing setup-0:2.14.5-2.f 100% | 54.5 MiB/s | 725.8 KiB | 00m00s >>> [RPM] /etc/hosts created as /etc/hosts.rpmnew [ 13/155] Installing filesystem-0:3.18- 100% | 3.5 MiB/s | 212.4 KiB | 00m00s [ 14/155] Installing basesystem-0:11-20 100% | 0.0 B/s | 124.0 B | 00m00s [ 15/155] Installing rust-srpm-macros-0 100% | 0.0 B/s | 5.6 KiB | 00m00s [ 16/155] Installing qt6-srpm-macros-0: 100% | 0.0 B/s | 732.0 B | 00m00s [ 17/155] Installing qt5-srpm-macros-0: 100% | 0.0 B/s | 776.0 B | 00m00s [ 18/155] Installing ghc-srpm-macros-0: 100% | 0.0 B/s | 1.0 KiB | 00m00s [ 19/155] Installing ansible-srpm-macro 100% | 0.0 B/s | 36.2 KiB | 00m00s [ 20/155] Installing pcre2-syntax-0:10. 100% | 248.1 MiB/s | 254.1 KiB | 00m00s [ 21/155] Installing pkgconf-m4-0:2.1.1 100% | 14.0 MiB/s | 14.3 KiB | 00m00s [ 22/155] Installing ncurses-base-0:6.4 100% | 85.8 MiB/s | 351.6 KiB | 00m00s [ 23/155] Installing glibc-minimal-lang 100% | 0.0 B/s | 124.0 B | 00m00s [ 24/155] Installing ncurses-libs-0:6.4 100% | 189.4 MiB/s | 969.7 KiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [ 25/155] Installing glibc-0:2.39-33.fc 100% | 195.6 MiB/s | 6.6 MiB | 00m00s [ 26/155] Installing bash-0:5.2.26-3.fc 100% | 388.6 MiB/s | 8.2 MiB | 00m00s [ 27/155] Installing glibc-common-0:2.3 100% | 172.7 MiB/s | 1.0 MiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [ 28/155] Installing glibc-gconv-extra- 100% | 213.6 MiB/s | 7.9 MiB | 00m00s [ 29/155] Installing zlib-ng-compat-0:2 100% | 131.6 MiB/s | 134.8 KiB | 00m00s [ 30/155] Installing xz-libs-1:5.4.6-3. 100% | 206.0 MiB/s | 210.9 KiB | 00m00s [ 31/155] Installing bzip2-libs-0:1.0.8 100% | 79.9 MiB/s | 81.8 KiB | 00m00s [ 32/155] Installing popt-0:1.19-6.fc40 100% | 70.1 MiB/s | 143.5 KiB | 00m00s [ 33/155] Installing readline-0:8.2-8.f 100% | 239.9 MiB/s | 491.4 KiB | 00m00s [ 34/155] Installing libzstd-0:1.5.6-1. 100% | 385.3 MiB/s | 789.2 KiB | 00m00s [ 35/155] Installing elfutils-libelf-0: 100% | 390.0 MiB/s | 1.2 MiB | 00m00s [ 36/155] Installing libstdc++-0:14.2.1 100% | 345.8 MiB/s | 2.8 MiB | 00m00s [ 37/155] Installing libuuid-0:2.40.2-1 100% | 0.0 B/s | 38.6 KiB | 00m00s [ 38/155] Installing libblkid-0:2.40.2- 100% | 253.6 MiB/s | 259.7 KiB | 00m00s [ 39/155] Installing libattr-0:2.5.2-3. 100% | 0.0 B/s | 29.5 KiB | 00m00s [ 40/155] Installing libacl-0:2.3.2-1.f 100% | 0.0 B/s | 40.8 KiB | 00m00s [ 41/155] Installing gmp-1:6.2.1-8.fc40 100% | 389.1 MiB/s | 796.8 KiB | 00m00s [ 42/155] Installing libxcrypt-0:4.4.37 100% | 264.1 MiB/s | 270.4 KiB | 00m00s [ 43/155] Installing lz4-libs-0:1.9.4-6 100% | 127.4 MiB/s | 130.5 KiB | 00m00s [ 44/155] Installing gdbm-libs-1:1.23-6 100% | 120.7 MiB/s | 123.6 KiB | 00m00s [ 45/155] Installing libeconf-0:0.6.2-2 100% | 58.3 MiB/s | 59.6 KiB | 00m00s [ 46/155] Installing mpfr-0:4.2.1-4.fc4 100% | 271.4 MiB/s | 833.7 KiB | 00m00s [ 47/155] Installing gawk-0:5.3.0-3.fc4 100% | 288.0 MiB/s | 1.7 MiB | 00m00s [ 48/155] Installing dwz-0:0.15-8.fc40. 100% | 289.4 MiB/s | 296.3 KiB | 00m00s [ 49/155] Installing unzip-0:6.0-63.fc4 100% | 188.6 MiB/s | 386.3 KiB | 00m00s [ 50/155] Installing file-libs-0:5.45-4 100% | 620.6 MiB/s | 9.9 MiB | 00m00s [ 51/155] Installing file-0:5.45-4.fc40 100% | 102.6 MiB/s | 105.0 KiB | 00m00s [ 52/155] Installing libcap-ng-0:0.8.4- 100% | 73.2 MiB/s | 75.0 KiB | 00m00s [ 53/155] Installing audit-libs-0:4.0.2 100% | 321.6 MiB/s | 329.3 KiB | 00m00s [ 54/155] Installing pam-libs-0:1.6.1-5 100% | 134.2 MiB/s | 137.4 KiB | 00m00s [ 55/155] Installing libcap-0:2.69-8.fc 100% | 109.8 MiB/s | 224.8 KiB | 00m00s [ 56/155] Installing systemd-libs-0:255 100% | 323.0 MiB/s | 1.9 MiB | 00m00s [ 57/155] Installing lua-libs-0:5.4.6-5 100% | 275.7 MiB/s | 282.3 KiB | 00m00s [ 58/155] Installing libsepol-0:3.7-2.f 100% | 399.8 MiB/s | 818.8 KiB | 00m00s [ 59/155] Installing jansson-0:2.13.1-9 100% | 87.6 MiB/s | 89.7 KiB | 00m00s [ 60/155] Installing pcre2-0:10.44-1.fc 100% | 319.8 MiB/s | 654.9 KiB | 00m00s [ 61/155] Installing libselinux-0:3.7-5 100% | 174.1 MiB/s | 178.3 KiB | 00m00s [ 62/155] Installing sed-0:4.9-1.fc40.x 100% | 212.3 MiB/s | 869.7 KiB | 00m00s [ 63/155] Installing grep-0:3.11-7.fc40 100% | 200.7 MiB/s | 1.0 MiB | 00m00s [ 64/155] Installing findutils-1:4.9.0- 100% | 244.3 MiB/s | 1.5 MiB | 00m00s [ 65/155] Installing xz-1:5.4.6-3.fc40. 100% | 250.3 MiB/s | 2.0 MiB | 00m00s [ 66/155] Installing libmount-0:2.40.2- 100% | 348.6 MiB/s | 356.9 KiB | 00m00s [ 67/155] Installing libsmartcols-0:2.4 100% | 177.3 MiB/s | 181.5 KiB | 00m00s [ 68/155] Installing libcom_err-0:1.47. 100% | 0.0 B/s | 68.3 KiB | 00m00s [ 69/155] Installing libffi-0:3.4.4-7.f 100% | 81.0 MiB/s | 83.0 KiB | 00m00s [ 70/155] Installing libtasn1-0:4.19.0- 100% | 173.3 MiB/s | 177.5 KiB | 00m00s [ 71/155] Installing p11-kit-0:0.25.5-1 100% | 276.0 MiB/s | 2.2 MiB | 00m00s [ 72/155] Installing alternatives-0:1.2 100% | 66.4 MiB/s | 68.0 KiB | 00m00s [ 73/155] Installing libunistring-0:1.1 100% | 346.1 MiB/s | 1.7 MiB | 00m00s [ 74/155] Installing libidn2-0:2.3.7-1. 100% | 109.1 MiB/s | 335.0 KiB | 00m00s [ 75/155] Installing libpsl-0:0.21.5-3. 100% | 79.7 MiB/s | 81.6 KiB | 00m00s [ 76/155] Installing p11-kit-trust-0:0. 100% | 38.4 MiB/s | 393.1 KiB | 00m00s [ 77/155] Installing util-linux-core-0: 100% | 212.2 MiB/s | 1.5 MiB | 00m00s [ 78/155] Installing tar-2:1.35-3.fc40. 100% | 327.8 MiB/s | 3.0 MiB | 00m00s [ 79/155] Installing libsemanage-0:3.7- 100% | 144.2 MiB/s | 295.2 KiB | 00m00s [ 80/155] Installing shadow-utils-2:4.1 100% | 134.7 MiB/s | 4.2 MiB | 00m00s [ 81/155] Installing libutempter-0:1.2. 100% | 58.3 MiB/s | 59.7 KiB | 00m00s [ 82/155] Installing zip-0:3.0-40.fc40. 100% | 230.2 MiB/s | 707.1 KiB | 00m00s [ 83/155] Installing gdbm-1:1.23-6.fc40 100% | 151.6 MiB/s | 465.8 KiB | 00m00s [ 84/155] Installing cyrus-sasl-lib-0:2 100% | 326.2 MiB/s | 2.3 MiB | 00m00s [ 85/155] Installing zstd-0:1.5.6-1.fc4 100% | 419.0 MiB/s | 1.7 MiB | 00m00s [ 86/155] Installing libfdisk-0:2.40.2- 100% | 355.5 MiB/s | 364.0 KiB | 00m00s [ 87/155] Installing bzip2-0:1.0.8-18.f 100% | 93.9 MiB/s | 96.2 KiB | 00m00s [ 88/155] Installing libxml2-0:2.12.9-1 100% | 342.4 MiB/s | 1.7 MiB | 00m00s [ 89/155] Installing sqlite-libs-0:3.45 100% | 350.3 MiB/s | 1.4 MiB | 00m00s [ 90/155] Installing ed-0:1.20.2-1.fc40 100% | 145.7 MiB/s | 149.2 KiB | 00m00s [ 91/155] Installing patch-0:2.7.6-24.f 100% | 258.1 MiB/s | 264.3 KiB | 00m00s [ 92/155] Installing elfutils-default-y 100% | 291.9 KiB/s | 2.0 KiB | 00m00s [ 93/155] Installing elfutils-libs-0:0. 100% | 218.8 MiB/s | 672.2 KiB | 00m00s [ 94/155] Installing cpio-0:2.15-1.fc40 100% | 274.9 MiB/s | 1.1 MiB | 00m00s [ 95/155] Installing diffutils-0:3.10-5 100% | 264.4 MiB/s | 1.6 MiB | 00m00s [ 96/155] Installing json-c-0:0.17-3.fc 100% | 81.7 MiB/s | 83.6 KiB | 00m00s [ 97/155] Installing libgomp-0:14.2.1-3 100% | 256.3 MiB/s | 525.0 KiB | 00m00s [ 98/155] Installing libpkgconf-0:2.1.1 100% | 73.5 MiB/s | 75.3 KiB | 00m00s [ 99/155] Installing pkgconf-0:2.1.1-2. 100% | 83.4 MiB/s | 85.4 KiB | 00m00s [100/155] Installing pkgconf-pkg-config 100% | 0.0 B/s | 1.8 KiB | 00m00s [101/155] Installing keyutils-libs-0:1. 100% | 54.5 MiB/s | 55.8 KiB | 00m00s [102/155] Installing libverto-0:0.3.2-8 100% | 0.0 B/s | 31.3 KiB | 00m00s [103/155] Installing xxhash-libs-0:0.8. 100% | 89.5 MiB/s | 91.6 KiB | 00m00s [104/155] Installing libbrotli-0:1.1.0- 100% | 270.8 MiB/s | 831.8 KiB | 00m00s [105/155] Installing libnghttp2-0:1.59. 100% | 163.3 MiB/s | 167.2 KiB | 00m00s [106/155] Installing libtool-ltdl-0:2.4 100% | 65.7 MiB/s | 67.3 KiB | 00m00s [107/155] Installing perl-srpm-macros-0 100% | 0.0 B/s | 1.1 KiB | 00m00s [108/155] Installing package-notes-srpm 100% | 0.0 B/s | 2.0 KiB | 00m00s [109/155] Installing openblas-srpm-macr 100% | 0.0 B/s | 384.0 B | 00m00s [110/155] Installing ocaml-srpm-macros- 100% | 0.0 B/s | 2.2 KiB | 00m00s [111/155] Installing kernel-srpm-macros 100% | 0.0 B/s | 2.3 KiB | 00m00s [112/155] Installing gnat-srpm-macros-0 100% | 0.0 B/s | 1.3 KiB | 00m00s [113/155] Installing fpc-srpm-macros-0: 100% | 410.2 KiB/s | 420.0 B | 00m00s [114/155] Installing coreutils-common-0 100% | 382.1 MiB/s | 11.5 MiB | 00m00s [115/155] Installing openssl-libs-1:3.2 100% | 391.2 MiB/s | 7.8 MiB | 00m00s [116/155] Installing coreutils-0:9.4-9. 100% | 242.8 MiB/s | 5.8 MiB | 00m00s [117/155] Installing ca-certificates-0: 100% | 3.8 MiB/s | 2.4 MiB | 00m01s [118/155] Installing krb5-libs-0:1.21.3 100% | 256.3 MiB/s | 2.3 MiB | 00m00s [119/155] Installing libtirpc-0:1.3.6-1 100% | 199.7 MiB/s | 204.5 KiB | 00m00s [120/155] Installing gzip-0:1.13-1.fc40 100% | 127.1 MiB/s | 390.6 KiB | 00m00s [121/155] Installing authselect-libs-0: 100% | 162.7 MiB/s | 833.2 KiB | 00m00s [122/155] Installing libarchive-0:3.7.2 100% | 301.0 MiB/s | 924.5 KiB | 00m00s [123/155] Installing authselect-0:1.5.0 100% | 77.1 MiB/s | 157.9 KiB | 00m00s [124/155] Installing cracklib-0:2.9.11- 100% | 61.1 MiB/s | 250.3 KiB | 00m00s [125/155] Installing libpwquality-0:1.4 100% | 105.0 MiB/s | 430.1 KiB | 00m00s [126/155] Installing libnsl2-0:2.0.1-1. 100% | 57.7 MiB/s | 59.0 KiB | 00m00s [127/155] Installing pam-0:1.6.1-5.fc40 100% | 139.9 MiB/s | 1.8 MiB | 00m00s [128/155] Installing libssh-0:0.10.6-5. 100% | 249.7 MiB/s | 511.4 KiB | 00m00s [129/155] Installing rpm-sequoia-0:1.7. 100% | 342.0 MiB/s | 2.4 MiB | 00m00s [130/155] Installing rpm-libs-0:4.19.1. 100% | 231.6 MiB/s | 711.4 KiB | 00m00s [131/155] Installing rpm-build-libs-0:4 100% | 194.5 MiB/s | 199.2 KiB | 00m00s [132/155] Installing libevent-0:2.1.12- 100% | 292.8 MiB/s | 899.4 KiB | 00m00s [133/155] Installing openldap-0:2.6.8-1 100% | 209.7 MiB/s | 644.0 KiB | 00m00s [134/155] Installing libcurl-0:8.6.0-10 100% | 253.2 MiB/s | 777.9 KiB | 00m00s [135/155] Installing elfutils-debuginfo 100% | 80.4 MiB/s | 82.4 KiB | 00m00s [136/155] Installing binutils-0:2.41-38 100% | 348.4 MiB/s | 26.5 MiB | 00m00s [137/155] Installing binutils-gold-0:2. 100% | 146.2 MiB/s | 2.0 MiB | 00m00s [138/155] Installing elfutils-0:0.192-7 100% | 332.5 MiB/s | 2.7 MiB | 00m00s [139/155] Installing gdb-minimal-0:15.2 100% | 360.9 MiB/s | 13.0 MiB | 00m00s [140/155] Installing debugedit-0:5.0-18 100% | 98.6 MiB/s | 202.0 KiB | 00m00s [141/155] Installing curl-0:8.6.0-10.fc 100% | 55.7 MiB/s | 740.9 KiB | 00m00s [142/155] Installing rpm-0:4.19.1.1-1.f 100% | 171.2 MiB/s | 2.4 MiB | 00m00s [143/155] Installing efi-srpm-macros-0: 100% | 0.0 B/s | 41.2 KiB | 00m00s [144/155] Installing lua-srpm-macros-0: 100% | 0.0 B/s | 1.9 KiB | 00m00s [145/155] Installing zig-srpm-macros-0: 100% | 0.0 B/s | 1.7 KiB | 00m00s [146/155] Installing fonts-srpm-macros- 100% | 55.1 MiB/s | 56.5 KiB | 00m00s [147/155] Installing go-srpm-macros-0:3 100% | 60.2 MiB/s | 61.6 KiB | 00m00s [148/155] Installing forge-srpm-macros- 100% | 0.0 B/s | 40.3 KiB | 00m00s [149/155] Installing python-srpm-macros 100% | 50.6 MiB/s | 51.8 KiB | 00m00s [150/155] Installing redhat-rpm-config- 100% | 93.7 MiB/s | 191.9 KiB | 00m00s [151/155] Installing rpm-build-0:4.19.1 100% | 88.8 MiB/s | 182.0 KiB | 00m00s [152/155] Installing pyproject-srpm-mac 100% | 2.4 MiB/s | 2.5 KiB | 00m00s [153/155] Installing util-linux-0:2.40. 100% | 144.2 MiB/s | 3.7 MiB | 00m00s [154/155] Installing which-0:2.21-41.fc 100% | 80.5 MiB/s | 82.4 KiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [155/155] Installing info-0:7.1-2.fc40. 100% | 351.5 KiB/s | 358.2 KiB | 00m01s Complete! Finish: installing minimal buildroot with dnf5 Start: creating root cache Finish: creating root cache Finish: chroot init INFO: Installed packages: INFO: alternatives-1.27-1.fc40.x86_64 ansible-srpm-macros-1-16.fc40.noarch audit-libs-4.0.2-1.fc40.x86_64 authselect-1.5.0-6.fc40.x86_64 authselect-libs-1.5.0-6.fc40.x86_64 basesystem-11-20.fc40.noarch bash-5.2.26-3.fc40.x86_64 binutils-2.41-38.fc40.x86_64 binutils-gold-2.41-38.fc40.x86_64 bzip2-1.0.8-18.fc40.x86_64 bzip2-libs-1.0.8-18.fc40.x86_64 ca-certificates-2024.2.69_v8.0.401-1.0.fc40.noarch coreutils-9.4-9.fc40.x86_64 coreutils-common-9.4-9.fc40.x86_64 cpio-2.15-1.fc40.x86_64 cracklib-2.9.11-5.fc40.x86_64 crypto-policies-20241011-1.git5930b9a.fc40.noarch curl-8.6.0-10.fc40.x86_64 cyrus-sasl-lib-2.1.28-19.fc40.x86_64 debugedit-5.0-18.fc40.x86_64 diffutils-3.10-5.fc40.x86_64 dwz-0.15-8.fc40.x86_64 ed-1.20.2-1.fc40.x86_64 efi-srpm-macros-5-11.fc40.noarch elfutils-0.192-7.fc40.x86_64 elfutils-debuginfod-client-0.192-7.fc40.x86_64 elfutils-default-yama-scope-0.192-7.fc40.noarch elfutils-libelf-0.192-7.fc40.x86_64 elfutils-libs-0.192-7.fc40.x86_64 fedora-gpg-keys-40-2.noarch fedora-release-40-40.noarch fedora-release-common-40-40.noarch fedora-release-identity-basic-40-40.noarch fedora-repos-40-2.noarch file-5.45-4.fc40.x86_64 file-libs-5.45-4.fc40.x86_64 filesystem-3.18-8.fc40.x86_64 findutils-4.9.0-9.fc40.x86_64 fonts-srpm-macros-2.0.5-14.fc40.noarch forge-srpm-macros-0.4.0-1.fc40.noarch fpc-srpm-macros-1.3-12.fc40.noarch gawk-5.3.0-3.fc40.x86_64 gdb-minimal-15.2-3.fc40.x86_64 gdbm-1.23-6.fc40.x86_64 gdbm-libs-1.23-6.fc40.x86_64 ghc-srpm-macros-1.9.1-1.fc40.noarch glibc-2.39-33.fc40.x86_64 glibc-common-2.39-33.fc40.x86_64 glibc-gconv-extra-2.39-33.fc40.x86_64 glibc-minimal-langpack-2.39-33.fc40.x86_64 gmp-6.2.1-8.fc40.x86_64 gnat-srpm-macros-6-5.fc40.noarch go-srpm-macros-3.5.0-1.fc40.noarch gpg-pubkey-a15b79cc-63d04c2c grep-3.11-7.fc40.x86_64 gzip-1.13-1.fc40.x86_64 info-7.1-2.fc40.x86_64 jansson-2.13.1-9.fc40.x86_64 json-c-0.17-3.fc40.x86_64 kernel-srpm-macros-1.0-23.fc40.noarch keyutils-libs-1.6.3-3.fc40.x86_64 krb5-libs-1.21.3-2.fc40.x86_64 libacl-2.3.2-1.fc40.x86_64 libarchive-3.7.2-7.fc40.x86_64 libattr-2.5.2-3.fc40.x86_64 libblkid-2.40.2-1.fc40.x86_64 libbrotli-1.1.0-3.fc40.x86_64 libcap-2.69-8.fc40.x86_64 libcap-ng-0.8.4-4.fc40.x86_64 libcom_err-1.47.0-5.fc40.x86_64 libcurl-8.6.0-10.fc40.x86_64 libeconf-0.6.2-2.fc40.x86_64 libevent-2.1.12-12.fc40.x86_64 libfdisk-2.40.2-1.fc40.x86_64 libffi-3.4.4-7.fc40.x86_64 libgcc-14.2.1-3.fc40.x86_64 libgomp-14.2.1-3.fc40.x86_64 libidn2-2.3.7-1.fc40.x86_64 libmount-2.40.2-1.fc40.x86_64 libnghttp2-1.59.0-3.fc40.x86_64 libnsl2-2.0.1-1.fc40.x86_64 libpkgconf-2.1.1-2.fc40.x86_64 libpsl-0.21.5-3.fc40.x86_64 libpwquality-1.4.5-9.fc40.x86_64 libselinux-3.7-5.fc40.x86_64 libsemanage-3.7-2.fc40.x86_64 libsepol-3.7-2.fc40.x86_64 libsmartcols-2.40.2-1.fc40.x86_64 libssh-0.10.6-5.fc40.x86_64 libssh-config-0.10.6-5.fc40.noarch libstdc++-14.2.1-3.fc40.x86_64 libtasn1-4.19.0-6.fc40.x86_64 libtirpc-1.3.6-1.rc3.fc40.x86_64 libtool-ltdl-2.4.7-10.fc40.x86_64 libunistring-1.1-7.fc40.x86_64 libutempter-1.2.1-13.fc40.x86_64 libuuid-2.40.2-1.fc40.x86_64 libverto-0.3.2-8.fc40.x86_64 libxcrypt-4.4.37-4.fc40.x86_64 libxml2-2.12.9-1.fc40.x86_64 libzstd-1.5.6-1.fc40.x86_64 lua-libs-5.4.6-5.fc40.x86_64 lua-srpm-macros-1-13.fc40.noarch lz4-libs-1.9.4-6.fc40.x86_64 mpfr-4.2.1-4.fc40.x86_64 ncurses-base-6.4-12.20240127.fc40.noarch ncurses-libs-6.4-12.20240127.fc40.x86_64 ocaml-srpm-macros-9-3.fc40.noarch openblas-srpm-macros-2-16.fc40.noarch openldap-2.6.8-1.fc40.x86_64 openssl-libs-3.2.2-3.fc40.x86_64 p11-kit-0.25.5-1.fc40.x86_64 p11-kit-trust-0.25.5-1.fc40.x86_64 package-notes-srpm-macros-0.5-11.fc40.noarch pam-1.6.1-5.fc40.x86_64 pam-libs-1.6.1-5.fc40.x86_64 patch-2.7.6-24.fc40.x86_64 pcre2-10.44-1.fc40.x86_64 pcre2-syntax-10.44-1.fc40.noarch perl-srpm-macros-1-53.fc40.noarch pkgconf-2.1.1-2.fc40.x86_64 pkgconf-m4-2.1.1-2.fc40.noarch pkgconf-pkg-config-2.1.1-2.fc40.x86_64 popt-1.19-6.fc40.x86_64 publicsuffix-list-dafsa-20240107-3.fc40.noarch pyproject-srpm-macros-1.16.3-1.fc40.noarch python-srpm-macros-3.12-8.fc40.noarch qt5-srpm-macros-5.15.15-1.fc40.noarch qt6-srpm-macros-6.7.2-2.fc40.noarch readline-8.2-8.fc40.x86_64 redhat-rpm-config-288-1.fc40.noarch rpm-4.19.1.1-1.fc40.x86_64 rpm-build-4.19.1.1-1.fc40.x86_64 rpm-build-libs-4.19.1.1-1.fc40.x86_64 rpm-libs-4.19.1.1-1.fc40.x86_64 rpm-sequoia-1.7.0-3.fc40.x86_64 rust-srpm-macros-26.3-1.fc40.noarch sed-4.9-1.fc40.x86_64 setup-2.14.5-2.fc40.noarch shadow-utils-4.15.1-4.fc40.x86_64 sqlite-libs-3.45.1-2.fc40.x86_64 systemd-libs-255.15-1.fc40.x86_64 tar-1.35-3.fc40.x86_64 unzip-6.0-63.fc40.x86_64 util-linux-2.40.2-1.fc40.x86_64 util-linux-core-2.40.2-1.fc40.x86_64 which-2.21-41.fc40.x86_64 xxhash-libs-0.8.3-1.fc40.x86_64 xz-5.4.6-3.fc40.x86_64 xz-libs-5.4.6-3.fc40.x86_64 zig-srpm-macros-1-2.fc40.noarch zip-3.0-40.fc40.x86_64 zlib-ng-compat-2.1.7-2.fc40.x86_64 zstd-1.5.6-1.fc40.x86_64 Start: buildsrpm Start: rpmbuild -bs warning: source_date_epoch_from_changelog set but %changelog is missing Building target platforms: x86_64 Building for target x86_64 Wrote: /builddir/build/SRPMS/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm RPM build warnings: source_date_epoch_from_changelog set but %changelog is missing Finish: rpmbuild -bs INFO: chroot_scan: 1 files copied to /var/lib/copr-rpmbuild/results/chroot_scan INFO: /var/lib/mock/fedora-40-x86_64-1736389068.891202/root/var/log/dnf5.log INFO: chroot_scan: creating tarball /var/lib/copr-rpmbuild/results/chroot_scan.tar.gz /bin/tar: Removing leading `/' from member names Finish: buildsrpm INFO: Done(/var/lib/copr-rpmbuild/workspace/workdir-bjjebqdw/R-CRAN-blavaan/R-CRAN-blavaan.spec) Config(child) 0 minutes 14 seconds INFO: Results and/or logs in: /var/lib/copr-rpmbuild/results INFO: Cleaning up build root ('cleanup_on_success=True') Start: clean chroot INFO: unmounting tmpfs. Finish: clean chroot INFO: Start(/var/lib/copr-rpmbuild/results/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm) Config(fedora-40-x86_64) Start: chroot init INFO: mounting tmpfs at /var/lib/mock/fedora-40-x86_64-1736389068.891202/root. INFO: calling preinit hooks INFO: enabled root cache Start: unpacking root cache Finish: unpacking root cache INFO: enabled package manager cache Start: cleaning package manager metadata Finish: cleaning package manager metadata INFO: enabled HW Info plugin INFO: Buildroot is handled by package management from host and used with --installroot: rpm-4.20.0-1.fc41.x86_64 rpm-sequoia-1.7.0-2.fc41.x86_64 python3-dnf-4.22.0-1.fc41.noarch python3-dnf-plugins-core-4.10.0-1.fc41.noarch dnf5-5.2.8.1-2.fc41.x86_64 dnf5-plugins-5.2.8.1-2.fc41.x86_64 Finish: chroot init Start: build phase for R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm Start: build setup for R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm warning: source_date_epoch_from_changelog set but %changelog is missing Building target platforms: x86_64 Building for target x86_64 Wrote: /builddir/build/SRPMS/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm RPM build warnings: source_date_epoch_from_changelog set but %changelog is missing Updating and loading repositories: updates 100% | 491.3 KiB/s | 29.5 KiB | 00m00s fedora 100% | 104.4 KiB/s | 30.1 KiB | 00m00s Copr repository 100% | 118.3 KiB/s | 1.5 KiB | 00m00s Repositories loaded. Package Arch Version Repository Size Installing: R-CRAN-BH noarch 1.87.0.1-1.fc40.copr8405681 copr_base 122.2 MiB R-CRAN-Matrix x86_64 1.7.1-1.fc40.copr8157422 copr_base 8.2 MiB R-CRAN-Rcpp x86_64 1.0.13.1-1.fc40.copr8204071 copr_base 8.4 MiB R-CRAN-RcppEigen x86_64 0.3.4.0.2-1.fc40.copr8100507 copr_base 9.0 MiB R-CRAN-RcppParallel x86_64 5.1.9-1.fc40.copr7936852 copr_base 1.5 MiB R-CRAN-StanHeaders x86_64 2.32.10-1.fc40.copr7736967 copr_base 9.7 MiB R-CRAN-bayesplot noarch 1.11.1-1.fc40.copr7364930 copr_base 6.7 MiB R-CRAN-coda noarch 0.19.4.1-1.fc40.copr7353589 copr_base 480.9 KiB R-CRAN-future.apply noarch 1.11.3-1.fc40.copr8181593 copr_base 234.4 KiB R-CRAN-lavaan noarch 0.6.19-1.fc40.copr8079064 copr_base 4.2 MiB R-CRAN-loo noarch 2.8.0-1.fc40.copr7705984 copr_base 2.7 MiB R-CRAN-mnormt x86_64 2.1.1-1.fc40.copr7352549 copr_base 291.3 KiB R-CRAN-nonnest2 noarch 0.5.8-1.fc40.copr7951511 copr_base 305.7 KiB R-CRAN-rstan x86_64 2.32.6-1.fc40.copr7480261 copr_base 6.0 MiB R-CRAN-rstantools noarch 2.4.0-1.fc40.copr7356058 copr_base 304.0 KiB R-CRAN-tmvnsim x86_64 1.0.2-3.fc40.copr7352297 copr_base 39.4 KiB R-core x86_64 4.4.2-1.fc40 updates 101.7 MiB R-devel x86_64 4.4.2-1.fc40 updates 0.0 B Installing dependencies: R-CRAN-CompQuadForm x86_64 1.4.3-3.fc40.copr7350303 copr_base 78.8 KiB R-CRAN-MASS x86_64 7.3.64-1.fc40.copr8471837 copr_base 1.8 MiB R-CRAN-QuickJSR x86_64 1.4.0-1.fc40.copr8099908 copr_base 3.0 MiB R-CRAN-R6 noarch 2.5.1-1.fc40.copr7349938 copr_base 115.9 KiB R-CRAN-RColorBrewer noarch 1.1.3-1.fc40.copr7349948 copr_base 63.6 KiB R-CRAN-abind noarch 1.4.8-1.fc40.copr8016475 copr_base 96.0 KiB R-CRAN-backports x86_64 1.5.0-1.fc40.copr7483453 copr_base 211.8 KiB R-CRAN-callr noarch 3.7.6-1.fc40.copr7356069 copr_base 711.7 KiB R-CRAN-checkmate x86_64 2.3.2-1.fc40.copr7803006 copr_base 1.4 MiB R-CRAN-cli x86_64 3.6.3-1.fc40.copr7649835 copr_base 2.4 MiB R-CRAN-codetools noarch 0.2.20-1.fc40.copr7352636 copr_base 106.3 KiB R-CRAN-colorspace x86_64 2.1.1-1.fc40.copr7795131 copr_base 4.0 MiB R-CRAN-desc noarch 1.4.3-1.fc40.copr7353609 copr_base 514.2 KiB R-CRAN-digest x86_64 0.6.37-1.fc40.copr7936834 copr_base 495.4 KiB R-CRAN-distributional noarch 0.5.0-1.fc40.copr8029419 copr_base 721.5 KiB R-CRAN-dplyr x86_64 1.1.4-1.fc40.copr7361225 copr_base 2.6 MiB R-CRAN-fansi x86_64 1.0.6-1.fc40.copr7349952 copr_base 625.8 KiB R-CRAN-farver x86_64 2.1.2-1.fc40.copr7442181 copr_base 2.1 MiB R-CRAN-future noarch 1.34.0-1.fc40.copr7803014 copr_base 1.2 MiB R-CRAN-generics noarch 0.1.3-1.fc40.copr7350006 copr_base 160.2 KiB R-CRAN-ggplot2 noarch 3.5.1-1.fc40.copr7361224 copr_base 7.1 MiB R-CRAN-ggridges noarch 0.5.6-1.fc40.copr7362419 copr_base 3.0 MiB R-CRAN-globals noarch 0.16.3-1.fc40.copr7353590 copr_base 137.2 KiB R-CRAN-glue x86_64 1.8.0-1.fc40.copr8094211 copr_base 344.8 KiB R-CRAN-gridExtra noarch 2.3-3.fc40.copr7357925 copr_base 1.6 MiB R-CRAN-gtable noarch 0.3.6-1.fc40.copr8178682 copr_base 337.3 KiB R-CRAN-inline noarch 0.3.20-1.fc40.copr8240085 copr_base 216.4 KiB R-CRAN-isoband x86_64 0.2.7-1.fc40.copr7351195 copr_base 1.9 MiB R-CRAN-labeling noarch 0.4.3-1.fc40.copr7349947 copr_base 92.7 KiB R-CRAN-lattice x86_64 0.22.6-1.fc40.copr7352639 copr_base 2.0 MiB R-CRAN-lifecycle noarch 1.0.4-1.fc40.copr7354340 copr_base 282.7 KiB R-CRAN-listenv noarch 0.9.1-1.fc40.copr7349926 copr_base 157.8 KiB R-CRAN-magrittr x86_64 2.0.3-1.fc40.copr7349936 copr_base 417.3 KiB R-CRAN-matrixStats x86_64 1.5.0-1.fc40.copr8483412 copr_base 1.0 MiB R-CRAN-mgcv x86_64 1.9.1-1.fc40.copr7357272 copr_base 4.5 MiB R-CRAN-munsell noarch 0.5.1-1.fc40.copr7353599 copr_base 379.0 KiB R-CRAN-mvtnorm x86_64 1.3.2-1.fc40.copr8210719 copr_base 1.4 MiB R-CRAN-nlme x86_64 3.1.166-1.fc40.copr7936970 copr_base 3.8 MiB R-CRAN-numDeriv noarch 2016.8.1.1-3.fc40.copr7350037 copr_base 151.0 KiB R-CRAN-parallelly x86_64 1.41.0-1.fc40.copr8414035 copr_base 805.9 KiB R-CRAN-pbivnorm x86_64 0.6.0-3.fc40.copr7350273 copr_base 36.3 KiB R-CRAN-pillar noarch 1.10.1-1.fc40.copr8483421 copr_base 1.4 MiB R-CRAN-pkgbuild noarch 1.4.5-1.fc40.copr8184949 copr_base 261.2 KiB R-CRAN-pkgconfig noarch 2.0.3-3.fc40.copr7349937 copr_base 34.0 KiB R-CRAN-plyr x86_64 1.8.9-1.fc40.copr7353597 copr_base 1.1 MiB R-CRAN-posterior noarch 1.6.0-1.fc40.copr7705971 copr_base 1.7 MiB R-CRAN-processx x86_64 3.8.4-1.fc40.copr7353601 copr_base 547.3 KiB R-CRAN-ps x86_64 1.8.1-1.fc40.copr8184952 copr_base 692.8 KiB R-CRAN-quadprog x86_64 1.5.8-3.fc40.copr7350112 copr_base 59.7 KiB R-CRAN-reshape2 x86_64 1.4.4-3.fc40.copr7359520 copr_base 215.1 KiB R-CRAN-rlang x86_64 1.1.4-1.fc40.copr7531082 copr_base 2.6 MiB R-CRAN-sandwich noarch 3.1.1-1.fc40.copr8337020 copr_base 1.8 MiB R-CRAN-scales noarch 1.3.0-1.fc40.copr7356067 copr_base 1.1 MiB R-CRAN-stringi x86_64 1.8.4-1.fc40.copr7422034 copr_base 2.0 MiB R-CRAN-stringr noarch 1.5.1-1.fc40.copr7357924 copr_base 646.8 KiB R-CRAN-tensorA x86_64 0.36.2.1-1.fc40.copr7350295 copr_base 381.7 KiB R-CRAN-tibble x86_64 3.2.1-1.fc40.copr7359525 copr_base 1.7 MiB R-CRAN-tidyselect noarch 1.2.1-1.fc40.copr7357928 copr_base 433.3 KiB R-CRAN-utf8 x86_64 1.2.4-1.fc40.copr7349954 copr_base 470.9 KiB R-CRAN-vctrs x86_64 0.6.5-1.fc40.copr7356070 copr_base 2.3 MiB R-CRAN-viridisLite noarch 0.4.2-1.fc40.copr7349928 copr_base 1.3 MiB R-CRAN-withr noarch 3.0.2-1.fc40.copr8184963 copr_base 395.1 KiB R-CRAN-zoo x86_64 1.8.12-1.fc40.copr7353591 copr_base 1.5 MiB R-core-devel x86_64 4.4.2-1.fc40 updates 395.8 KiB R-java x86_64 4.4.2-1.fc40 updates 0.0 B R-java-devel x86_64 4.4.2-1.fc40 updates 0.0 B R-littler x86_64 0.3.19-4.fc40 updates 157.9 KiB R-rpm-macros noarch 1.2.1-10.fc40 updates 5.6 KiB abattis-cantarell-vf-fonts noarch 0.301-12.fc40 fedora 192.7 KiB alsa-lib x86_64 1.2.13-3.fc40 updates 1.4 MiB annobin-docs noarch 12.60-1.fc40 updates 96.2 KiB annobin-plugin-gcc x86_64 12.60-1.fc40 updates 976.2 KiB avahi-libs x86_64 0.8-26.fc40 fedora 166.3 KiB brotli x86_64 1.1.0-3.fc40 fedora 31.8 KiB brotli-devel x86_64 1.1.0-3.fc40 fedora 65.6 KiB bzip2-devel x86_64 1.0.8-18.fc40 fedora 309.8 KiB cairo x86_64 1.18.0-3.fc40 fedora 1.7 MiB cairo-devel x86_64 1.18.0-3.fc40 fedora 2.3 MiB cmake-filesystem x86_64 3.30.5-1.fc40 updates 0.0 B copy-jdk-configs noarch 4.1-5.fc40 fedora 20.3 KiB cpp x86_64 14.2.1-3.fc40 updates 35.0 MiB crypto-policies-scripts noarch 20241011-1.git5930b9a.fc40 updates 353.5 KiB cups-filesystem noarch 1:2.4.11-8.fc40 updates 0.0 B cups-libs x86_64 1:2.4.11-8.fc40 updates 622.9 KiB dbus-libs x86_64 1:1.14.10-3.fc40 fedora 368.9 KiB default-fonts-core-sans noarch 4.0-13.fc40 updates 11.9 KiB desktop-file-utils x86_64 0.26-12.fc40 fedora 226.0 KiB emacs-filesystem noarch 1:29.4-9.fc40 updates 0.0 B expat x86_64 2.6.3-1.fc40 updates 287.5 KiB flexiblas x86_64 3.4.4-1.fc40 updates 48.5 KiB flexiblas-devel x86_64 3.4.4-1.fc40 updates 4.7 MiB flexiblas-netlib x86_64 3.4.4-1.fc40 updates 10.6 MiB flexiblas-netlib64 x86_64 3.4.4-1.fc40 updates 10.7 MiB flexiblas-openblas-openmp x86_64 3.4.4-1.fc40 updates 39.3 KiB flexiblas-openblas-openmp64 x86_64 3.4.4-1.fc40 updates 39.3 KiB fontconfig x86_64 2.15.0-6.fc40 updates 768.0 KiB fontconfig-devel x86_64 2.15.0-6.fc40 updates 117.2 KiB fonts-filesystem noarch 1:2.0.5-14.fc40 fedora 0.0 B freetype x86_64 2.13.2-5.fc40 fedora 842.6 KiB freetype-devel x86_64 2.13.2-5.fc40 fedora 7.8 MiB fribidi x86_64 1.0.14-2.fc40 updates 367.6 KiB gc x86_64 8.2.2-6.fc40 fedora 258.7 KiB gcc x86_64 14.2.1-3.fc40 updates 104.3 MiB gcc-c++ x86_64 14.2.1-3.fc40 updates 38.2 MiB gcc-gfortran x86_64 14.2.1-3.fc40 updates 37.2 MiB gcc-plugin-annobin x86_64 14.2.1-3.fc40 updates 57.1 KiB gettext x86_64 0.22.5-4.fc40 updates 5.2 MiB gettext-envsubst x86_64 0.22.5-4.fc40 updates 74.9 KiB gettext-libs x86_64 0.22.5-4.fc40 updates 1.7 MiB gettext-runtime x86_64 0.22.5-4.fc40 updates 481.3 KiB glib2 x86_64 2.80.3-1.fc40 updates 14.6 MiB glib2-devel x86_64 2.80.3-1.fc40 updates 15.6 MiB glibc-devel x86_64 2.39-33.fc40 updates 2.2 MiB gnutls x86_64 3.8.6-1.fc40 updates 3.2 MiB google-noto-fonts-common noarch 20240301-2.fc40 fedora 17.5 KiB google-noto-sans-vf-fonts noarch 20240301-2.fc40 fedora 1.2 MiB graphite2 x86_64 1.3.14-15.fc40 fedora 192.0 KiB graphite2-devel x86_64 1.3.14-15.fc40 fedora 49.1 KiB guile30 x86_64 3.0.7-12.fc40 fedora 51.5 MiB harfbuzz x86_64 8.5.0-1.fc40 updates 2.7 MiB harfbuzz-devel x86_64 8.5.0-1.fc40 updates 5.1 MiB harfbuzz-icu x86_64 8.5.0-1.fc40 updates 15.5 KiB hwloc-libs x86_64 2.11.1-1.fc40 updates 2.8 MiB java-21-openjdk x86_64 1:21.0.5.0.11-1.fc40 updates 1.1 MiB java-21-openjdk-devel x86_64 1:21.0.5.0.11-1.fc40 updates 11.2 MiB java-21-openjdk-headless x86_64 1:21.0.5.0.11-1.fc40 updates 203.9 MiB javapackages-filesystem noarch 6.2.0-9.fc40 fedora 1.9 KiB jbigkit-libs x86_64 2.1-29.fc40 fedora 117.6 KiB kernel-headers x86_64 6.12.4-100.fc40 updates 6.4 MiB less x86_64 643-6.fc40 updates 372.6 KiB libICE x86_64 1.1.1-3.fc40 fedora 181.2 KiB libRmath x86_64 4.4.2-1.fc40 updates 246.8 KiB libRmath-devel x86_64 4.4.2-1.fc40 updates 17.4 KiB libSM x86_64 1.2.4-3.fc40 fedora 97.3 KiB libX11 x86_64 1.8.10-2.fc40 updates 1.3 MiB libX11-common noarch 1.8.10-2.fc40 updates 1.1 MiB libX11-devel x86_64 1.8.10-2.fc40 updates 1.0 MiB libX11-xcb x86_64 1.8.10-2.fc40 updates 15.0 KiB libXau x86_64 1.0.11-6.fc40 fedora 66.9 KiB libXau-devel x86_64 1.0.11-6.fc40 fedora 6.4 KiB libXcomposite x86_64 0.4.6-3.fc40 fedora 44.5 KiB libXext x86_64 1.3.6-1.fc40 fedora 90.1 KiB libXext-devel x86_64 1.3.6-1.fc40 fedora 98.9 KiB libXft x86_64 2.3.8-6.fc40 fedora 164.5 KiB libXft-devel x86_64 2.3.8-6.fc40 fedora 31.7 KiB libXi x86_64 1.8.2-1.fc40 updates 80.7 KiB libXmu x86_64 1.2.1-1.fc40 updates 187.5 KiB libXrender x86_64 0.9.11-6.fc40 fedora 50.1 KiB libXrender-devel x86_64 0.9.11-6.fc40 fedora 50.1 KiB libXt x86_64 1.3.0-3.fc40 fedora 425.9 KiB libXtst x86_64 1.2.5-1.fc40 updates 33.6 KiB libb2 x86_64 0.98.1-11.fc40 fedora 42.2 KiB libblkid-devel x86_64 2.40.2-1.fc40 updates 44.9 KiB libdatrie x86_64 0.2.13-9.fc40 fedora 57.9 KiB libdeflate x86_64 1.23-1.fc40 updates 118.8 KiB libdeflate-devel x86_64 1.23-1.fc40 updates 25.9 KiB libffi-devel x86_64 3.4.4-7.fc40 fedora 33.3 KiB libfontenc x86_64 1.1.7-3.fc40 fedora 65.0 KiB libgfortran x86_64 14.2.1-3.fc40 updates 3.0 MiB libicu x86_64 74.2-1.fc40 fedora 34.9 MiB libicu-devel x86_64 74.2-1.fc40 fedora 5.6 MiB libjpeg-turbo x86_64 3.0.2-1.fc40 fedora 776.9 KiB liblerc x86_64 4.0.0-6.fc40 fedora 603.5 KiB libmount-devel x86_64 2.40.2-1.fc40 updates 63.5 KiB libmpc x86_64 1.3.1-5.fc40 fedora 164.7 KiB libpng x86_64 2:1.6.40-3.fc40 fedora 241.8 KiB libpng-devel x86_64 2:1.6.40-3.fc40 fedora 881.5 KiB libquadmath x86_64 14.2.1-3.fc40 updates 325.9 KiB libquadmath-devel x86_64 14.2.1-3.fc40 updates 21.9 KiB libselinux-devel x86_64 3.7-5.fc40 updates 126.4 KiB libsepol-devel x86_64 3.7-2.fc40 updates 120.3 KiB libstdc++-devel x86_64 14.2.1-3.fc40 updates 15.4 MiB libtextstyle x86_64 0.22.5-4.fc40 updates 195.6 KiB libthai x86_64 0.1.29-8.fc40 fedora 783.5 KiB libtiff x86_64 4.6.0-5.fc40.1 updates 1.1 MiB libtirpc-devel x86_64 1.3.6-1.rc3.fc40 updates 251.6 KiB libwebp x86_64 1.5.0-1.fc40 updates 820.0 KiB libxcb x86_64 1.17.0-2.fc40 updates 1.1 MiB libxcb-devel x86_64 1.17.0-2.fc40 updates 2.7 MiB libxcrypt-devel x86_64 4.4.37-4.fc40 updates 30.5 KiB libxml2-devel x86_64 2.12.9-1.fc40 updates 3.4 MiB lksctp-tools x86_64 1.0.19-6.fc40 fedora 269.6 KiB lua x86_64 5.4.6-5.fc40 fedora 597.8 KiB lua-posix x86_64 36.2.1-6.fc40 fedora 599.7 KiB make x86_64 1:4.4.1-6.fc40 fedora 1.8 MiB mkfontscale x86_64 1.2.2-6.fc40 fedora 49.2 KiB mpdecimal x86_64 2.5.1-9.fc40 fedora 200.9 KiB nettle x86_64 3.9.1-6.fc40 fedora 790.1 KiB nspr x86_64 4.36.0-2.fc40 updates 316.4 KiB nss x86_64 3.107.0-1.fc40 updates 1.9 MiB nss-softokn x86_64 3.107.0-1.fc40 updates 1.9 MiB nss-softokn-freebl x86_64 3.107.0-1.fc40 updates 869.2 KiB nss-sysinit x86_64 3.107.0-1.fc40 updates 18.2 KiB nss-util x86_64 3.107.0-1.fc40 updates 230.2 KiB openblas x86_64 0.3.26-4.fc40 fedora 96.0 KiB openblas-openmp x86_64 0.3.26-4.fc40 fedora 38.9 MiB openblas-openmp64 x86_64 0.3.26-4.fc40 fedora 39.1 MiB pango x86_64 1.54.0-1.fc40 updates 996.2 KiB pcre2-devel x86_64 10.44-1.fc40 updates 2.0 MiB pcre2-utf16 x86_64 10.44-1.fc40 updates 590.0 KiB pcre2-utf32 x86_64 10.44-1.fc40 updates 562.0 KiB pixman x86_64 0.43.4-1.fc40 updates 710.1 KiB pixman-devel x86_64 0.43.4-1.fc40 updates 49.4 KiB python-pip-wheel noarch 23.3.2-2.fc40 updates 1.5 MiB python3 x86_64 3.12.8-2.fc40 updates 31.5 KiB python3-libs x86_64 3.12.8-2.fc40 updates 41.3 MiB python3-packaging noarch 23.2-4.fc40 fedora 421.1 KiB sysprof-capture-devel x86_64 46.0-1.fc40 fedora 252.8 KiB tbb x86_64 2021.11.0-5.fc40 fedora 440.9 KiB tbb-bind x86_64 2021.11.0-5.fc40 fedora 23.7 KiB tbb-devel x86_64 2021.11.0-5.fc40 fedora 1.3 MiB tcl x86_64 1:8.6.13-3.fc40 updates 4.2 MiB tcl-devel x86_64 1:8.6.13-3.fc40 updates 808.9 KiB tk x86_64 1:8.6.13-3.fc40 fedora 3.6 MiB tk-devel x86_64 1:8.6.13-3.fc40 fedora 983.9 KiB tre x86_64 0.8.0-43.20140228gitc2f5d13.fc40 fedora 75.9 KiB tre-common noarch 0.8.0-43.20140228gitc2f5d13.fc40 fedora 81.0 KiB tre-devel x86_64 0.8.0-43.20140228gitc2f5d13.fc40 fedora 10.7 KiB ttmkfdir x86_64 3.0.9-70.fc40 fedora 122.7 KiB tzdata noarch 2024a-5.fc40 updates 1.6 MiB tzdata-java noarch 2024a-5.fc40 updates 101.7 KiB xdg-utils noarch 1.2.1-1.fc40 fedora 346.3 KiB xml-common noarch 0.6.3-63.fc40 fedora 78.4 KiB xorg-x11-fonts-Type1 noarch 7.5-38.fc40 fedora 863.3 KiB xorg-x11-proto-devel noarch 2024.1-2.fc40 updates 1.7 MiB xz-devel x86_64 1:5.4.6-3.fc40 fedora 255.8 KiB zlib-ng-compat-devel x86_64 2.1.7-2.fc40 updates 106.8 KiB Transaction Summary: Installing: 245 packages Total size of inbound packages is 363 MiB. Need to download 363 MiB. After this operation, 1 GiB extra will be used (install 1 GiB, remove 0 B). [ 1/245] R-CRAN-Matrix-0:1.7.1-1.fc40. 100% | 168.6 MiB/s | 4.4 MiB | 00m00s [ 2/245] R-CRAN-Rcpp-0:1.0.13.1-1.fc40 100% | 57.4 MiB/s | 2.0 MiB | 00m00s [ 3/245] R-CRAN-RcppParallel-0:5.1.9-1 100% | 107.0 MiB/s | 328.6 KiB | 00m00s [ 4/245] R-CRAN-BH-0:1.87.0.1-1.fc40.c 100% | 142.1 MiB/s | 9.9 MiB | 00m00s [ 5/245] R-CRAN-RcppEigen-0:0.3.4.0.2- 100% | 31.9 MiB/s | 1.4 MiB | 00m00s [ 6/245] R-CRAN-coda-0:0.19.4.1-1.fc40 100% | 16.7 MiB/s | 360.1 KiB | 00m00s [ 7/245] R-CRAN-future.apply-0:1.11.3- 100% | 8.1 MiB/s | 173.2 KiB | 00m00s [ 8/245] R-CRAN-lavaan-0:0.6.19-1.fc40 100% | 110.0 MiB/s | 3.6 MiB | 00m00s [ 9/245] R-CRAN-StanHeaders-0:2.32.10- 100% | 13.0 MiB/s | 1.6 MiB | 00m00s [ 10/245] R-CRAN-mnormt-0:2.1.1-1.fc40. 100% | 5.5 MiB/s | 197.5 KiB | 00m00s [ 11/245] R-CRAN-loo-0:2.8.0-1.fc40.cop 100% | 18.7 MiB/s | 1.7 MiB | 00m00s [ 12/245] R-CRAN-bayesplot-0:1.11.1-1.f 100% | 28.3 MiB/s | 5.1 MiB | 00m00s [ 13/245] R-CRAN-nonnest2-0:0.5.8-1.fc4 100% | 5.0 MiB/s | 288.4 KiB | 00m00s [ 14/245] R-CRAN-tmvnsim-0:1.0.2-3.fc40 100% | 769.2 KiB/s | 32.3 KiB | 00m00s [ 15/245] R-CRAN-rstantools-0:2.4.0-1.f 100% | 3.7 MiB/s | 179.7 KiB | 00m00s [ 16/245] R-devel-0:4.4.2-1.fc40.x86_64 100% | 1.1 MiB/s | 9.3 KiB | 00m00s [ 17/245] R-CRAN-lattice-0:0.22.6-1.fc4 100% | 142.7 MiB/s | 1.4 MiB | 00m00s [ 18/245] tbb-0:2021.11.0-5.fc40.x86_64 100% | 31.9 MiB/s | 163.3 KiB | 00m00s [ 19/245] R-CRAN-rstan-0:2.32.6-1.fc40. 100% | 22.3 MiB/s | 2.0 MiB | 00m00s [ 20/245] R-CRAN-ggplot2-0:3.5.1-1.fc40 100% | 110.4 MiB/s | 4.7 MiB | 00m00s [ 21/245] R-CRAN-dplyr-0:1.1.4-1.fc40.c 100% | 24.0 MiB/s | 1.5 MiB | 00m00s [ 22/245] R-CRAN-glue-0:1.8.0-1.fc40.co 100% | 56.9 MiB/s | 174.8 KiB | 00m00s [ 23/245] R-CRAN-posterior-0:1.6.0-1.fc 100% | 95.2 MiB/s | 1.0 MiB | 00m00s [ 24/245] R-CRAN-ggridges-0:0.5.6-1.fc4 100% | 80.1 MiB/s | 2.1 MiB | 00m00s [ 25/245] R-CRAN-rlang-0:1.1.4-1.fc40.c 100% | 207.9 MiB/s | 1.7 MiB | 00m00s [ 26/245] R-CRAN-reshape2-0:1.4.4-3.fc4 100% | 7.0 MiB/s | 129.1 KiB | 00m00s [ 27/245] R-CRAN-tidyselect-0:1.2.1-1.f 100% | 74.9 MiB/s | 230.1 KiB | 00m00s [ 28/245] R-CRAN-tibble-0:3.2.1-1.fc40. 100% | 123.2 MiB/s | 630.7 KiB | 00m00s [ 29/245] R-CRAN-globals-0:0.16.3-1.fc4 100% | 9.7 MiB/s | 119.4 KiB | 00m00s [ 30/245] R-CRAN-numDeriv-0:2016.8.1.1- 100% | 62.6 MiB/s | 128.2 KiB | 00m00s [ 31/245] R-core-0:4.4.2-1.fc40.x86_64 100% | 333.8 MiB/s | 65.4 MiB | 00m00s [ 32/245] R-CRAN-future-0:1.34.0-1.fc40 100% | 8.2 MiB/s | 664.0 KiB | 00m00s [ 33/245] R-CRAN-pbivnorm-0:0.6.0-3.fc4 100% | 510.0 KiB/s | 31.6 KiB | 00m00s [ 34/245] R-CRAN-checkmate-0:2.3.2-1.fc 100% | 186.9 MiB/s | 765.5 KiB | 00m00s [ 35/245] R-CRAN-mvtnorm-0:1.3.2-1.fc40 100% | 229.5 MiB/s | 940.2 KiB | 00m00s [ 36/245] R-CRAN-quadprog-0:1.5.8-3.fc4 100% | 2.7 MiB/s | 43.7 KiB | 00m00s [ 37/245] R-CRAN-sandwich-0:3.1.1-1.fc4 100% | 97.1 MiB/s | 1.5 MiB | 00m00s [ 38/245] R-CRAN-CompQuadForm-0:1.4.3-3 100% | 2.2 MiB/s | 57.2 KiB | 00m00s [ 39/245] R-CRAN-gridExtra-0:2.3-3.fc40 100% | 199.9 MiB/s | 1.0 MiB | 00m00s [ 40/245] R-CRAN-pkgbuild-0:1.4.5-1.fc4 100% | 104.1 MiB/s | 213.2 KiB | 00m00s [ 41/245] R-CRAN-desc-0:1.4.3-1.fc40.co 100% | 114.4 MiB/s | 351.3 KiB | 00m00s [ 42/245] R-core-devel-0:4.4.2-1.fc40.x 100% | 30.8 MiB/s | 94.7 KiB | 00m00s [ 43/245] R-java-devel-0:4.4.2-1.fc40.x 100% | 3.0 MiB/s | 9.3 KiB | 00m00s [ 44/245] libRmath-0:4.4.2-1.fc40.x86_6 100% | 59.9 MiB/s | 122.7 KiB | 00m00s [ 45/245] cairo-0:1.18.0-3.fc40.x86_64 100% | 173.1 MiB/s | 708.9 KiB | 00m00s [ 46/245] libXt-0:1.3.0-3.fc40.x86_64 100% | 57.8 MiB/s | 177.5 KiB | 00m00s [ 47/245] libicu-0:74.2-1.fc40.x86_64 100% | 336.7 MiB/s | 10.4 MiB | 00m00s [ 48/245] R-CRAN-inline-0:0.3.20-1.fc40 100% | 2.3 MiB/s | 148.3 KiB | 00m00s [ 49/245] libjpeg-turbo-0:3.0.2-1.fc40. 100% | 110.7 MiB/s | 226.7 KiB | 00m00s [ 50/245] libpng-2:1.6.40-3.fc40.x86_64 100% | 58.6 MiB/s | 119.9 KiB | 00m00s [ 51/245] tk-1:8.6.13-3.fc40.x86_64 100% | 322.6 MiB/s | 1.6 MiB | 00m00s [ 52/245] tre-0:0.8.0-43.20140228gitc2f 100% | 10.6 MiB/s | 43.5 KiB | 00m00s [ 53/245] xdg-utils-0:1.2.1-1.fc40.noar 100% | 40.8 MiB/s | 83.5 KiB | 00m00s [ 54/245] R-CRAN-R6-0:2.5.1-1.fc40.copr 100% | 46.6 MiB/s | 95.5 KiB | 00m00s [ 55/245] R-CRAN-generics-0:0.1.3-1.fc4 100% | 25.3 MiB/s | 103.6 KiB | 00m00s [ 56/245] R-CRAN-QuickJSR-0:1.4.0-1.fc4 100% | 8.7 MiB/s | 798.0 KiB | 00m00s [ 57/245] R-CRAN-cli-0:3.6.3-1.fc40.cop 100% | 146.5 MiB/s | 1.3 MiB | 00m00s [ 58/245] R-CRAN-lifecycle-0:1.0.4-1.fc 100% | 25.5 MiB/s | 130.5 KiB | 00m00s [ 59/245] R-CRAN-magrittr-0:2.0.3-1.fc4 100% | 72.5 MiB/s | 222.7 KiB | 00m00s [ 60/245] R-CRAN-gtable-0:0.3.6-1.fc40. 100% | 77.3 MiB/s | 237.6 KiB | 00m00s [ 61/245] R-CRAN-vctrs-0:0.6.5-1.fc40.c 100% | 127.8 MiB/s | 1.3 MiB | 00m00s [ 62/245] R-CRAN-isoband-0:0.2.7-1.fc40 100% | 156.1 MiB/s | 1.6 MiB | 00m00s [ 63/245] R-CRAN-withr-0:3.0.2-1.fc40.c 100% | 60.9 MiB/s | 249.4 KiB | 00m00s [ 64/245] R-CRAN-abind-0:1.4.8-1.fc40.c 100% | 19.9 MiB/s | 81.6 KiB | 00m00s [ 65/245] R-CRAN-mgcv-0:1.9.1-1.fc40.co 100% | 154.6 MiB/s | 3.2 MiB | 00m00s [ 66/245] R-CRAN-scales-0:1.3.0-1.fc40. 100% | 43.0 MiB/s | 704.1 KiB | 00m00s [ 67/245] R-CRAN-tensorA-0:0.36.2.1-1.f 100% | 50.8 MiB/s | 260.1 KiB | 00m00s [ 68/245] R-CRAN-distributional-0:0.5.0 100% | 40.2 MiB/s | 494.2 KiB | 00m00s [ 69/245] R-CRAN-stringr-0:1.5.1-1.fc40 100% | 103.5 MiB/s | 318.0 KiB | 00m00s [ 70/245] R-CRAN-fansi-0:1.0.6-1.fc40.c 100% | 113.7 MiB/s | 349.1 KiB | 00m00s [ 71/245] R-CRAN-pkgconfig-0:2.0.3-3.fc 100% | 9.7 MiB/s | 29.9 KiB | 00m00s [ 72/245] R-CRAN-digest-0:0.6.37-1.fc40 100% | 111.8 MiB/s | 228.9 KiB | 00m00s [ 73/245] R-CRAN-parallelly-0:1.41.0-1. 100% | 176.2 MiB/s | 541.2 KiB | 00m00s [ 74/245] R-CRAN-codetools-0:0.2.20-1.f 100% | 49.2 MiB/s | 100.8 KiB | 00m00s [ 75/245] R-CRAN-backports-0:1.5.0-1.fc 100% | 68.7 MiB/s | 140.8 KiB | 00m00s [ 76/245] R-CRAN-plyr-0:1.8.9-1.fc40.co 100% | 33.8 MiB/s | 831.2 KiB | 00m00s [ 77/245] R-CRAN-zoo-0:1.8.12-1.fc40.co 100% | 208.7 MiB/s | 1.0 MiB | 00m00s [ 78/245] R-CRAN-callr-0:3.7.6-1.fc40.c 100% | 86.2 MiB/s | 441.2 KiB | 00m00s [ 79/245] R-CRAN-processx-0:3.8.4-1.fc4 100% | 173.8 MiB/s | 356.0 KiB | 00m00s [ 80/245] libRmath-devel-0:4.4.2-1.fc40 100% | 4.8 MiB/s | 14.9 KiB | 00m00s [ 81/245] make-1:4.4.1-6.fc40.x86_64 100% | 191.3 MiB/s | 587.6 KiB | 00m00s [ 82/245] R-java-0:4.4.2-1.fc40.x86_64 100% | 3.2 MiB/s | 9.8 KiB | 00m00s [ 83/245] freetype-0:2.13.2-5.fc40.x86_ 100% | 200.1 MiB/s | 409.7 KiB | 00m00s [ 84/245] libXext-0:1.3.6-1.fc40.x86_64 100% | 38.0 MiB/s | 38.9 KiB | 00m00s [ 85/245] libXrender-0:0.9.11-6.fc40.x8 100% | 26.7 MiB/s | 27.4 KiB | 00m00s [ 86/245] libICE-0:1.1.1-3.fc40.x86_64 100% | 72.7 MiB/s | 74.5 KiB | 00m00s [ 87/245] libSM-0:1.2.4-3.fc40.x86_64 100% | 42.0 MiB/s | 43.0 KiB | 00m00s [ 88/245] libXft-0:2.3.8-6.fc40.x86_64 100% | 70.4 MiB/s | 72.1 KiB | 00m00s [ 89/245] desktop-file-utils-0:0.26-12. 100% | 33.3 MiB/s | 68.2 KiB | 00m00s [ 90/245] tre-common-0:0.8.0-43.2014022 100% | 10.2 MiB/s | 31.2 KiB | 00m00s [ 91/245] R-CRAN-listenv-0:0.9.1-1.fc40 100% | 3.2 MiB/s | 118.6 KiB | 00m00s [ 92/245] R-CRAN-RColorBrewer-0:1.1.3-1 100% | 15.3 MiB/s | 62.7 KiB | 00m00s [ 93/245] R-CRAN-labeling-0:0.4.3-1.fc4 100% | 14.9 MiB/s | 76.2 KiB | 00m00s [ 94/245] R-CRAN-farver-0:2.1.2-1.fc40. 100% | 102.4 MiB/s | 1.3 MiB | 00m00s [ 95/245] R-CRAN-munsell-0:0.5.1-1.fc40 100% | 40.8 MiB/s | 251.0 KiB | 00m00s [ 96/245] R-CRAN-nlme-0:3.1.166-1.fc40. 100% | 121.0 MiB/s | 2.4 MiB | 00m00s [ 97/245] R-CRAN-viridisLite-0:0.4.2-1. 100% | 138.8 MiB/s | 1.2 MiB | 00m00s [ 98/245] R-CRAN-ps-0:1.8.1-1.fc40.copr 100% | 68.5 MiB/s | 420.7 KiB | 00m00s [ 99/245] R-CRAN-stringi-0:1.8.4-1.fc40 100% | 89.4 MiB/s | 1.0 MiB | 00m00s [100/245] gc-0:8.2.2-6.fc40.x86_64 100% | 17.9 MiB/s | 110.2 KiB | 00m00s [101/245] R-CRAN-colorspace-0:2.1.1-1.f 100% | 176.3 MiB/s | 2.5 MiB | 00m00s [102/245] guile30-0:3.0.7-12.fc40.x86_6 100% | 326.0 MiB/s | 8.1 MiB | 00m00s [103/245] R-littler-0:0.3.19-4.fc40.x86 100% | 4.1 MiB/s | 71.0 KiB | 00m00s [104/245] R-CRAN-pillar-0:1.10.1-1.fc40 100% | 56.2 MiB/s | 632.7 KiB | 00m00s [105/245] R-CRAN-utf8-0:1.2.4-1.fc40.co 100% | 73.3 MiB/s | 150.0 KiB | 00m00s [106/245] flexiblas-netlib-0:3.4.4-1.fc 100% | 320.7 MiB/s | 3.2 MiB | 00m00s [107/245] flexiblas-0:3.4.4-1.fc40.x86_ 100% | 2.3 MiB/s | 25.4 KiB | 00m00s [108/245] flexiblas-openblas-openmp-0:3 100% | 1.7 MiB/s | 17.1 KiB | 00m00s [109/245] R-CRAN-MASS-0:7.3.64-1.fc40.c 100% | 170.4 MiB/s | 1.2 MiB | 00m00s [110/245] R-CRAN-matrixStats-0:1.5.0-1. 100% | 61.6 MiB/s | 504.6 KiB | 00m00s [111/245] openblas-openmp-0:0.3.26-4.fc 100% | 281.1 MiB/s | 5.1 MiB | 00m00s [112/245] tbb-devel-0:2021.11.0-5.fc40. 100% | 26.0 MiB/s | 240.0 KiB | 00m00s [113/245] tbb-bind-0:2021.11.0-5.fc40.x 100% | 2.3 MiB/s | 18.9 KiB | 00m00s [114/245] fontconfig-0:2.15.0-6.fc40.x8 100% | 131.7 MiB/s | 269.8 KiB | 00m00s [115/245] fonts-filesystem-1:2.0.5-14.f 100% | 4.0 MiB/s | 8.2 KiB | 00m00s [116/245] xml-common-0:0.6.3-63.fc40.no 100% | 15.1 MiB/s | 31.0 KiB | 00m00s [117/245] tcl-1:8.6.13-3.fc40.x86_64 100% | 220.8 MiB/s | 1.1 MiB | 00m00s [118/245] libX11-common-0:1.8.10-2.fc40 100% | 28.6 MiB/s | 175.8 KiB | 00m00s [119/245] cmake-filesystem-0:3.30.5-1.f 100% | 8.5 MiB/s | 17.4 KiB | 00m00s [120/245] libX11-0:1.8.10-2.fc40.x86_64 100% | 70.5 MiB/s | 649.8 KiB | 00m00s [121/245] libgfortran-0:14.2.1-3.fc40.x 100% | 229.5 MiB/s | 939.9 KiB | 00m00s [122/245] openblas-0:0.3.26-4.fc40.x86_ 100% | 9.4 MiB/s | 38.6 KiB | 00m00s [123/245] harfbuzz-0:8.5.0-1.fc40.x86_6 100% | 204.7 MiB/s | 1.0 MiB | 00m00s [124/245] graphite2-0:1.3.14-15.fc40.x8 100% | 18.5 MiB/s | 94.8 KiB | 00m00s [125/245] hwloc-libs-0:2.11.1-1.fc40.x8 100% | 149.0 MiB/s | 2.1 MiB | 00m00s [126/245] emacs-filesystem-1:29.4-9.fc4 100% | 3.0 MiB/s | 9.2 KiB | 00m00s [127/245] glib2-0:2.80.3-1.fc40.x86_64 100% | 335.8 MiB/s | 3.0 MiB | 00m00s [128/245] libxcb-0:1.17.0-2.fc40.x86_64 100% | 33.5 MiB/s | 240.0 KiB | 00m00s [129/245] libXau-0:1.0.11-6.fc40.x86_64 100% | 4.4 MiB/s | 31.7 KiB | 00m00s [130/245] pixman-0:0.43.4-1.fc40.x86_64 100% | 143.2 MiB/s | 293.2 KiB | 00m00s [131/245] nettle-0:3.9.1-6.fc40.x86_64 100% | 69.2 MiB/s | 424.9 KiB | 00m00s [132/245] gnutls-0:3.8.6-1.fc40.x86_64 100% | 158.7 MiB/s | 1.1 MiB | 00m00s [133/245] default-fonts-core-sans-0:4.0 100% | 5.1 MiB/s | 31.5 KiB | 00m00s [134/245] abattis-cantarell-vf-fonts-0: 100% | 39.2 MiB/s | 120.3 KiB | 00m00s [135/245] google-noto-sans-vf-fonts-0:2 100% | 193.1 MiB/s | 593.3 KiB | 00m00s [136/245] google-noto-fonts-common-0:20 100% | 8.4 MiB/s | 17.3 KiB | 00m00s [137/245] libquadmath-0:14.2.1-3.fc40.x 100% | 98.8 MiB/s | 202.3 KiB | 00m00s [138/245] java-21-openjdk-1:21.0.5.0.11 100% | 102.7 MiB/s | 420.5 KiB | 00m00s [139/245] libXcomposite-0:0.4.6-3.fc40. 100% | 7.9 MiB/s | 24.2 KiB | 00m00s [140/245] xorg-x11-fonts-Type1-0:7.5-38 100% | 82.1 MiB/s | 504.1 KiB | 00m00s [141/245] copy-jdk-configs-0:4.1-5.fc40 100% | 5.4 MiB/s | 27.6 KiB | 00m00s [142/245] javapackages-filesystem-0:6.2 100% | 2.4 MiB/s | 12.4 KiB | 00m00s [143/245] lksctp-tools-0:1.0.19-6.fc40. 100% | 18.0 MiB/s | 92.1 KiB | 00m00s [144/245] mkfontscale-0:1.2.2-6.fc40.x8 100% | 7.8 MiB/s | 31.8 KiB | 00m00s [145/245] ttmkfdir-0:3.0.9-70.fc40.x86_ 100% | 13.7 MiB/s | 56.0 KiB | 00m00s [146/245] lua-posix-0:36.2.1-6.fc40.x86 100% | 27.8 MiB/s | 142.4 KiB | 00m00s [147/245] libfontenc-0:1.1.7-3.fc40.x86 100% | 7.8 MiB/s | 31.9 KiB | 00m00s [148/245] R-rpm-macros-0:1.2.1-10.fc40. 100% | 1.6 MiB/s | 11.1 KiB | 00m00s [149/245] flexiblas-devel-0:3.4.4-1.fc4 100% | 14.7 MiB/s | 120.8 KiB | 00m00s [150/245] flexiblas-netlib64-0:3.4.4-1. 100% | 128.7 MiB/s | 3.1 MiB | 00m00s [151/245] flexiblas-openblas-openmp64-0 100% | 3.3 MiB/s | 17.1 KiB | 00m00s [152/245] openblas-openmp64-0:0.3.26-4. 100% | 130.0 MiB/s | 4.9 MiB | 00m00s [153/245] gcc-c++-0:14.2.1-3.fc40.x86_6 100% | 283.6 MiB/s | 14.2 MiB | 00m00s [154/245] java-21-openjdk-devel-1:21.0. 100% | 20.5 MiB/s | 5.0 MiB | 00m00s [155/245] libmpc-0:1.3.1-5.fc40.x86_64 100% | 8.7 MiB/s | 71.1 KiB | 00m00s [156/245] gcc-0:14.2.1-3.fc40.x86_64 100% | 244.8 MiB/s | 37.0 MiB | 00m00s [157/245] cpp-0:14.2.1-3.fc40.x86_64 100% | 124.5 MiB/s | 12.0 MiB | 00m00s [158/245] java-21-openjdk-headless-1:21 100% | 118.7 MiB/s | 47.3 MiB | 00m00s [159/245] libX11-devel-0:1.8.10-2.fc40. 100% | 18.9 MiB/s | 1.0 MiB | 00m00s [160/245] libdeflate-devel-0:1.23-1.fc4 100% | 1.3 MiB/s | 18.1 KiB | 00m00s [161/245] libdeflate-0:1.23-1.fc40.x86_ 100% | 5.1 MiB/s | 68.2 KiB | 00m00s [162/245] gcc-gfortran-0:14.2.1-3.fc40. 100% | 144.4 MiB/s | 13.4 MiB | 00m00s [163/245] libtirpc-devel-0:1.3.6-1.rc3. 100% | 6.8 MiB/s | 125.6 KiB | 00m00s [164/245] pcre2-devel-0:10.44-1.fc40.x8 100% | 36.4 MiB/s | 521.3 KiB | 00m00s [165/245] pcre2-utf16-0:10.44-1.fc40.x8 100% | 108.7 MiB/s | 222.6 KiB | 00m00s [166/245] pcre2-utf32-0:10.44-1.fc40.x8 100% | 102.7 MiB/s | 210.2 KiB | 00m00s [167/245] zlib-ng-compat-devel-0:2.1.7- 100% | 12.4 MiB/s | 37.9 KiB | 00m00s [168/245] bzip2-devel-0:1.0.8-18.fc40.x 100% | 104.3 MiB/s | 213.5 KiB | 00m00s [169/245] tcl-devel-1:8.6.13-3.fc40.x86 100% | 41.3 MiB/s | 169.2 KiB | 00m00s [170/245] libicu-devel-0:74.2-1.fc40.x8 100% | 181.6 MiB/s | 930.0 KiB | 00m00s [171/245] tre-devel-0:0.8.0-43.20140228 100% | 2.3 MiB/s | 11.8 KiB | 00m00s [172/245] tk-devel-1:8.6.13-3.fc40.x86_ 100% | 75.4 MiB/s | 540.8 KiB | 00m00s [173/245] xz-devel-1:5.4.6-3.fc40.x86_6 100% | 10.9 MiB/s | 67.0 KiB | 00m00s [174/245] less-0:643-6.fc40.x86_64 100% | 28.4 MiB/s | 174.7 KiB | 00m00s [175/245] libXmu-0:1.2.1-1.fc40.x86_64 100% | 10.8 MiB/s | 77.7 KiB | 00m00s [176/245] libtiff-0:4.6.0-5.fc40.1.x86_ 100% | 66.1 MiB/s | 338.7 KiB | 00m00s [177/245] jbigkit-libs-0:2.1-29.fc40.x8 100% | 10.4 MiB/s | 53.1 KiB | 00m00s [178/245] liblerc-0:4.0.0-6.fc40.x86_64 100% | 41.0 MiB/s | 210.1 KiB | 00m00s [179/245] libthai-0:0.1.29-8.fc40.x86_6 100% | 69.6 MiB/s | 213.8 KiB | 00m00s [180/245] libdatrie-0:0.2.13-9.fc40.x86 100% | 7.8 MiB/s | 32.0 KiB | 00m00s [181/245] libXft-devel-0:2.3.8-6.fc40.x 100% | 9.8 MiB/s | 50.2 KiB | 00m00s [182/245] pango-0:1.54.0-1.fc40.x86_64 100% | 33.9 MiB/s | 347.3 KiB | 00m00s [183/245] fontconfig-devel-0:2.15.0-6.f 100% | 32.2 MiB/s | 164.7 KiB | 00m00s [184/245] freetype-devel-0:2.13.2-5.fc4 100% | 185.8 MiB/s | 951.3 KiB | 00m00s [185/245] xorg-x11-proto-devel-0:2024.1 100% | 48.8 MiB/s | 300.1 KiB | 00m00s [186/245] libXrender-devel-0:0.9.11-6.f 100% | 4.6 MiB/s | 19.0 KiB | 00m00s [187/245] harfbuzz-devel-0:8.5.0-1.fc40 100% | 217.9 MiB/s | 446.2 KiB | 00m00s [188/245] harfbuzz-icu-0:8.5.0-1.fc40.x 100% | 7.7 MiB/s | 15.9 KiB | 00m00s [189/245] brotli-devel-0:1.1.0-3.fc40.x 100% | 33.0 MiB/s | 33.8 KiB | 00m00s [190/245] brotli-0:1.1.0-3.fc40.x86_64 100% | 19.5 MiB/s | 19.9 KiB | 00m00s [191/245] libpng-devel-2:1.6.40-3.fc40. 100% | 141.9 MiB/s | 290.6 KiB | 00m00s [192/245] fribidi-0:1.0.14-2.fc40.x86_6 100% | 44.8 MiB/s | 91.7 KiB | 00m00s [193/245] lua-0:5.4.6-5.fc40.x86_64 100% | 46.6 MiB/s | 190.8 KiB | 00m00s [194/245] libwebp-0:1.5.0-1.fc40.x86_64 100% | 96.6 MiB/s | 296.6 KiB | 00m00s [195/245] libX11-xcb-0:1.8.10-2.fc40.x8 100% | 3.9 MiB/s | 11.9 KiB | 00m00s [196/245] libxcb-devel-0:1.17.0-2.fc40. 100% | 239.5 MiB/s | 1.4 MiB | 00m00s [197/245] alsa-lib-0:1.2.13-3.fc40.x86_ 100% | 84.2 MiB/s | 517.5 KiB | 00m00s [198/245] cups-libs-1:2.4.11-8.fc40.x86 100% | 36.5 MiB/s | 261.9 KiB | 00m00s [199/245] cups-filesystem-1:2.4.11-8.fc 100% | 4.4 MiB/s | 13.6 KiB | 00m00s [200/245] avahi-libs-0:0.8-26.fc40.x86_ 100% | 65.0 MiB/s | 66.5 KiB | 00m00s [201/245] dbus-libs-1:1.14.10-3.fc40.x8 100% | 50.9 MiB/s | 156.3 KiB | 00m00s [202/245] nss-0:3.107.0-1.fc40.x86_64 100% | 115.7 MiB/s | 710.8 KiB | 00m00s [203/245] nss-softokn-0:3.107.0-1.fc40. 100% | 57.8 MiB/s | 414.2 KiB | 00m00s [204/245] nss-util-0:3.107.0-1.fc40.x86 100% | 14.5 MiB/s | 89.1 KiB | 00m00s [205/245] nss-softokn-freebl-0:3.107.0- 100% | 46.3 MiB/s | 331.5 KiB | 00m00s [206/245] nss-sysinit-0:3.107.0-1.fc40. 100% | 3.6 MiB/s | 18.6 KiB | 00m00s [207/245] tzdata-java-0:2024a-5.fc40.no 100% | 6.6 MiB/s | 47.2 KiB | 00m00s [208/245] libXi-0:1.8.2-1.fc40.x86_64 100% | 19.5 MiB/s | 40.0 KiB | 00m00s [209/245] libXtst-0:1.2.5-1.fc40.x86_64 100% | 5.0 MiB/s | 20.5 KiB | 00m00s [210/245] glib2-devel-0:2.80.3-1.fc40.x 100% | 293.3 MiB/s | 1.5 MiB | 00m00s [211/245] python3-packaging-0:23.2-4.fc 100% | 24.5 MiB/s | 125.2 KiB | 00m00s [212/245] cairo-devel-0:1.18.0-3.fc40.x 100% | 47.0 MiB/s | 192.7 KiB | 00m00s [213/245] graphite2-devel-0:1.3.14-15.f 100% | 10.1 MiB/s | 20.6 KiB | 00m00s [214/245] libmount-devel-0:2.40.2-1.fc4 100% | 13.0 MiB/s | 26.7 KiB | 00m00s [215/245] libselinux-devel-0:3.7-5.fc40 100% | 49.2 MiB/s | 151.1 KiB | 00m00s [216/245] libsepol-devel-0:3.7-2.fc40.x 100% | 15.6 MiB/s | 48.1 KiB | 00m00s [217/245] python3-0:3.12.8-2.fc40.x86_6 100% | 6.8 MiB/s | 28.0 KiB | 00m00s [218/245] libb2-0:0.98.1-11.fc40.x86_64 100% | 2.5 MiB/s | 25.5 KiB | 00m00s [219/245] mpdecimal-0:2.5.1-9.fc40.x86_ 100% | 7.9 MiB/s | 88.6 KiB | 00m00s [220/245] libffi-devel-0:3.4.4-7.fc40.x 100% | 4.6 MiB/s | 28.2 KiB | 00m00s [221/245] sysprof-capture-devel-0:46.0- 100% | 8.7 MiB/s | 53.6 KiB | 00m00s [222/245] python3-libs-0:3.12.8-2.fc40. 100% | 284.8 MiB/s | 9.1 MiB | 00m00s [223/245] libquadmath-devel-0:14.2.1-3. 100% | 3.3 MiB/s | 44.3 KiB | 00m00s [224/245] libstdc++-devel-0:14.2.1-3.fc 100% | 172.1 MiB/s | 2.8 MiB | 00m00s [225/245] glibc-devel-0:2.39-33.fc40.x8 100% | 84.5 MiB/s | 605.4 KiB | 00m00s [226/245] gettext-0:0.22.5-4.fc40.x86_6 100% | 135.2 MiB/s | 1.1 MiB | 00m00s [227/245] gettext-runtime-0:0.22.5-4.fc 100% | 39.5 MiB/s | 121.4 KiB | 00m00s [228/245] libtextstyle-0:0.22.5-4.fc40. 100% | 28.7 MiB/s | 88.1 KiB | 00m00s [229/245] gettext-envsubst-0:0.22.5-4.f 100% | 18.3 MiB/s | 37.5 KiB | 00m00s [230/245] gettext-libs-0:0.22.5-4.fc40. 100% | 216.8 MiB/s | 666.0 KiB | 00m00s [231/245] libxml2-devel-0:2.12.9-1.fc40 100% | 170.4 MiB/s | 523.6 KiB | 00m00s [232/245] pixman-devel-0:0.43.4-1.fc40. 100% | 8.4 MiB/s | 17.2 KiB | 00m00s [233/245] libXext-devel-0:1.3.6-1.fc40. 100% | 41.9 MiB/s | 85.7 KiB | 00m00s [234/245] expat-0:2.6.3-1.fc40.x86_64 100% | 55.7 MiB/s | 114.1 KiB | 00m00s [235/245] python-pip-wheel-0:23.3.2-2.f 100% | 245.6 MiB/s | 1.5 MiB | 00m00s [236/245] tzdata-0:2024a-5.fc40.noarch 100% | 99.9 MiB/s | 716.1 KiB | 00m00s [237/245] nspr-0:4.36.0-2.fc40.x86_64 100% | 26.8 MiB/s | 137.2 KiB | 00m00s [238/245] crypto-policies-scripts-0:202 100% | 40.3 MiB/s | 123.7 KiB | 00m00s [239/245] libXau-devel-0:1.0.11-6.fc40. 100% | 6.7 MiB/s | 13.7 KiB | 00m00s [240/245] libblkid-devel-0:2.40.2-1.fc4 100% | 12.6 MiB/s | 25.8 KiB | 00m00s [241/245] libxcrypt-devel-0:4.4.37-4.fc 100% | 27.6 MiB/s | 28.3 KiB | 00m00s [242/245] gcc-plugin-annobin-0:14.2.1-3 100% | 26.9 MiB/s | 55.1 KiB | 00m00s [243/245] annobin-plugin-gcc-0:12.60-1. 100% | 314.5 MiB/s | 966.0 KiB | 00m00s [244/245] annobin-docs-0:12.60-1.fc40.n 100% | 29.1 MiB/s | 89.5 KiB | 00m00s [245/245] kernel-headers-0:6.12.4-100.f 100% | 68.0 MiB/s | 1.6 MiB | 00m00s -------------------------------------------------------------------------------- [245/245] Total 100% | 229.0 MiB/s | 362.8 MiB | 00m02s Running transaction [ 1/247] Verify package files 100% | 211.0 B/s | 245.0 B | 00m01s >>> Running pre-transaction scriptlet: copy-jdk-configs-0:4.1-5.fc40.noarch >>> Finished pre-transaction scriptlet: copy-jdk-configs-0:4.1-5.fc40.noarch >>> [RPM] /var/lib/mock/fedora-40-x86_64-1736389068.891202/root/var/cache/dnf/co [ 2/247] Prepare transaction 100% | 983.0 B/s | 245.0 B | 00m00s [ 3/247] Installing nspr-0:4.36.0-2.fc 100% | 103.6 MiB/s | 318.3 KiB | 00m00s [ 4/247] Installing xorg-x11-proto-dev 100% | 254.7 MiB/s | 1.8 MiB | 00m00s [ 5/247] Installing libgfortran-0:14.2 100% | 434.9 MiB/s | 3.0 MiB | 00m00s [ 6/247] Installing nss-util-0:3.107.0 100% | 225.8 MiB/s | 231.2 KiB | 00m00s [ 7/247] Installing libmpc-0:1.3.1-5.f 100% | 162.3 MiB/s | 166.2 KiB | 00m00s [ 8/247] Installing libquadmath-0:14.2 100% | 159.7 MiB/s | 327.2 KiB | 00m00s [ 9/247] Installing cmake-filesystem-0 100% | 7.1 MiB/s | 7.3 KiB | 00m00s [ 10/247] Installing zlib-ng-compat-dev 100% | 105.8 MiB/s | 108.3 KiB | 00m00s [ 11/247] Installing libpng-2:1.6.40-3. 100% | 237.4 MiB/s | 243.1 KiB | 00m00s [ 12/247] Installing libicu-0:74.2-1.fc 100% | 375.7 MiB/s | 34.9 MiB | 00m00s [ 13/247] Installing tbb-0:2021.11.0-5. 100% | 144.4 MiB/s | 443.7 KiB | 00m00s [ 14/247] Installing tcl-1:8.6.13-3.fc4 100% | 301.8 MiB/s | 4.2 MiB | 00m00s [ 15/247] Installing fonts-filesystem-1 100% | 0.0 B/s | 788.0 B | 00m00s [ 16/247] Installing tcl-devel-1:8.6.13 100% | 265.6 MiB/s | 816.0 KiB | 00m00s [ 17/247] Installing libicu-devel-0:74. 100% | 282.1 MiB/s | 5.6 MiB | 00m00s [ 18/247] Installing libpng-devel-2:1.6 100% | 288.2 MiB/s | 885.4 KiB | 00m00s [ 19/247] Installing libtextstyle-0:0.2 100% | 191.8 MiB/s | 196.4 KiB | 00m00s [ 20/247] Installing gettext-libs-0:0.2 100% | 335.2 MiB/s | 1.7 MiB | 00m00s [ 21/247] Installing xz-devel-1:5.4.6-3 100% | 126.9 MiB/s | 259.9 KiB | 00m00s [ 22/247] Installing bzip2-devel-0:1.0. 100% | 303.5 MiB/s | 310.7 KiB | 00m00s [ 23/247] Installing libdeflate-0:1.23- 100% | 117.4 MiB/s | 120.2 KiB | 00m00s [ 24/247] Installing pixman-0:0.43.4-1. 100% | 347.3 MiB/s | 711.2 KiB | 00m00s [ 25/247] Installing libXau-0:1.0.11-6. 100% | 66.8 MiB/s | 68.4 KiB | 00m00s [ 26/247] Installing libxcb-0:1.17.0-2. 100% | 223.6 MiB/s | 1.1 MiB | 00m00s [ 27/247] Installing graphite2-0:1.3.14 100% | 189.6 MiB/s | 194.2 KiB | 00m00s [ 28/247] Installing openblas-0:0.3.26- 100% | 95.5 MiB/s | 97.8 KiB | 00m00s [ 29/247] Installing libICE-0:1.1.1-3.f 100% | 178.3 MiB/s | 182.6 KiB | 00m00s [ 30/247] Installing libjpeg-turbo-0:3. 100% | 380.2 MiB/s | 778.6 KiB | 00m00s [ 31/247] Installing libRmath-0:4.4.2-1 100% | 242.0 MiB/s | 247.8 KiB | 00m00s [ 32/247] Installing libRmath-devel-0:4 100% | 0.0 B/s | 17.7 KiB | 00m00s [ 33/247] Installing libSM-0:1.2.4-3.fc 100% | 96.3 MiB/s | 98.6 KiB | 00m00s [ 34/247] Installing openblas-openmp-0: 100% | 580.6 MiB/s | 38.9 MiB | 00m00s [ 35/247] Installing flexiblas-0:3.4.4- 100% | 0.0 B/s | 49.7 KiB | 00m00s [ 36/247] Installing flexiblas-openblas 100% | 0.0 B/s | 40.1 KiB | 00m00s [ 37/247] Installing flexiblas-netlib-0 100% | 390.9 MiB/s | 10.6 MiB | 00m00s [ 38/247] Installing openblas-openmp64- 100% | 583.5 MiB/s | 39.1 MiB | 00m00s [ 39/247] Installing flexiblas-netlib64 100% | 410.1 MiB/s | 10.7 MiB | 00m00s [ 40/247] Installing flexiblas-openblas 100% | 39.2 MiB/s | 40.2 KiB | 00m00s [ 41/247] Installing flexiblas-devel-0: 100% | 666.8 MiB/s | 4.7 MiB | 00m00s [ 42/247] Installing graphite2-devel-0: 100% | 0.0 B/s | 50.6 KiB | 00m00s [ 43/247] Installing libXau-devel-0:1.0 100% | 1.6 MiB/s | 8.2 KiB | 00m00s [ 44/247] Installing libxcb-devel-0:1.1 100% | 73.0 MiB/s | 3.1 MiB | 00m00s [ 45/247] Installing pixman-devel-0:0.4 100% | 0.0 B/s | 50.2 KiB | 00m00s [ 46/247] Installing libdeflate-devel-0 100% | 26.6 MiB/s | 27.3 KiB | 00m00s [ 47/247] Installing libxml2-devel-0:2. 100% | 341.6 MiB/s | 3.4 MiB | 00m00s [ 48/247] Installing abattis-cantarell- 100% | 189.9 MiB/s | 194.4 KiB | 00m00s [ 49/247] Installing cpp-0:14.2.1-3.fc4 100% | 357.1 MiB/s | 35.0 MiB | 00m00s [ 50/247] Installing nss-softokn-freebl 100% | 283.7 MiB/s | 871.4 KiB | 00m00s [ 51/247] Installing nss-softokn-0:3.10 100% | 379.2 MiB/s | 1.9 MiB | 00m00s [ 52/247] Installing annobin-docs-0:12. 100% | 47.6 MiB/s | 97.4 KiB | 00m00s [ 53/247] Installing kernel-headers-0:6 100% | 194.0 MiB/s | 6.6 MiB | 00m00s [ 54/247] Installing libxcrypt-devel-0: 100% | 16.0 MiB/s | 32.9 KiB | 00m00s [ 55/247] Installing glibc-devel-0:2.39 100% | 163.8 MiB/s | 2.3 MiB | 00m00s [ 56/247] Installing libblkid-devel-0:2 100% | 11.2 MiB/s | 46.0 KiB | 00m00s [ 57/247] Installing tzdata-0:2024a-5.f 100% | 59.4 MiB/s | 1.9 MiB | 00m00s [ 58/247] Installing python-pip-wheel-0 100% | 508.9 MiB/s | 1.5 MiB | 00m00s [ 59/247] Installing expat-0:2.6.3-1.fc 100% | 141.4 MiB/s | 289.6 KiB | 00m00s [ 60/247] Installing gettext-envsubst-0 100% | 74.5 MiB/s | 76.3 KiB | 00m00s [ 61/247] Installing gettext-runtime-0: 100% | 119.8 MiB/s | 490.7 KiB | 00m00s [ 62/247] Installing gettext-0:0.22.5-4 100% | 308.2 MiB/s | 5.2 MiB | 00m00s [ 63/247] Installing libstdc++-devel-0: 100% | 361.8 MiB/s | 15.6 MiB | 00m00s [ 64/247] Installing sysprof-capture-de 100% | 249.7 MiB/s | 255.7 KiB | 00m00s [ 65/247] Installing libffi-devel-0:3.4 100% | 0.0 B/s | 34.9 KiB | 00m00s [ 66/247] Installing mpdecimal-0:2.5.1- 100% | 197.3 MiB/s | 202.0 KiB | 00m00s [ 67/247] Installing libb2-0:0.98.1-11. 100% | 7.0 MiB/s | 43.3 KiB | 00m00s [ 68/247] Installing python3-libs-0:3.1 100% | 304.2 MiB/s | 41.7 MiB | 00m00s [ 69/247] Installing python3-0:3.12.8-2 100% | 32.5 MiB/s | 33.3 KiB | 00m00s [ 70/247] Installing python3-packaging- 100% | 140.6 MiB/s | 431.9 KiB | 00m00s [ 71/247] Installing crypto-policies-sc 100% | 119.9 MiB/s | 368.5 KiB | 00m00s [ 72/247] Installing nss-sysinit-0:3.10 100% | 18.7 MiB/s | 19.2 KiB | 00m00s [ 73/247] Installing nss-0:3.107.0-1.fc 100% | 147.6 MiB/s | 1.9 MiB | 00m00s [ 74/247] Installing libsepol-devel-0:3 100% | 62.4 MiB/s | 127.8 KiB | 00m00s [ 75/247] Installing tzdata-java-0:2024 100% | 0.0 B/s | 102.1 KiB | 00m00s [ 76/247] Installing dbus-libs-1:1.14.1 100% | 180.7 MiB/s | 370.1 KiB | 00m00s [ 77/247] Installing avahi-libs-0:0.8-2 100% | 164.9 MiB/s | 168.9 KiB | 00m00s [ 78/247] Installing cups-filesystem-1: 100% | 1.7 MiB/s | 1.8 KiB | 00m00s [ 79/247] Installing alsa-lib-0:1.2.13- 100% | 201.0 MiB/s | 1.4 MiB | 00m00s [ 80/247] Installing libX11-xcb-0:1.8.1 100% | 0.0 B/s | 15.9 KiB | 00m00s [ 81/247] Installing libwebp-0:1.5.0-1. 100% | 268.3 MiB/s | 824.1 KiB | 00m00s [ 82/247] Installing fribidi-0:1.0.14-2 100% | 180.7 MiB/s | 370.1 KiB | 00m00s [ 83/247] Installing lua-0:5.4.6-5.fc40 100% | 293.4 MiB/s | 600.8 KiB | 00m00s [ 84/247] Installing brotli-0:1.1.0-3.f 100% | 0.0 B/s | 32.5 KiB | 00m00s [ 85/247] Installing brotli-devel-0:1.1 100% | 66.4 MiB/s | 68.0 KiB | 00m00s [ 86/247] Installing libdatrie-0:0.2.13 100% | 57.7 MiB/s | 59.0 KiB | 00m00s [ 87/247] Installing libthai-0:0.1.29-8 100% | 255.6 MiB/s | 785.3 KiB | 00m00s [ 88/247] Installing liblerc-0:4.0.0-6. 100% | 295.4 MiB/s | 605.0 KiB | 00m00s [ 89/247] Installing jbigkit-libs-0:2.1 100% | 116.8 MiB/s | 119.6 KiB | 00m00s [ 90/247] Installing libtiff-0:4.6.0-5. 100% | 285.9 MiB/s | 1.1 MiB | 00m00s [ 91/247] Installing less-0:643-6.fc40. 100% | 183.6 MiB/s | 376.0 KiB | 00m00s [ 92/247] Installing pcre2-utf32-0:10.4 100% | 274.8 MiB/s | 562.8 KiB | 00m00s [ 93/247] Installing pcre2-utf16-0:10.4 100% | 192.3 MiB/s | 590.9 KiB | 00m00s [ 94/247] Installing pcre2-devel-0:10.4 100% | 249.4 MiB/s | 2.0 MiB | 00m00s [ 95/247] Installing libselinux-devel-0 100% | 31.5 MiB/s | 161.2 KiB | 00m00s [ 96/247] Installing libmount-devel-0:2 100% | 63.0 MiB/s | 64.5 KiB | 00m00s [ 97/247] Installing libtirpc-devel-0:1 100% | 128.5 MiB/s | 263.1 KiB | 00m00s [ 98/247] Installing libfontenc-0:1.1.7 100% | 64.8 MiB/s | 66.4 KiB | 00m00s [ 99/247] Installing lua-posix-0:36.2.1 100% | 150.1 MiB/s | 614.7 KiB | 00m00s [100/247] Installing copy-jdk-configs-0 100% | 0.0 B/s | 21.0 KiB | 00m00s [101/247] Installing lksctp-tools-0:1.0 100% | 133.8 MiB/s | 274.0 KiB | 00m00s [102/247] Installing javapackages-files 100% | 5.2 MiB/s | 5.3 KiB | 00m00s [103/247] Installing google-noto-fonts- 100% | 0.0 B/s | 18.3 KiB | 00m00s [104/247] Installing google-noto-sans-v 100% | 312.2 MiB/s | 1.2 MiB | 00m00s [105/247] Installing default-fonts-core 100% | 17.8 MiB/s | 18.2 KiB | 00m00s [106/247] Installing nettle-0:3.9.1-6.f 100% | 258.2 MiB/s | 793.3 KiB | 00m00s [107/247] Installing gnutls-0:3.8.6-1.f 100% | 322.0 MiB/s | 3.2 MiB | 00m00s [108/247] Installing glib2-0:2.80.3-1.f 100% | 356.5 MiB/s | 14.6 MiB | 00m00s [109/247] Installing glib2-devel-0:2.80 100% | 473.3 MiB/s | 15.6 MiB | 00m00s [110/247] Installing cups-libs-1:2.4.11 100% | 203.2 MiB/s | 624.3 KiB | 00m00s [111/247] Installing java-21-openjdk-he 100% | 406.4 MiB/s | 204.0 MiB | 00m01s [112/247] Installing emacs-filesystem-1 100% | 0.0 B/s | 544.0 B | 00m00s [113/247] Installing desktop-file-utils 100% | 112.2 MiB/s | 229.8 KiB | 00m00s [114/247] Installing xdg-utils-0:1.2.1- 100% | 341.3 MiB/s | 349.5 KiB | 00m00s [115/247] Installing hwloc-libs-0:2.11. 100% | 475.8 MiB/s | 2.9 MiB | 00m00s [116/247] Installing tbb-bind-0:2021.11 100% | 24.0 MiB/s | 24.6 KiB | 00m00s [117/247] Installing tbb-devel-0:2021.1 100% | 224.1 MiB/s | 1.3 MiB | 00m00s [118/247] Installing libX11-common-0:1. 100% | 148.4 MiB/s | 1.2 MiB | 00m00s [119/247] Installing libX11-0:1.8.10-2. 100% | 320.4 MiB/s | 1.3 MiB | 00m00s [120/247] Installing libXext-0:1.3.6-1. 100% | 89.2 MiB/s | 91.3 KiB | 00m00s [121/247] Installing libXrender-0:0.9.1 100% | 25.1 MiB/s | 51.4 KiB | 00m00s [122/247] Installing libX11-devel-0:1.8 100% | 74.6 MiB/s | 1.1 MiB | 00m00s [123/247] Installing libXrender-devel-0 100% | 0.0 B/s | 51.0 KiB | 00m00s [124/247] Installing libXi-0:1.8.2-1.fc 100% | 0.0 B/s | 81.8 KiB | 00m00s [125/247] Installing libXt-0:1.3.0-3.fc 100% | 208.6 MiB/s | 427.1 KiB | 00m00s [126/247] Installing libXmu-0:1.2.1-1.f 100% | 185.0 MiB/s | 189.5 KiB | 00m00s [127/247] Installing libXtst-0:1.2.5-1. 100% | 33.8 MiB/s | 34.7 KiB | 00m00s [128/247] Installing libXext-devel-0:1. 100% | 54.2 MiB/s | 110.9 KiB | 00m00s [129/247] Installing libXcomposite-0:0. 100% | 7.5 MiB/s | 46.1 KiB | 00m00s [130/247] Installing xml-common-0:0.6.3 100% | 79.2 MiB/s | 81.1 KiB | 00m00s [131/247] Installing cairo-0:1.18.0-3.f 100% | 288.6 MiB/s | 1.7 MiB | 00m00s [132/247] Installing harfbuzz-0:8.5.0-1 100% | 337.7 MiB/s | 2.7 MiB | 00m00s [133/247] Installing freetype-0:2.13.2- 100% | 274.8 MiB/s | 844.3 KiB | 00m00s [134/247] Installing fontconfig-0:2.15. 100% | 769.5 KiB/s | 787.2 KiB | 00m01s [135/247] Installing libXft-0:2.3.8-6.f 100% | 20.3 MiB/s | 166.0 KiB | 00m00s [136/247] Installing tk-1:8.6.13-3.fc40 100% | 242.7 MiB/s | 3.6 MiB | 00m00s [137/247] Installing pango-0:1.54.0-1.f 100% | 244.6 MiB/s | 1.0 MiB | 00m00s [138/247] Installing mkfontscale-0:1.2. 100% | 49.4 MiB/s | 50.6 KiB | 00m00s [139/247] Installing ttmkfdir-0:3.0.9-7 100% | 120.9 MiB/s | 123.8 KiB | 00m00s [140/247] Installing xorg-x11-fonts-Typ 100% | 22.2 MiB/s | 865.6 KiB | 00m00s [141/247] Installing java-21-openjdk-1: 100% | 64.5 MiB/s | 1.1 MiB | 00m00s [142/247] Installing java-21-openjdk-de 100% | 351.2 MiB/s | 11.2 MiB | 00m00s [143/247] Installing harfbuzz-icu-0:8.5 100% | 15.9 MiB/s | 16.3 KiB | 00m00s [144/247] Installing fontconfig-devel-0 100% | 29.7 MiB/s | 151.9 KiB | 00m00s [145/247] Installing freetype-devel-0:2 100% | 392.8 MiB/s | 7.9 MiB | 00m00s [146/247] Installing cairo-devel-0:1.18 100% | 381.8 MiB/s | 2.3 MiB | 00m00s [147/247] Installing harfbuzz-devel-0:8 100% | 425.2 MiB/s | 5.1 MiB | 00m00s [148/247] Installing libXft-devel-0:2.3 100% | 21.6 MiB/s | 44.3 KiB | 00m00s [149/247] Installing tk-devel-1:8.6.13- 100% | 168.3 MiB/s | 1.0 MiB | 00m00s [150/247] Installing gc-0:8.2.2-6.fc40. 100% | 85.0 MiB/s | 261.2 KiB | 00m00s [151/247] Installing guile30-0:3.0.7-12 100% | 412.7 MiB/s | 51.6 MiB | 00m00s [152/247] Installing make-1:4.4.1-6.fc4 100% | 200.0 MiB/s | 1.8 MiB | 00m00s [153/247] Installing gcc-0:14.2.1-3.fc4 100% | 386.6 MiB/s | 104.4 MiB | 00m00s [154/247] Installing gcc-c++-0:14.2.1-3 100% | 340.8 MiB/s | 38.2 MiB | 00m00s [155/247] Installing libquadmath-devel- 100% | 22.8 MiB/s | 23.4 KiB | 00m00s [156/247] Installing gcc-gfortran-0:14. 100% | 341.8 MiB/s | 37.3 MiB | 00m00s [157/247] Installing tre-common-0:0.8.0 100% | 81.2 MiB/s | 83.1 KiB | 00m00s [158/247] Installing tre-0:0.8.0-43.201 100% | 2.8 MiB/s | 76.7 KiB | 00m00s [159/247] Installing R-core-0:4.4.2-1.f 100% | 240.9 MiB/s | 103.8 MiB | 00m00s [160/247] Installing R-CRAN-rlang-0:1.1 100% | 135.1 MiB/s | 2.7 MiB | 00m00s [161/247] Installing R-CRAN-cli-0:3.6.3 100% | 173.5 MiB/s | 2.4 MiB | 00m00s [162/247] Installing R-CRAN-glue-0:1.8. 100% | 116.1 MiB/s | 356.7 KiB | 00m00s [163/247] Installing R-CRAN-lifecycle-0 100% | 96.3 MiB/s | 295.9 KiB | 00m00s [164/247] Installing R-CRAN-vctrs-0:0.6 100% | 185.0 MiB/s | 2.4 MiB | 00m00s [165/247] Installing R-CRAN-R6-0:2.5.1- 100% | 59.4 MiB/s | 121.6 KiB | 00m00s [166/247] Installing R-CRAN-lattice-0:0 100% | 160.1 MiB/s | 2.1 MiB | 00m00s [167/247] Installing R-CRAN-RcppParalle 100% | 190.5 MiB/s | 1.5 MiB | 00m00s [168/247] Installing R-CRAN-magrittr-0: 100% | 106.5 MiB/s | 436.3 KiB | 00m00s [169/247] Installing R-CRAN-withr-0:3.0 100% | 102.8 MiB/s | 420.9 KiB | 00m00s [170/247] Installing R-CRAN-tidyselect- 100% | 145.9 MiB/s | 448.2 KiB | 00m00s [171/247] Installing R-CRAN-desc-0:1.4. 100% | 131.4 MiB/s | 538.2 KiB | 00m00s [172/247] Installing R-CRAN-gtable-0:0. 100% | 114.8 MiB/s | 352.6 KiB | 00m00s [173/247] Installing R-CRAN-numDeriv-0: 100% | 77.5 MiB/s | 158.8 KiB | 00m00s [174/247] Installing R-CRAN-generics-0: 100% | 57.8 MiB/s | 177.5 KiB | 00m00s [175/247] Installing R-CRAN-matrixStats 100% | 135.9 MiB/s | 1.1 MiB | 00m00s [176/247] Installing R-CRAN-MASS-0:7.3. 100% | 157.0 MiB/s | 1.9 MiB | 00m00s [177/247] Installing R-CRAN-gridExtra-0 100% | 184.1 MiB/s | 1.7 MiB | 00m00s [178/247] Installing R-CRAN-StanHeaders 100% | 160.5 MiB/s | 10.1 MiB | 00m00s [179/247] Installing R-CRAN-Matrix-0:1. 100% | 153.2 MiB/s | 8.6 MiB | 00m00s [180/247] Installing R-CRAN-zoo-0:1.8.1 100% | 138.9 MiB/s | 1.5 MiB | 00m00s [181/247] Installing R-CRAN-sandwich-0: 100% | 259.2 MiB/s | 1.8 MiB | 00m00s [182/247] Installing R-CRAN-nlme-0:3.1. 100% | 170.3 MiB/s | 3.9 MiB | 00m00s [183/247] Installing R-CRAN-mgcv-0:1.9. 100% | 270.6 MiB/s | 4.6 MiB | 00m00s [184/247] Installing R-CRAN-mnormt-0:2. 100% | 98.4 MiB/s | 302.3 KiB | 00m00s [185/247] Installing R-CRAN-pbivnorm-0: 100% | 20.2 MiB/s | 41.3 KiB | 00m00s [186/247] Installing R-CRAN-quadprog-0: 100% | 31.7 MiB/s | 65.0 KiB | 00m00s [187/247] Installing R-CRAN-lavaan-0:0. 100% | 354.6 MiB/s | 4.3 MiB | 00m00s [188/247] Installing R-CRAN-CompQuadFor 100% | 41.7 MiB/s | 85.4 KiB | 00m00s [189/247] Installing R-CRAN-mvtnorm-0:1 100% | 209.6 MiB/s | 1.5 MiB | 00m00s [190/247] Installing R-CRAN-QuickJSR-0: 100% | 298.5 MiB/s | 3.0 MiB | 00m00s [191/247] Installing R-CRAN-inline-0:0. 100% | 111.5 MiB/s | 228.4 KiB | 00m00s [192/247] Installing R-CRAN-isoband-0:0 100% | 312.0 MiB/s | 1.9 MiB | 00m00s [193/247] Installing R-CRAN-abind-0:1.4 100% | 50.0 MiB/s | 102.5 KiB | 00m00s [194/247] Installing R-CRAN-tensorA-0:0 100% | 80.5 MiB/s | 412.0 KiB | 00m00s [195/247] Installing R-CRAN-fansi-0:1.0 100% | 157.2 MiB/s | 643.9 KiB | 00m00s [196/247] Installing R-CRAN-pkgconfig-0 100% | 38.9 MiB/s | 39.9 KiB | 00m00s [197/247] Installing R-CRAN-digest-0:0. 100% | 124.8 MiB/s | 511.0 KiB | 00m00s [198/247] Installing R-CRAN-listenv-0:0 100% | 55.1 MiB/s | 169.4 KiB | 00m00s [199/247] Installing R-CRAN-parallelly- 100% | 136.5 MiB/s | 838.6 KiB | 00m00s [200/247] Installing R-CRAN-codetools-0 100% | 55.8 MiB/s | 114.2 KiB | 00m00s [201/247] Installing R-CRAN-globals-0:0 100% | 70.9 MiB/s | 145.2 KiB | 00m00s [202/247] Installing R-CRAN-future-0:1. 100% | 151.5 MiB/s | 1.2 MiB | 00m00s [203/247] Installing R-CRAN-backports-0 100% | 56.9 MiB/s | 232.9 KiB | 00m00s [204/247] Installing R-CRAN-checkmate-0 100% | 136.5 MiB/s | 1.5 MiB | 00m00s [205/247] Installing R-java-0:4.4.2-1.f 100% | 0.0 B/s | 124.0 B | 00m00s [206/247] Installing R-CRAN-RColorBrewe 100% | 67.8 MiB/s | 69.5 KiB | 00m00s [207/247] Installing R-CRAN-farver-0:2. 100% | 298.2 MiB/s | 2.1 MiB | 00m00s [208/247] Installing R-CRAN-labeling-0: 100% | 50.1 MiB/s | 102.5 KiB | 00m00s [209/247] Installing R-CRAN-viridisLite 100% | 217.4 MiB/s | 1.3 MiB | 00m00s [210/247] Installing R-CRAN-stringi-0:1 100% | 172.7 MiB/s | 2.1 MiB | 00m00s [211/247] Installing R-CRAN-stringr-0:1 100% | 131.5 MiB/s | 673.3 KiB | 00m00s [212/247] Installing R-CRAN-ps-0:1.8.1- 100% | 140.4 MiB/s | 719.0 KiB | 00m00s [213/247] Installing R-CRAN-processx-0: 100% | 138.2 MiB/s | 566.2 KiB | 00m00s [214/247] Installing R-CRAN-callr-0:3.7 100% | 178.9 MiB/s | 732.7 KiB | 00m00s [215/247] Installing R-CRAN-pkgbuild-0: 100% | 89.0 MiB/s | 273.6 KiB | 00m00s [216/247] Installing R-CRAN-colorspace- 100% | 186.6 MiB/s | 4.1 MiB | 00m00s [217/247] Installing R-CRAN-munsell-0:0 100% | 96.1 MiB/s | 393.7 KiB | 00m00s [218/247] Installing R-CRAN-scales-0:1. 100% | 127.9 MiB/s | 1.2 MiB | 00m00s [219/247] Installing R-littler-0:0.3.19 100% | 53.5 MiB/s | 164.2 KiB | 00m00s [220/247] Installing R-CRAN-Rcpp-0:1.0. 100% | 266.1 MiB/s | 8.5 MiB | 00m00s [221/247] Installing R-CRAN-plyr-0:1.8. 100% | 159.2 MiB/s | 1.1 MiB | 00m00s [222/247] Installing R-CRAN-reshape2-0: 100% | 73.8 MiB/s | 226.8 KiB | 00m00s [223/247] Installing R-CRAN-utf8-0:1.2. 100% | 156.1 MiB/s | 479.5 KiB | 00m00s [224/247] Installing R-CRAN-pillar-0:1. 100% | 206.3 MiB/s | 1.4 MiB | 00m00s [225/247] Installing R-CRAN-tibble-0:3. 100% | 212.9 MiB/s | 1.7 MiB | 00m00s [226/247] Installing R-CRAN-ggplot2-0:3 100% | 249.5 MiB/s | 7.2 MiB | 00m00s [227/247] Installing R-CRAN-ggridges-0: 100% | 274.1 MiB/s | 3.0 MiB | 00m00s [228/247] Installing R-CRAN-dplyr-0:1.1 100% | 179.0 MiB/s | 2.7 MiB | 00m00s [229/247] Installing R-CRAN-distributio 100% | 147.5 MiB/s | 755.3 KiB | 00m00s [230/247] Installing R-CRAN-posterior-0 100% | 135.0 MiB/s | 1.8 MiB | 00m00s [231/247] Installing R-CRAN-loo-0:2.8.0 100% | 253.0 MiB/s | 2.8 MiB | 00m00s [232/247] Installing R-rpm-macros-0:1.2 100% | 0.0 B/s | 6.6 KiB | 00m00s [233/247] Installing tre-devel-0:0.8.0- 100% | 11.3 MiB/s | 11.6 KiB | 00m00s [234/247] Installing R-core-devel-0:4.4 100% | 196.5 MiB/s | 402.4 KiB | 00m00s [235/247] Installing R-java-devel-0:4.4 100% | 0.0 B/s | 124.0 B | 00m00s [236/247] Installing R-devel-0:4.4.2-1. 100% | 0.0 B/s | 124.0 B | 00m00s [237/247] Installing R-CRAN-rstan-0:2.3 100% | 320.4 MiB/s | 6.1 MiB | 00m00s [238/247] Installing R-CRAN-bayesplot-0 100% | 335.0 MiB/s | 6.7 MiB | 00m00s [239/247] Installing R-CRAN-RcppEigen-0 100% | 261.0 MiB/s | 9.1 MiB | 00m00s [240/247] Installing R-CRAN-rstantools- 100% | 104.2 MiB/s | 320.2 KiB | 00m00s [241/247] Installing R-CRAN-future.appl 100% | 119.2 MiB/s | 244.1 KiB | 00m00s [242/247] Installing R-CRAN-nonnest2-0: 100% | 152.1 MiB/s | 311.6 KiB | 00m00s [243/247] Installing R-CRAN-coda-0:0.19 100% | 23.6 MiB/s | 508.5 KiB | 00m00s [244/247] Installing R-CRAN-BH-0:1.87.0 100% | 270.0 MiB/s | 124.7 MiB | 00m00s [245/247] Installing R-CRAN-tmvnsim-0:1 100% | 21.6 MiB/s | 44.3 KiB | 00m00s [246/247] Installing gcc-plugin-annobin 100% | 3.8 MiB/s | 58.6 KiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [247/247] Installing annobin-plugin-gcc 100% | 1.4 MiB/s | 977.9 KiB | 00m01s Warning: skipped OpenPGP checks for 79 packages from repository: copr_base Complete! Finish: build setup for R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm Start: rpmbuild R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm warning: source_date_epoch_from_changelog set but %changelog is missing Building target platforms: x86_64 Building for target x86_64 Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.Tg06Tt + umask 022 + cd /builddir/build/BUILD + cd /builddir/build/BUILD + rm -rf blavaan + /usr/bin/mkdir -p blavaan + cd blavaan + /usr/lib/rpm/rpmuncompress -x /builddir/build/SOURCES/blavaan_0.5-8.tar.gz + STATUS=0 + '[' 0 -ne 0 ']' + rm -rf /builddir/build/BUILD/blavaan-SPECPARTS + /usr/bin/mkdir -p /builddir/build/BUILD/blavaan-SPECPARTS + /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w . + find -type f -executable -exec grep -Iq . '{}' ';' -exec sed -i -e '$a\' '{}' ';' + '[' -d blavaan/src ']' + find blavaan/src -type f -exec sed -i s@/usr/bin/strip@/usr/bin/true@g '{}' ';' + '[' -d blavaan/src ']' + find blavaan/src/Makevars -type f -exec sed -i s@-g0@@g '{}' ';' + find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' '{}' ';' + RPM_EC=0 ++ jobs -p + exit 0 Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.ql0hLY + umask 022 + cd /builddir/build/BUILD + CFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CFLAGS + CXXFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CXXFLAGS + FFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FFLAGS + FCFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FCFLAGS + VALAFLAGS=-g + export VALAFLAGS + RUSTFLAGS='-Copt-level=3 -Cdebuginfo=2 -Ccodegen-units=1 -Cstrip=none -Cforce-frame-pointers=yes -Clink-arg=-specs=/usr/lib/rpm/redhat/redhat-package-notes --cap-lints=warn' + export RUSTFLAGS + LDFLAGS='-Wl,-z,relro -Wl,--as-needed -Wl,-z,pack-relative-relocs -Wl,-z,now -specs=/usr/lib/rpm/redhat/redhat-hardened-ld -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -Wl,--build-id=sha1 -specs=/usr/lib/rpm/redhat/redhat-package-notes ' + export LDFLAGS + LT_SYS_LIBRARY_PATH=/usr/lib64: + export LT_SYS_LIBRARY_PATH + CC=gcc + export CC + CXX=g++ + export CXX + cd blavaan + RPM_EC=0 ++ jobs -p + exit 0 Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.WPA4C7 + umask 022 + cd /builddir/build/BUILD + '[' /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 '!=' / ']' + rm -rf /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 ++ dirname /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 + mkdir -p /builddir/build/BUILDROOT + mkdir /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 + CFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CFLAGS + CXXFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CXXFLAGS + FFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FFLAGS + FCFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FCFLAGS + VALAFLAGS=-g + export VALAFLAGS + RUSTFLAGS='-Copt-level=3 -Cdebuginfo=2 -Ccodegen-units=1 -Cstrip=none -Cforce-frame-pointers=yes -Clink-arg=-specs=/usr/lib/rpm/redhat/redhat-package-notes --cap-lints=warn' + export RUSTFLAGS + LDFLAGS='-Wl,-z,relro -Wl,--as-needed -Wl,-z,pack-relative-relocs -Wl,-z,now -specs=/usr/lib/rpm/redhat/redhat-hardened-ld -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -Wl,--build-id=sha1 -specs=/usr/lib/rpm/redhat/redhat-package-notes ' + export LDFLAGS + LT_SYS_LIBRARY_PATH=/usr/lib64: + export LT_SYS_LIBRARY_PATH + CC=gcc + export CC + CXX=g++ + export CXX + cd blavaan + mkdir -p /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64/usr/local/lib/R/library + /usr/bin/R CMD INSTALL -l /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64/usr/local/lib/R/library blavaan * installing *source* package ‘blavaan’ ... ** package ‘blavaan’ successfully unpacked and MD5 sums checked ** using staged installation ** libs using C++ compiler: ‘g++ (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3)’ using C++17 g++ -std=gnu++17 -I"/usr/include/R" -DNDEBUG -I"../inst/include" -I"/usr/local/lib/R/library/StanHeaders/include/src" -DBOOST_DISABLE_ASSERTS -DEIGEN_NO_DEBUG -DBOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error -DUSE_STANC3 -D_HAS_AUTO_PTR_ETC=0 -I'/usr/local/lib/R/library/StanHeaders/include' -I'/usr/local/lib/R/library/rstan/include' -I'/usr/local/lib/R/library/BH/include' -I'/usr/local/lib/R/library/Rcpp/include' -I'/usr/local/lib/R/library/RcppEigen/include' -I'/usr/local/lib/R/library/RcppParallel/include' -I/usr/local/include -I/usr/include/oneapi -DTBB_INTERFACE_NEW -I'/usr/local/lib/R/library/RcppParallel/include' -D_REENTRANT -DSTAN_THREADS -DTBB_INTERFACE_NEW -fpic -O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -c RcppExports.cpp -o RcppExports.o In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:205, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Dense:1, from /usr/local/lib/R/library/RcppEigen/include/RcppEigenForward.h:28, from /usr/local/lib/R/library/RcppEigen/include/RcppEigen.h:25, from RcppExports.cpp:4: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:46:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 46 | typedef eigen_packet_wrapper<__m128i, 0> Packet4i; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:47:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 47 | typedef eigen_packet_wrapper<__m128i, 1> Packet16b; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:49:39: warning: ignoring attributes on template argument ‘__m128’ [-Wignored-attributes] 49 | template<> struct is_arithmetic<__m128> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:50:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 50 | template<> struct is_arithmetic<__m128i> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:51:40: warning: ignoring attributes on template argument ‘__m128d’ [-Wignored-attributes] 51 | template<> struct is_arithmetic<__m128d> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:222:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 222 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:228:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 228 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1124:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 1124 | ptranspose(PacketBlock& kernel) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1129:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 1129 | ptranspose(PacketBlock& kernel) { | ^ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:174: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:165: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:24:46: required from here 24 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(4) float>::half’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:271: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:27:3: required from here 27 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:98:47: required from here 98 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:102:3: required from here 102 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/SparseCore:37, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Sparse:26, from /usr/local/lib/R/library/RcppEigen/include/RcppEigenForward.h:29: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrix.h:96:7: required from ‘class Eigen::SparseMatrix’ 96 | class SparseMatrix | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h:61:25: required from here 61 | typedef Triplet T; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ g++ -std=gnu++17 -I"/usr/include/R" -DNDEBUG -I"../inst/include" -I"/usr/local/lib/R/library/StanHeaders/include/src" -DBOOST_DISABLE_ASSERTS -DEIGEN_NO_DEBUG -DBOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error -DUSE_STANC3 -D_HAS_AUTO_PTR_ETC=0 -I'/usr/local/lib/R/library/StanHeaders/include' -I'/usr/local/lib/R/library/rstan/include' -I'/usr/local/lib/R/library/BH/include' -I'/usr/local/lib/R/library/Rcpp/include' -I'/usr/local/lib/R/library/RcppEigen/include' -I'/usr/local/lib/R/library/RcppParallel/include' -I/usr/local/include -I/usr/include/oneapi -DTBB_INTERFACE_NEW -I'/usr/local/lib/R/library/RcppParallel/include' -D_REENTRANT -DSTAN_THREADS -DTBB_INTERFACE_NEW -fpic -O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -c stanExports_stanmarg.cc -o stanExports_stanmarg.o In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:205, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Dense:1, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/Eigen.hpp:22, from /usr/local/lib/R/library/rstan/include/rstan/rstaninc.hpp:3, from stanExports_stanmarg.h:23, from stanExports_stanmarg.cc:5: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:46:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 46 | typedef eigen_packet_wrapper<__m128i, 0> Packet4i; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:47:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 47 | typedef eigen_packet_wrapper<__m128i, 1> Packet16b; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:49:39: warning: ignoring attributes on template argument ‘__m128’ [-Wignored-attributes] 49 | template<> struct is_arithmetic<__m128> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:50:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 50 | template<> struct is_arithmetic<__m128i> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:51:40: warning: ignoring attributes on template argument ‘__m128d’ [-Wignored-attributes] 51 | template<> struct is_arithmetic<__m128d> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:222:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 222 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:228:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 228 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1124:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 1124 | ptranspose(PacketBlock& kernel) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1129:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 1129 | ptranspose(PacketBlock& kernel) { | ^ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:174: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:165: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:24:46: required from here 24 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(4) float>::half’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:271: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:27:3: required from here 27 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:98:47: required from here 98 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:102:3: required from here 102 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:17, from /usr/local/lib/R/library/BH/include/boost/shared_ptr.hpp:17, from /usr/local/lib/R/library/BH/include/boost/date_time/time_clock.hpp:17, from /usr/local/lib/R/library/BH/include/boost/date_time/posix_time/posix_time_types.hpp:10, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:15, from /usr/local/lib/R/library/rstan/include/rstan/rstaninc.hpp:4: /usr/local/lib/R/library/BH/include/boost/smart_ptr/detail/shared_count.hpp:326:33: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 326 | explicit shared_count( std::auto_ptr & r ): pi_( new sp_counted_impl_p( r.get() ) ) | ^~~~~~~~ In file included from /usr/include/c++/14/memory:78, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:7: /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:354:31: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 354 | explicit shared_ptr( std::auto_ptr & r ): px(r.get()), pn() | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:365:22: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 365 | shared_ptr( std::auto_ptr && r ): px(r.get()), pn() | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:423:34: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 423 | shared_ptr & operator=( std::auto_ptr & r ) | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:430:34: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 430 | shared_ptr & operator=( std::auto_ptr && r ) | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp: In member function ‘boost::shared_ptr& boost::shared_ptr::operator=(std::auto_ptr<_Up>&&)’: /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:432:38: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 432 | this_type( static_cast< std::auto_ptr && >( r ) ).swap( *this ); | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/SparseCore:37, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Sparse:26, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/Eigen.hpp:23: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrix.h:96:7: required from ‘class Eigen::SparseMatrix’ 96 | class SparseMatrix | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h:61:25: required from here 61 | typedef Triplet T; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:19:52: required from ‘struct Eigen::internal::traits > >’ 19 | template struct traits > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:42:59: required from ‘struct Eigen::EigenBase > >’ 42 | typedef typename internal::traits::StorageKind StorageKind; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolverBase.h:68:7: required from ‘class Eigen::SolverBase > >’ 68 | class SolverBase : public EigenBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:59:49: required from ‘class Eigen::LDLT >’ 59 | template class LDLT | ^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:46:15: required from here 46 | if (cholesky.info() != Eigen::Success || !cholesky.isPositive() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:69:42: required from ‘class Eigen::LDLT >’ 69 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:46:15: required from here 46 | if (cholesky.info() != Eigen::Success || !cholesky.isPositive() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:287:19: required from ‘class Eigen::LDLT >’ 287 | TmpMatrixType m_temporary; | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:46:15: required from here 46 | if (cholesky.info() != Eigen::Success || !cholesky.isPositive() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:47:29: required from here 47 | || (cholesky.vectorD().array() <= 0.0).any()) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:47:41: required from here 47 | || (cholesky.vectorD().array() <= 0.0).any()) { | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::ArrayWrapper, 0> >, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0> >, const Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0> >, const Eigen::CwiseNullaryOp, Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:47:45: required from here 47 | || (cholesky.vectorD().array() <= 0.0).any()) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, 1, true>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:35:26: required from here 35 | LLt(m, m) = Lt.col(m).head(k).squaredNorm(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, true>, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, true>, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, -1, 1, true>, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:35:34: required from here 35 | LLt(m, m) = Lt.col(m).head(k).squaredNorm(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/linspaced_array.hpp:37:49: required from here 37 | Eigen::VectorXd v = Eigen::VectorXd::LinSpaced(K, low, high); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/linspaced_row_vector.hpp:32:28: required from here 32 | return Eigen::RowVectorXd::LinSpaced(K, low, high); | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/linspaced_row_vector.hpp:32:39: required from here 32 | return Eigen::RowVectorXd::LinSpaced(K, low, high); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:53: required from here 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:72: required from here 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:77: required from here 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:71:17: required from here 71 | A.diagonal().array() -= mu; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:71:29: required from here 71 | A.diagonal().array() -= mu; | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:86:43: required from here 86 | bi = (t / (s * (j + 1))) * (A * bi); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:86:43: required from here 86 | bi = (t / (s * (j + 1))) * (A * bi); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:86:43: required from here 86 | bi = (t / (s * (j + 1))) * (A * bi); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:22: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, Eigen::internal::member_sum, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:56:7: required from ‘class Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>’ 56 | class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr >::type, | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:38: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:178:58: required from here 178 | alpha = Eigen::VectorXd::Constant(_p_max - 1, normA); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:57:44: required from ‘stan::math::ceil >(const Eigen::Matrix&):: [with auto:244 = Eigen::Matrix]’ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::ceil >(const Eigen::Matrix&)::; T2 = Eigen::Matrix; stan::require_t::type> >* = 0; T = Eigen::Matrix]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:56:46: required from ‘auto stan::math::ceil(const Container&) [with Container = Eigen::Matrix; stan::require_container_st* = 0; stan::require_not_var_matrix_t* = 0]’ 56 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:197:41: required from here 197 | Eigen::MatrixXd c = stan::math::ceil(mt) * u.asDiagonal(); | ~~~~~~~~~~~~~~~~^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:57:51: required from ‘stan::math::ceil >(const Eigen::Matrix&):: [with auto:244 = Eigen::Matrix]’ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::ceil >(const Eigen::Matrix&)::; T2 = Eigen::Matrix; stan::require_t::type> >* = 0; T = Eigen::Matrix]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:56:46: required from ‘auto stan::math::ceil(const Container&) [with Container = Eigen::Matrix; stan::require_container_st* = 0; stan::require_not_var_matrix_t* = 0]’ 56 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:197:41: required from here 197 | Eigen::MatrixXd c = stan::math::ceil(mt) * u.asDiagonal(); | ~~~~~~~~~~~~~~~~^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, void>::apply >(const Eigen::Matrix&):: >(const Eigen::Matrix&, const stan::math::ceil >(const Eigen::Matrix&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::apply_vector_unary, void>::apply >(const Eigen::Matrix&):: >(const Eigen::Matrix&, const stan::math::ceil >(const Eigen::Matrix&)::&)::; Args = {Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:23: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::ceil >(const Eigen::Matrix&)::; T2 = Eigen::Matrix; stan::require_t::type> >* = 0; T = Eigen::Matrix]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 47 | f(x)); | ~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:56:46: required from ‘auto stan::math::ceil(const Container&) [with Container = Eigen::Matrix; stan::require_container_st* = 0; stan::require_not_var_matrix_t* = 0]’ 56 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:197:41: required from here 197 | Eigen::MatrixXd c = stan::math::ceil(mt) * u.asDiagonal(); | ~~~~~~~~~~~~~~~~^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::internal::member_minCoeff, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::internal::member_minCoeff, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::internal::member_minCoeff, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:56:7: required from ‘class Eigen::PartialReduxExpr, Eigen::internal::member_minCoeff, 0>’ 56 | class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr >::type, | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:203:38: required from here 203 | int cost = c.colwise().minCoeff().minCoeff(&m); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/one_hot_row_vector.hpp:25:52: required from here 25 | Eigen::RowVectorXd ret = Eigen::RowVectorXd::Zero(K); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:13:64: required from here 13 | : m_(Eigen::VectorXd::Zero(n)), m2_(Eigen::MatrixXd::Zero(n, n)) { | ~~~~~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:26:31: required from here 26 | Eigen::VectorXd delta(q - m_); | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:27:19: required from here 27 | m_ += delta / num_samples_; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:27:19: required from here 27 | m_ += delta / num_samples_; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:38: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:39: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:37:40: required from here 37 | covar = m2_ / (num_samples_ - 1.0); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_var_estimator.hpp:28:30: required from here 28 | m2_ += delta.cwiseProduct(q - m_); | ~~~~~~~~~~~~~~~~~~^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/coupled_ode_system.hpp:77:63: required from here 77 | Eigen::Map(dz_dt.data(), dz_dt.size()) = f_y_t; | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor.hpp:13, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:15, from /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp:7, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:43: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::combination(std::vector&, const int&, const int&, const int&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:73:29: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 73 | for (std::size_t i = 0; i < p - 1; i++) { | ~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:79:16: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘const int’ [-Wsign-compare] 79 | } while (k < x); | ~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::combos(const int&, const double&, const int&, std::vector >&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:102:29: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 102 | for (std::size_t i = 1; i != choose_dimk + 1; i++) { | ~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:105:31: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘const int’ [-Wsign-compare] 105 | for (std::size_t j = 0; j != k; j++) { | ~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::increment(std::vector&, const int&, const double&, const std::vector&, std::vector&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:126:31: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘const int’ [-Wsign-compare] 126 | for (std::size_t j = 0; j != k; j++) { | ~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:132:22: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 132 | while ((first_zero < index.size()) && index[first_zero]) { | ~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:135:18: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 135 | if (first_zero == index.size()) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:143:31: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 143 | for (std::size_t i = 0; i != first_zero + 1; i++) { | ~~^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::signcombos(const int&, const double&, const int&, std::vector >&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:168:29: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 168 | for (std::size_t i = 1; i != choose_dimk + 1; i++) { | ~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/ode_store_sensitivities.hpp:40:64: required from here 40 | coupled_state.size()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/BH/include/boost/mpl/aux_/na_assert.hpp:23, from /usr/local/lib/R/library/BH/include/boost/mpl/arg.hpp:25, from /usr/local/lib/R/library/BH/include/boost/mpl/placeholders.hpp:24, from /usr/local/lib/R/library/BH/include/boost/mpl/apply.hpp:24, from /usr/local/lib/R/library/BH/include/boost/serialization/array_optimization.hpp:18, from /usr/local/lib/R/library/BH/include/boost/serialization/array_wrapper.hpp:21, from /usr/local/lib/R/library/BH/include/boost/serialization/array.hpp:26, from /usr/local/lib/R/library/BH/include/boost/numeric/ublas/storage.hpp:22, from /usr/local/lib/R/library/BH/include/boost/numeric/ublas/vector.hpp:21, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/ublas_wrapper.hpp:23, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint.hpp:25, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/ode_rk45.hpp:9, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/integrate_ode_rk45.hpp:6, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor.hpp:16: /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp: At global scope: /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:194:21: warning: unnecessary parentheses in declaration of ‘assert_arg’ [-Wparentheses] 194 | failed ************ (Pred::************ | ^~~~~~~~~~~~~~~~~~~ 195 | assert_arg( void (*)(Pred), typename assert_arg_pred::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 196 | ); | ~ /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:194:21: note: remove parentheses 194 | failed ************ (Pred::************ | ^~~~~~~~~~~~~~~~~~~ | - 195 | assert_arg( void (*)(Pred), typename assert_arg_pred::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 196 | ); | ~ | - /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:199:21: warning: unnecessary parentheses in declaration of ‘assert_not_arg’ [-Wparentheses] 199 | failed ************ (boost::mpl::not_::************ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 200 | assert_not_arg( void (*)(Pred), typename assert_arg_pred_not::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 201 | ); | ~ /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:199:21: note: remove parentheses 199 | failed ************ (boost::mpl::not_::************ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | - 200 | assert_not_arg( void (*)(Pred), typename assert_arg_pred_not::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 201 | ); | ~ | - In file included from /usr/local/lib/R/library/BH/include/boost/fusion/functional/invocation/detail/that_ptr.hpp:13, from /usr/local/lib/R/library/BH/include/boost/fusion/functional/invocation/invoke.hpp:52, from /usr/local/lib/R/library/BH/include/boost/fusion/functional/adapter/fused.hpp:17, from /usr/local/lib/R/library/BH/include/boost/fusion/functional/generation/make_fused.hpp:13, from /usr/local/lib/R/library/BH/include/boost/fusion/include/make_fused.hpp:11, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/resize.hpp:30, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/state_wrapper.hpp:26, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/ublas_wrapper.hpp:33: /usr/local/lib/R/library/BH/include/boost/get_pointer.hpp:48:40: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 48 | template T * get_pointer(std::auto_ptr const& p) | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:39: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:42: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:42: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:52: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:38:59: required from here 38 | Eigen::VectorXd stddev = S_ldlt.vectorD().array().sqrt().matrix(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 5>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 5>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 5>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 5>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 5>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 5>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:46:75: required from here 46 | = mu + (S_ldlt.transpositionsP().transpose() * (S_ldlt.matrixL() * z)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:46:76: required from here 46 | = mu + (S_ldlt.transpositionsP().transpose() * (S_ldlt.matrixL() * z)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:135:41: required from here 135 | Eigen::VectorXd(F.transpose() * theta_t), V_ldlt, rng); | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, true>, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/hmm_hidden_state_prob.hpp:77:52: required from here 77 | alphas.col(n) = alphas.col(n).cwiseProduct(beta); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/hmm_latent_rng.hpp:71:73: required from here 71 | probs_vec = alphas.col(n_transitions) / alphas.col(n_transitions).sum(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_cholesky_rng.hpp:49:68: required from here 49 | return L_S.template triangularView() * B.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1>, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_cholesky_rng.hpp:49:68: required from here 49 | return L_S.template triangularView() * B.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::TriangularView >, 2>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::TriangularView >, 2>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::TriangularView >, 2>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::TriangularView >, 2>, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::TriangularView >, 2>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::TriangularView >, 2>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:42: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::TriangularView >, 2>, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::TriangularView >, 2>, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::TriangularView >, 2>, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::TriangularView >, 2>, 0>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:32: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:25:32: required from here 25 | S_inv = ldlt_of_S.solve(S_inv); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:27:40: required from here 27 | return 0.5 * (asym.transpose() + asym); // ensure symmetry | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:27:40: required from here 27 | return 0.5 * (asym.transpose() + asym); // ensure symmetry | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:27:40: required from here 27 | return 0.5 * (asym.transpose() + asym); // ensure symmetry | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:89:47: required from here 89 | = Sigma_ldlt.vectorD().array().inverse().sqrt().matrix(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:89:54: required from here 89 | = Sigma_ldlt.vectorD().array().inverse().sqrt().matrix(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 6>, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 6>, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:109:64: required from here 109 | (Sigma_ldlt.matrixU().solve(X)).transpose())) | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 6>, Eigen::Matrix >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:108:51: recursively required by substitution of ‘template const Eigen::internal::triangular_solve_retval >, 6>, Other> Eigen::TriangularViewImpl >, 6, Eigen::Dense>::solve(const Eigen::MatrixBase&) const [with int Side = ; Other = ]’ 108 | * (D_ldlt.matrixU().solve( | ~~~~~~~~~~~~~~~~~~~~~~^ 109 | (Sigma_ldlt.matrixU().solve(X)).transpose())) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:108:51: required from here /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/ForwardDeclarations.h:32:48: required from ‘struct Eigen::internal::accessors_level >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 32 | enum { has_direct_access = (traits::Flags & DirectAccessBit) ? 1 : 0, | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:110:32: required from here 110 | .transpose() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:110:32: required from here 110 | .transpose() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:110:43: required from here 110 | .transpose() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:111:51: required from here 111 | * D_ldlt.transpositionsP()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:111:52: required from here 111 | * D_ldlt.transpositionsP()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: required from ‘struct stan::math::apply_scalar_unary, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>’ 72 | apply_scalar_unary::apply(std::declval()))>; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lgamma.hpp:120:50: required from ‘auto stan::math::lgamma(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; stan::require_not_var_matrix_t* = 0; stan::require_not_nonscalar_prim_or_rev_kernel_expression_t* = 0]’ 120 | return apply_scalar_unary::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multinomial_logit_lpmf.hpp:39:44: required from here 39 | lp += lgamma(1 + ns_map.sum()) - lgamma(1 + ns_map).sum(); | ~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/ordered_probit_lpmf.hpp:13, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/ordered_probit_log.hpp:5, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob.hpp:256, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:16: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/std_normal_lcdf.hpp: In function ‘stan::return_type_t stan::math::std_normal_lcdf(const T_y&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/std_normal_lcdf.hpp:69: note: ‘-Wmisleading-indentation’ is disabled from this point onwards, since column-tracking was disabled due to the size of the code/headers 69 | } else if (10.0 * log(fabs(scaled_y)) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/std_normal_lcdf.hpp:69: note: adding ‘-flarge-source-files’ will allow for more column-tracking support, at the expense of compilation time and memory /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp: In member function ‘virtual std::vector > stan::io::dump::vals_c(const std::string&) const’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp:694: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 694 | for (comp_iter = 0, real_iter = 0; real_iter < val_r->second.first.size(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp:707: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 707 | real_iter < val_i->second.first.size(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:102:0: required from here 102 | if (C_adj.size() > 0) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:111:0: required from here 111 | = D_adj.adjoint().template triangularView(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1, -1, false>, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:116:0: required from here 116 | D_adj.diagonal() *= 0.5; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:59:34: required from ‘class Eigen::RefBase, 0, Eigen::OuterStride<> > >’ 59 | template class RefBase | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:281:76: required from ‘class Eigen::Ref, 0, Eigen::OuterStride<> >’ 281 | template class Ref | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:76:42: required from ‘class Eigen::LLT, 0, Eigen::OuterStride<> >, 1>’ 76 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:142:0: required from here 142 | check_pos_definite("cholesky_decompose", "m", L_factor); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:144:0: required from here 144 | L_A.template triangularView().setZero(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_factor_constrain.hpp:42:0: required from here 42 | y_val.row(m).head(m) = x.val().segment(pos, m); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:28:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 28 | * arena_L_val.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:28:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() 28 | * arena_L_val.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:32:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: recursively required by substitution of ‘template static std::true_type stan::is_base_pointer_convertible >::f(const Eigen::EigenBase*) [with OtherDerived = ]’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible >’ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: required from ‘struct stan::is_eigen >’ 21 | : bool_constant::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:301:0: required by substitution of ‘template class stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type> [with T = Eigen::SparseMatrix]’ 301 | (is_eigen::value || is_kernel_expression_and_not_scalar::value) /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/csr_matrix_times_vector.hpp:120:0: required from here 120 | arena_t res = w_mat_arena.val() * value_of(b_arena); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase, 0, Eigen::Stride<0, 0> > >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase, 0, Eigen::Stride<0, 0> > >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMap.h:50:7: required from ‘class Eigen::SparseMapBase, 0, Eigen::Stride<0, 0> >, 0>’ 50 | class SparseMapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMap.h:148:7: required from ‘class Eigen::SparseMapBase, 0, Eigen::Stride<0, 0> >, 1>’ 148 | class SparseMapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMap.h:222:7: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 222 | class Map, Options, StrideType> | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:129:0: required from ‘class stan::math::arena_matrix, void>’ 129 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:814:0: required from ‘class stan::math::vari_value, void>’ 814 | using InnerIterator = typename arena_matrix::InnerIterator; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:419:0: required from ‘const auto& stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::val() const [with T = Eigen::SparseMatrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 419 | inline const auto& val() const noexcept { return vi_->val(); } /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/csr_matrix_times_vector.hpp:120:0: required from here 120 | arena_t res = w_mat_arena.val() * value_of(b_arena); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:97:21: required from ‘class Eigen::Tridiagonalization >’ 97 | >::type SubDiagonalReturnType; | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:111:62: required from ‘class Eigen::SelfAdjointEigenSolver >’ 111 | typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/eigendecompose_sym.hpp:40:0: required from here 40 | arena_t eigenvals = solver.eigenvalues(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1>, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/grad.hpp:27:0: required from here 27 | g = x.adj(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:44: required from ‘stan::math::log, 0> >(const Eigen::Diagonal, 0>&):: [with auto:170 = Eigen::Diagonal, 0>]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::; T2 = Eigen::Diagonal, 0>; stan::require_t::type> >* = 0; T = Eigen::Diagonal, 0>]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::Diagonal, 0>; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:49:0: required from here 49 | var log_det = sum(log(M_ldlt.vectorD())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, 0> >(const Eigen::Diagonal, 0>&):: [with auto:170 = Eigen::Diagonal, 0>]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::; T2 = Eigen::Diagonal, 0>; stan::require_t::type> >* = 0; T = Eigen::Diagonal, 0>]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::Diagonal, 0>; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:49:0: required from here 49 | var log_det = sum(log(M_ldlt.vectorD())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0> > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, 0>, void>::apply, 0> >(const Eigen::Diagonal, 0>&):: >(const Eigen::Diagonal, 0>&, const stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::apply_vector_unary, 0>, void>::apply, 0> >(const Eigen::Diagonal, 0>&):: >(const Eigen::Diagonal, 0>&, const stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::&)::; Args = {Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:23: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::; T2 = Eigen::Diagonal, 0>; stan::require_t::type> >* = 0; T = Eigen::Diagonal, 0>]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 47 | f(x)); | ~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::Diagonal, 0>; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:49:0: required from here 49 | var log_det = sum(log(M_ldlt.vectorD())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:51:0: required from here 51 | reverse_pass_callback([arena_M, log_det, arena_M_inv_transpose]() mutable { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_softmax.hpp:73:0: required from here 73 | vector_d diff = (x_d.array() - x_d.maxCoeff()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_softmax.hpp:81:0: required from here 81 | Eigen::Map(softmax_x_d_array, a_size) = softmax_x_d.array() / sum; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:50:0: required from here 50 | arena_powers[0] = Eigen::MatrixXd::Identity(N, N); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:53:0: required from here 53 | arena_powers[i] = arena_powers[1] * arena_powers[i - 1]; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:63:0: required from here 63 | adj_M += adj_C * arena_powers[i - 1].transpose(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:64:0: required from here 64 | adj_C = M_val.transpose() * adj_C; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:64:0: required from here 64 | adj_C = M_val.transpose() * adj_C; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:67:0: required from here 67 | Eigen::Map(variRefB_, M_, N_).adj() += adjB; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_tri.hpp:85:0: required from here 85 | adjA = -adjB * Map(C_, M_, N_).transpose(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_tri.hpp:85:0: required from here 85 | adjA = -adjB * Map(C_, M_, N_).transpose(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:25:0: required from here 25 | matrix_d M = 0.5 * (Cd + Cd.transpose()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:55:0: required from here 55 | L.col(0).tail(pull) = CPCs.val().head(pull); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:56:0: required from here 56 | arena_acc.tail(pull) = 1.0 - CPCs.val().head(pull).array().square(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, 0, Eigen::Stride<0, 0> >, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:63:0: required from here 63 | L.col(i).tail(pull) = cpc_seg * arena_acc.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, false> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:86:0: required from here 86 | -= 2.0 * acc_adj.tail(pull) * acc_val.tail(pull) * cpc_seg_val; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:86:0: required from here 86 | -= 2.0 * acc_adj.tail(pull) * acc_val.tail(pull) * cpc_seg_val; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Block, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_cov_matrix.hpp:56:0: required from here 56 | sds.adj() += (prod.adj().cwiseProduct(corr_L.val())).rowwise().sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/rows_dot_self.hpp:41:0: required from here 41 | x.adj() += (2 * res.adj()).asDiagonal() * x.val(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0, Eigen::Stride<0, 0> >, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:56:0: required from here 56 | arena_Fp.diagonal().setZero(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:69:0: required from here 69 | * (arena_Fp.array() * (UUadjT - UUadjT.transpose()).array()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Matrix, const Eigen::Transpose > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:69:0: required from here 69 | * (arena_Fp.array() * (UUadjT - UUadjT.transpose()).array()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:70:0: required from here 70 | .matrix() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd_V.hpp:61:0: required from here 61 | .matrix() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd_V.hpp:61:0: required from here 61 | .matrix() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DiagonalMatrix.h:278:47: required from ‘struct Eigen::internal::traits, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 278 | typedef typename DiagonalVectorType::Scalar Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:42:59: required from ‘struct Eigen::EigenBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 42 | typedef typename internal::traits::StorageKind StorageKind; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DiagonalMatrix.h:18:7: required from ‘class Eigen::DiagonalBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 18 | class DiagonalBase : public EigenBase | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DiagonalMatrix.h:293:7: required from ‘class Eigen::DiagonalWrapper, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 293 | class DiagonalWrapper | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd_V.hpp:63:0: required from here 63 | + arena_U * arena_D.asDiagonal().inverse() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:79:0: required from here 79 | vector_d di = 2 * adj_ * (v1_map.val() - v2_map.val()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:79:0: required from here 79 | vector_d di = 2 * adj_ * (v1_map.val() - v2_map.val()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:79:0: required from here 79 | vector_d di = 2 * adj_ * (v1_map.val() - v2_map.val()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:80:0: required from here 80 | v1_map.adj() += di; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:111:0: required from here 111 | += 2 * adj_ * (v1_map.val() - Eigen::Map(v2_, length_)); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:111:0: required from here 111 | += 2 * adj_ * (v1_map.val() - Eigen::Map(v2_, length_)); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:23:0: required from here 23 | vector_d dtrs_vals = dtrs_map.val(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:25:0: required from here 25 | vector_d diff = dtrs_vals.array() - dtrs_vals.mean(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:27:0: required from here 27 | Eigen::Map(partials, size) = 2 * diff.array() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:27:0: required from here 27 | Eigen::Map(partials, size) = 2 * diff.array() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1> >::val_Op, Eigen::Matrix, -1, 1>, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/jacobian.hpp:26:0: required from here 26 | fx = fx_var.val(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1>&>(const Eigen::Matrix, -1, 1>&):: [with auto:12 = const Eigen::Matrix, -1, 1>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::value_of, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::; Args = {const Eigen::Matrix, -1, 1, 0, -1, 1>&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:73:21: required from ‘auto stan::math::value_of(EigMat&&) [with EigMat = const Eigen::Matrix, -1, 1>&; stan::require_eigen_dense_base_t* = 0; stan::require_not_st_arithmetic* = 0]’ 73 | return make_holder( | ~~~~~~~~~~~^ 74 | [](auto& a) { | ~~~~~~~~~~~~~ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 76 | }, | ~~ 77 | std::forward(M)); | ~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/algebra_solver_fp.hpp:101:0: required from here 101 | y_dummy(stan::math::value_of(y)), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/solve_powell.hpp:369:0: required from here 369 | Eigen::VectorXd eta = -Jf_x_T_lu_ptr->solve(ret.adj().eval()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/solve_powell.hpp:369:0: required from here 369 | Eigen::VectorXd eta = -Jf_x_T_lu_ptr->solve(ret.adj().eval()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/cvodes_integrator_adjoint.hpp:604:0: required from here 604 | f_y_t_vars.adj() = -Eigen::Map(NV_DATA_S(yB), N_); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/finite_diff_hessian_times_vector_auto.hpp:62:0: required from here 62 | hvp = (grad_forward - grad_backward) / (2 * epsilon); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/initialize.hpp:7, from /usr/local/lib/R/library/StanHeaders/include/src/stan/services/diagnose/diagnose.hpp:10, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:49: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/random_var_context.hpp: In member function ‘virtual std::vector > stan::io::random_var_context::vals_c(const std::string&) const’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/random_var_context.hpp:111: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 111 | for (comp_iter = 0, real_iter = 0; real_iter < val_r.size(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:182:0: required from here 182 | return normal_fullrank(Eigen::VectorXd(mu_.array().square()), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:183:0: required from here 183 | Eigen::MatrixXd(L_chol_.array().square())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:197:0: required from here 197 | return normal_fullrank(Eigen::VectorXd(mu_.array().sqrt()), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:198:0: required from here 198 | Eigen::MatrixXd(L_chol_.array().sqrt())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:263:0: required from here 263 | L_chol_.array() /= rhs.L_chol().array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:351:0: required from here 351 | return (L_chol_ * eta) + mu_; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:351:0: required from here 351 | return (L_chol_ * eta) + mu_; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:459:0: required from here 459 | L_grad.diagonal().array() += L_chol_.diagonal().array().inverse(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:314:0: required from here 314 | return eta.array().cwiseProduct(omega_.array().exp()) + mu_.array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:314:0: required from here 314 | return eta.array().cwiseProduct(omega_.array().exp()) + mu_.array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:314:0: required from here 314 | return eta.array().cwiseProduct(omega_.array().exp()) + mu_.array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:370:0: required from here 370 | omega_grad.array() += tmp_mu_grad.array().cwiseProduct(eta.array()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:388:0: required from here 388 | omega_grad.array() = omega_grad.array().cwiseProduct(omega_.array().exp()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/nuts/base_nuts.hpp:175:0: required from here 175 | rho = rho_bck + rho_fwd; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:179:81: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 179 | typedef typename internal::find_best_packet::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 2>, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 2>, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 2>, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 2>, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 2>, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:53:0: required from here 53 | z.p = z.inv_e_metric_.llt().matrixU().solve(u); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_matrix.hpp:133:17: required from ‘auto stan::math::to_matrix(const std::vector&, int, int) [with T = double]’ 133 | return Eigen::Map>( | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 134 | &x[0], m, n); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/read_dense_inv_metric.hpp:33:0: required from here 33 | inv_metric = stan::math::to_matrix(dense_vals, num_params, num_params); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:27:0: required from here 27 | covar = (n / (n + 5.0)) * covar /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:29:0: required from here 29 | * Eigen::MatrixXd::Identity(covar.rows(), covar.cols()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:29:0: required from here 29 | * Eigen::MatrixXd::Identity(covar.rows(), covar.cols()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: recursively required by substitution of ‘template typename Eigen::ScalarBinaryOpTraits::Scalar, Eigen::internal::scalar_product_op::Scalar> >::ReturnType Eigen::MatrixBase >::dot(const Eigen::MatrixBase&) const [with OtherDerived = ]’ 21 | return 0.5 * z.p.dot(z.inv_e_metric_.cwiseProduct(z.p)); /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: required from here /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:27:0: required from here 27 | var = (n / (n + 5.0)) * var /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:28:0: required from here 28 | + 1e-3 * (5.0 / (n + 5.0)) * Eigen::VectorXd::Ones(var.size()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:28:0: required from here 28 | + 1e-3 * (5.0 / (n + 5.0)) * Eigen::VectorXd::Ones(var.size()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:7, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:68: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp: In member function ‘virtual std::vector > stan::io::array_var_context::vals_c(const std::string&) const’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:304: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 304 | for (comp_iter = 0, real_iter = 0; real_iter < val_r->second.first.size(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:317: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 317 | real_iter < val_i->second.first.size(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:72:0: required from here 72 | Eigen::Map(&row[0], draws.cols()) = draws.row(i); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue_varmat.hpp:145:0: required from here 145 | x_ret_vals.coeffRef(j) = x.val().coeff(row_idx_val, col_idx_vals[j]); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:28:12: required from ‘auto stan::math::multiply(const Mat&, Scal) [with Mat = Eigen::Matrix; Scal = int; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 28 | return c * m; | ~~^~~ stanExports_stanmarg.h:3508:0: required from here 3508 | stan::math::multiply(stan::math::to_vector(clus_size_ns), N_between)), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_header.hpp:11, from stanExports_stanmarg.h:25: /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp: At global scope: /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:159: warning: ‘stan::math::var stan::model::model_base_crtp::log_prob(std::vector, std::allocator > >&, std::vector&, std::ostream*) const [with M = model_stanmarg_namespace::model_stanmarg; stan::math::var = stan::math::var_value; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 159 | inline math::var log_prob(std::vector& theta, stanExports_stanmarg.h:22489: note: by ‘model_stanmarg_namespace::model_stanmarg::log_prob’ 22489 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:154: warning: ‘double stan::model::model_base_crtp::log_prob(std::vector&, std::vector&, std::ostream*) const [with M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 154 | inline double log_prob(std::vector& theta, std::vector& theta_i, stanExports_stanmarg.h:22489: note: by ‘model_stanmarg_namespace::model_stanmarg::log_prob’ 22489 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:96: warning: ‘stan::math::var stan::model::model_base_crtp::log_prob(Eigen::Matrix, -1, 1>&, std::ostream*) const [with M = model_stanmarg_namespace::model_stanmarg; stan::math::var = stan::math::var_value; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 96 | inline math::var log_prob(Eigen::Matrix& theta, stanExports_stanmarg.h:22489: note: by ‘model_stanmarg_namespace::model_stanmarg::log_prob’ 22489 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:91: warning: ‘double stan::model::model_base_crtp::log_prob(Eigen::VectorXd&, std::ostream*) const [with M = model_stanmarg_namespace::model_stanmarg; Eigen::VectorXd = Eigen::Matrix; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 91 | inline double log_prob(Eigen::VectorXd& theta, stanExports_stanmarg.h:22489: note: by ‘model_stanmarg_namespace::model_stanmarg::log_prob’ 22489 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:84:12: required from ‘auto stan::math::multiply(Scal, const Mat&) [with Scal = int; Mat = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 84 | return c * m; | ~~^~~ stanExports_stanmarg.h:14328:0: required from here 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:187:0: required from ‘auto stan::model::rvalue(Vec&&, const char*, index_min_max) [with Vec = const Eigen::Matrix&; stan::require_vector_t* = 0; stan::require_not_std_vector_t* = 0]’ 187 | return v.segment(slice_start, slice_size); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:697:0: required from ‘auto stan::model::rvalue(StdVec&, const char*, index_uni, const Idxs& ...) [with StdVec = const std::vector >; Idxs = {index_min_max}; stan::require_std_vector_t* = 0]’ 697 | return rvalue(v[idx1.n_ - 1], name, idxs...); stanExports_stanmarg.h:14486:0: required from here 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:376:0: required from ‘auto stan::model::rvalue(Mat&&, const char*, index_min_max, index_min_max) [with Mat = const Eigen::Matrix&; stan::require_dense_dynamic_t* = 0]’ 376 | return x.block(row_idx.min_ - 1, col_idx.min_ - 1, 377 | row_idx.max_ - (row_idx.min_ - 1), 378 | col_idx.max_ - (col_idx.min_ - 1)); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:697:0: required from ‘auto stan::model::rvalue(StdVec&, const char*, index_uni, const Idxs& ...) [with StdVec = const std::vector >; Idxs = {index_min_max, index_min_max}; stan::require_std_vector_t* = 0]’ 697 | return rvalue(v[idx1.n_ - 1], name, idxs...); stanExports_stanmarg.h:14491:0: required from here 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:158:0: required from ‘stan::model::rvalue&>(const Eigen::Matrix&, const char*, const index_multi&):: [with auto:767 = const Eigen::Matrix]’ 158 | return plain_type_t::NullaryExpr( 159 | idx.ns_.size(), [name, &idx, &v_ref](Eigen::Index i) { 160 | math::check_range("vector[multi] indexing", name, v_ref.size(), 161 | idx.ns_[i]); 162 | return v_ref.coeff(idx.ns_[i] - 1); 163 | }); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::model::rvalue&>(const Eigen::Matrix&, const char*, const index_multi&)::; Args = {const Eigen::Matrix&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:156:0: required from ‘auto stan::model::rvalue(EigVec&&, const char*, const index_multi&) [with EigVec = const Eigen::Matrix&; stan::require_eigen_vector_t* = 0]’ 156 | return stan::math::make_holder( 157 | [name, &idx](auto& v_ref) { 158 | return plain_type_t::NullaryExpr( 159 | idx.ns_.size(), [name, &idx, &v_ref](Eigen::Index i) { 160 | math::check_range("vector[multi] indexing", name, v_ref.size(), 161 | idx.ns_[i]); 162 | return v_ref.coeff(idx.ns_[i] - 1); 163 | }); 164 | }, 165 | stan::math::to_ref(v)); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:697:0: required from ‘auto stan::model::rvalue(StdVec&, const char*, index_uni, const Idxs& ...) [with StdVec = const std::vector >; Idxs = {index_multi}; stan::require_std_vector_t* = 0]’ 697 | return rvalue(v[idx1.n_ - 1], name, idxs...); stanExports_stanmarg.h:14526:0: required from here 14526 | stan::model::rvalue(YXbarstar, "YXbarstar", 14527 | stan::model::index_uni(mm), 14528 | stan::model::index_multi( 14529 | stan::model::rvalue(xdatidx, "xdatidx", 14530 | stan::model::index_min_max(1, 14531 | stan::model::rvalue(Nx, "Nx", 14532 | stan::model::index_uni(mm)))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> >, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> >, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lb_constrain.hpp:102:18: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; L = int; stan::require_eigen_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_not_st_var* = 0; stan::return_type_t = double]’ 102 | x.unaryExpr([lb, &lp](auto&& xx) { return lb_constrain(xx, lb, lp); })); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix; bool Jacobian = false; LB = int; LP = double; Sizes = {int}; T = double]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:14992:0: required from here 14991 | Theta_sd_free = in__.template read_constrain_lb< 14992 | Eigen::Matrix, jacobian__>(0, 14993 | lp__, Theta_sd_free_1dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, const int&>(Eigen::Map, 0, Eigen::Stride<0, 0> >&&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, const int&>(Eigen::Map, 0, Eigen::Stride<0, 0> >&&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, const int&>(Eigen::Map, 0, Eigen::Stride<0, 0> >&&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> >, const int&>(Eigen::Map, 0, Eigen::Stride<0, 0> >&&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> >, const int&>(Eigen::Map, 0, Eigen::Stride<0, 0> >&&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lb_constrain.hpp:83:26: required from ‘auto stan::math::lb_constrain(T&&, L&&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; L = const int&; stan::require_eigen_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_not_st_var* = 0]’ 83 | return eval(x.unaryExpr([lb](auto&& x) { return lb_constrain(x, lb); })); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:388:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix; bool Jacobian = false; LB = int; LP = double; Sizes = {int}; T = double]’ 388 | return stan::math::lb_constrain(this->read(sizes...), lb); stanExports_stanmarg.h:14992:0: required from here 14991 | Theta_sd_free = in__.template read_constrain_lb< 14992 | Eigen::Matrix, jacobian__>(0, 14993 | lp__, Theta_sd_free_1dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&, stan::return_type_t, 0, Eigen::Stride<0, 0> >, int, int>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_constrain.hpp:133:26: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_eigen_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_not_var_t::type>* = 0; stan::return_type_t = double]’ 133 | return eval(x.unaryExpr( | ~~~~~~~~~~~^ 134 | [lb, ub, &lp](auto&& xx) { return lub_constrain(xx, lb, ub, lp); })); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix; bool Jacobian = false; LB = int; UB = int; LP = double; Sizes = {int}; T = double]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:14999:0: required from here 14998 | Theta_r_free = in__.template read_constrain_lub< 14999 | Eigen::Matrix, jacobian__>(-1, 15000 | 1, lp__, Theta_r_free_1dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> >, int, int>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const int&, const int&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_constrain.hpp:122:18: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_eigen_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_not_var_t::type>* = 0]’ 122 | x.unaryExpr([ub, lb](auto&& xx) { return lub_constrain(xx, lb, ub); })); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:443:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix; bool Jacobian = false; LB = int; UB = int; LP = double; Sizes = {int}; T = double]’ 443 | return stan::math::lub_constrain(this->read(sizes...), lb, ub); stanExports_stanmarg.h:14999:0: required from here 14998 | Theta_r_free = in__.template read_constrain_lub< 14999 | Eigen::Matrix, jacobian__>(-1, 15000 | 1, lp__, Theta_r_free_1dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:15526:0: required from here 15526 | stan::math::add( 15527 | stan::model::rvalue(T_r_lower, "T_r_lower", 15528 | stan::model::index_uni(g)), 15529 | stan::math::transpose( 15530 | stan::model::rvalue(T_r_lower, "T_r_lower", 15531 | stan::model::index_uni(g)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:15525:0: required from here 15525 | stan::math::subtract( 15526 | stan::math::add( 15527 | stan::model::rvalue(T_r_lower, "T_r_lower", 15528 | stan::model::index_uni(g)), 15529 | stan::math::transpose( 15530 | stan::model::rvalue(T_r_lower, "T_r_lower", 15531 | stan::model::index_uni(g)))), 15532 | stan::math::diag_matrix(stan::math::rep_vector(1, p))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::Map, 0, Eigen::Stride<0, 0> >; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:15739:0: required from here 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:15780:0: required from here 15780 | stan::math::add( 15781 | stan::model::deep_copy( 15782 | stan::model::rvalue(Sigma, "Sigma", 15783 | stan::model::index_uni(g), 15784 | stan::model::index_min_max(1, p), 15785 | stan::model::index_min_max(1, p))), 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:187:0: required from ‘auto stan::model::rvalue(Vec&&, const char*, index_min_max) [with Vec = Eigen::Matrix&; stan::require_vector_t* = 0; stan::require_not_std_vector_t* = 0]’ 187 | return v.segment(slice_start, slice_size); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:697:0: required from ‘auto stan::model::rvalue(StdVec&, const char*, index_uni, const Idxs& ...) [with StdVec = std::vector >; Idxs = {index_min_max}; stan::require_std_vector_t* = 0]’ 697 | return rvalue(v[idx1.n_ - 1], name, idxs...); stanExports_stanmarg.h:15800:0: required from here 15800 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(g), 15801 | stan::model::index_min_max(1, p))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Block, -1, 1, true>, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Block, -1, 1, true>, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Block, -1, 1, true>, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Block, -1, 1, true>, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:107:13: required from ‘auto stan::math::multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::VectorBlock, -1, 1, true>, -1>; stan::require_all_eigen_vt* = 0; stan::require_not_eigen_row_and_col_t* = 0]’ 107 | return m1 * m2; | ~~~^~~~ stanExports_stanmarg.h:15803:0: required from here 15803 | stan::math::multiply( 15804 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15805 | stan::model::index_uni(g)), 15806 | stan::model::rvalue(Alpha, "Alpha", 15807 | stan::model::index_uni(g), 15808 | stan::model::index_min_max(1, m), 15809 | stan::model::index_uni(1))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:17365:0: required from here 17365 | stan::math::add( 17366 | stan::model::deep_copy( 17367 | stan::model::rvalue(S_PW_rep_full, "S_PW_rep_full", 17368 | stan::model::index_uni(gg))), 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:17381:0: required from here 17381 | stan::math::add( 17382 | stan::model::deep_copy( 17383 | stan::model::rvalue(S_B_rep, "S_B_rep", 17384 | stan::model::index_uni(gg))), 17385 | stan::math::multiply( 17386 | stan::model::rvalue(cluster_size, "cluster_size", 17387 | stan::model::index_uni(clusidx)), 17388 | stan::math::tcrossprod( 17389 | stan::math::to_matrix( 17390 | stan::math::subtract( 17391 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17392 | stan::model::index_uni(clusidx)), 17393 | stan::model::rvalue(ov_mean_rep, "ov_mean_rep", 17394 | stan::model::index_uni(gg))))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:158:0: required from ‘stan::model::rvalue&>(Eigen::Matrix&, const char*, const index_multi&):: [with auto:767 = Eigen::Matrix]’ 158 | return plain_type_t::NullaryExpr( 159 | idx.ns_.size(), [name, &idx, &v_ref](Eigen::Index i) { 160 | math::check_range("vector[multi] indexing", name, v_ref.size(), 161 | idx.ns_[i]); 162 | return v_ref.coeff(idx.ns_[i] - 1); 163 | }); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::model::rvalue&>(Eigen::Matrix&, const char*, const index_multi&)::; Args = {Eigen::Matrix&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:156:0: required from ‘auto stan::model::rvalue(EigVec&&, const char*, const index_multi&) [with EigVec = Eigen::Matrix&; stan::require_eigen_vector_t* = 0]’ 156 | return stan::math::make_holder( 157 | [name, &idx](auto& v_ref) { 158 | return plain_type_t::NullaryExpr( 159 | idx.ns_.size(), [name, &idx, &v_ref](Eigen::Index i) { 160 | math::check_range("vector[multi] indexing", name, v_ref.size(), 161 | idx.ns_[i]); 162 | return v_ref.coeff(idx.ns_[i] - 1); 163 | }); 164 | }, 165 | stan::math::to_ref(v)); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:697:0: required from ‘auto stan::model::rvalue(StdVec&, const char*, index_uni, const Idxs& ...) [with StdVec = std::vector >; Idxs = {index_multi}; stan::require_std_vector_t* = 0]’ 697 | return rvalue(v[idx1.n_ - 1], name, idxs...); stanExports_stanmarg.h:17407:0: required from here 17407 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17408 | stan::model::index_uni(clusidx), 17409 | stan::model::index_multi( 17410 | stan::model::rvalue(between_idx, 17411 | "between_idx", 17412 | stan::model::index_min_max(1, N_between)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; Mat2 = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:17406:0: required from here 17406 | stan::math::subtract( 17407 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17408 | stan::model::index_uni(clusidx), 17409 | stan::model::index_multi( 17410 | stan::model::rvalue(between_idx, 17411 | "between_idx", 17412 | stan::model::index_min_max(1, N_between)))), 17413 | stan::model::rvalue(xbar_b_rep, "xbar_b_rep", 17414 | stan::model::index_uni(gg), 17415 | stan::model::index_multi( 17416 | stan::model::rvalue(between_idx, 17417 | "between_idx", 17418 | stan::model::index_min_max(1, N_between)))))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:17592:0: required from here 17592 | stan::math::subtract( 17593 | stan::model::rvalue(S_B_rep, "S_B_rep", 17594 | stan::model::index_uni(gg)), 17595 | stan::model::rvalue(S_PW_rep_full, "S_PW_rep_full", 17596 | stan::model::index_uni(gg)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:84:12: required from ‘auto stan::math::multiply(Scal, const Mat&) [with Scal = double; Mat = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 84 | return c * m; | ~~^~~ stanExports_stanmarg.h:17588:0: required from here 17588 | stan::math::multiply( 17589 | stan::math::pow( 17590 | stan::model::rvalue(gs, "gs", 17591 | stan::model::index_uni(gg)), -1), 17592 | stan::math::subtract( 17593 | stan::model::rvalue(S_B_rep, "S_B_rep", 17594 | stan::model::index_uni(gg)), 17595 | stan::model::rvalue(S_PW_rep_full, "S_PW_rep_full", 17596 | stan::model::index_uni(gg)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, true> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1, true> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, -1, 1, true>&>(const Eigen::Block, -1, 1, true>&):: [with auto:14 = const Eigen::Block, -1, 1, true>]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar, -1, 1, true>&>(const Eigen::Block, -1, 1, true>&)::; Args = {const Eigen::Block, -1, 1, true>&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:21: required from ‘auto stan::math::as_array_or_scalar(T&&) [with T = const Eigen::Block, -1, 1, true>&; = void; stan::require_not_eigen_array_t* = 0]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:29: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Block, -1, 1, true>; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~^~~ stanExports_stanmarg.h:17872:0: required from here 17872 | stan::math::divide( 17873 | stan::model::rvalue(satout, "satout", 17874 | stan::model::index_uni(g), 17875 | stan::model::index_omni(), 17876 | stan::model::index_uni(1)), 17877 | stan::model::rvalue(N, "N", stan::model::index_uni(g))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:33: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Block, -1, 1, true>; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17872:0: required from here 17872 | stan::math::divide( 17873 | stan::model::rvalue(satout, "satout", 17874 | stan::model::index_uni(g), 17875 | stan::model::index_omni(), 17876 | stan::model::index_uni(1)), 17877 | stan::model::rvalue(N, "N", stan::model::index_uni(g))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:64: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Block, -1, 1, true>; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:17872:0: required from here 17872 | stan::math::divide( 17873 | stan::model::rvalue(satout, "satout", 17874 | stan::model::index_uni(g), 17875 | stan::model::index_omni(), 17876 | stan::model::index_uni(1)), 17877 | stan::model::rvalue(N, "N", stan::model::index_uni(g))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:661:0: required from ‘auto stan::model::rvalue(Mat&&, const char*, const Idx&, index_min_max) [with Mat = Eigen::Matrix&; Idx = index_omni; stan::require_dense_dynamic_t* = 0]’ 661 | return rvalue(x.middleCols(col_start, col_idx.max_ - col_start), name, /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:697:0: required from ‘auto stan::model::rvalue(StdVec&, const char*, index_uni, const Idxs& ...) [with StdVec = std::vector >; Idxs = {index_omni, index_min_max}; stan::require_std_vector_t* = 0]’ 697 | return rvalue(v[idx1.n_ - 1], name, idxs...); stanExports_stanmarg.h:17883:0: required from here 17883 | stan::model::rvalue(satout, "satout", 17884 | stan::model::index_uni(g), 17885 | stan::model::index_omni(), 17886 | stan::model::index_min_max(2, ((p + q) + 1))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, -1, true> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, -1, true> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, -1, -1, true>&>(const Eigen::Block, -1, -1, true>&):: [with auto:14 = const Eigen::Block, -1, -1, true>]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar, -1, -1, true>&>(const Eigen::Block, -1, -1, true>&)::; Args = {const Eigen::Block, -1, -1, true>&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:21: required from ‘auto stan::math::as_array_or_scalar(T&&) [with T = const Eigen::Block, -1, -1, true>&; = void; stan::require_not_eigen_array_t* = 0]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:29: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Block, -1, -1, true>; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~^~~ stanExports_stanmarg.h:17882:0: required from here 17882 | stan::math::divide( 17883 | stan::model::rvalue(satout, "satout", 17884 | stan::model::index_uni(g), 17885 | stan::model::index_omni(), 17886 | stan::model::index_min_max(2, ((p + q) + 1))), 17887 | stan::model::rvalue(N, "N", 17888 | stan::model::index_uni(g))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:33: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Block, -1, -1, true>; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17882:0: required from here 17882 | stan::math::divide( 17883 | stan::model::rvalue(satout, "satout", 17884 | stan::model::index_uni(g), 17885 | stan::model::index_omni(), 17886 | stan::model::index_min_max(2, ((p + q) + 1))), 17887 | stan::model::rvalue(N, "N", 17888 | stan::model::index_uni(g))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:64: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Block, -1, -1, true>; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:17882:0: required from here 17882 | stan::math::divide( 17883 | stan::model::rvalue(satout, "satout", 17884 | stan::model::index_uni(g), 17885 | stan::model::index_omni(), 17886 | stan::model::index_min_max(2, ((p + q) + 1))), 17887 | stan::model::rvalue(N, "N", 17888 | stan::model::index_uni(g))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/transpose.hpp:18:21: required from ‘auto stan::math::transpose(const T&) [with T = Eigen::Matrix; stan::require_matrix_t* = 0]’ 18 | return m.transpose(); | ~~~~~~~~~~~^~ stanExports_stanmarg.h:17892:0: required from here 17892 | stan::math::transpose( 17893 | stan::model::rvalue(Mu_sat, "Mu_sat", 17894 | stan::model::index_uni(g))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:107:13: required from ‘auto stan::math::multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Transpose >; stan::require_all_eigen_vt* = 0; stan::require_not_eigen_row_and_col_t* = 0]’ 107 | return m1 * m2; | ~~~^~~~ stanExports_stanmarg.h:17889:0: required from here 17889 | stan::math::multiply( 17890 | stan::model::rvalue(Mu_sat, "Mu_sat", 17891 | stan::model::index_uni(g)), 17892 | stan::math::transpose( 17893 | stan::model::rvalue(Mu_sat, "Mu_sat", 17894 | stan::model::index_uni(g))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::Product, Eigen::Transpose >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::Product, Eigen::Transpose >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::Product, Eigen::Transpose >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::Product, Eigen::Transpose >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::Product, Eigen::Transpose >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1, true> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; Mat2 = Eigen::Product, Eigen::Transpose >, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:17881:0: required from here 17881 | stan::math::subtract( 17882 | stan::math::divide( 17883 | stan::model::rvalue(satout, "satout", 17884 | stan::model::index_uni(g), 17885 | stan::model::index_omni(), 17886 | stan::model::index_min_max(2, ((p + q) + 1))), 17887 | stan::model::rvalue(N, "N", 17888 | stan::model::index_uni(g))), 17889 | stan::math::multiply( 17890 | stan::model::rvalue(Mu_sat, "Mu_sat", 17891 | stan::model::index_uni(g)), 17892 | stan::math::transpose( 17893 | stan::model::rvalue(Mu_sat, "Mu_sat", 17894 | stan::model::index_uni(g))))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/transpose.hpp:18:21: required from ‘auto stan::math::transpose(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; stan::require_matrix_t* = 0]’ 18 | return m.transpose(); | ~~~~~~~~~~~^~ stanExports_stanmarg.h:18015:0: required from here 18015 | stan::math::transpose( 18016 | stan::math::subtract( 18017 | stan::model::rvalue(YXstar, "YXstar", 18018 | stan::model::index_uni(jj)), 18019 | stan::model::rvalue(Mu_sat, "Mu_sat", 18020 | stan::model::index_uni(grpidx)))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:33: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Matrix; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), 18037 | stan::model::rvalue(N, "N", 18038 | stan::model::index_uni(grpidx))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:64: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::Matrix; T2 = int; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), 18037 | stan::model::rvalue(N, "N", 18038 | stan::model::index_uni(grpidx))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, 0, Eigen::Stride<0, 0> >, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:187:0: required from ‘auto stan::model::rvalue(Vec&&, const char*, index_min_max) [with Vec = const Eigen::Map, 0, Eigen::Stride<0, 0> >&; stan::require_vector_t* = 0; stan::require_not_std_vector_t* = 0]’ 187 | return v.segment(slice_start, slice_size); stanExports_stanmarg.h:18218:0: required from here 18218 | stan::model::rvalue(log_lik_x_full, "log_lik_x_full", 18219 | stan::model::index_min_max(r1, r2))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::VectorBlock, 0, Eigen::Stride<0, 0> >, -1>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:18214:0: required from here 18214 | stan::math::subtract( 18215 | stan::model::deep_copy( 18216 | stan::model::rvalue(log_lik, "log_lik", 18217 | stan::model::index_min_max(r1, r2))), 18218 | stan::model::rvalue(log_lik_x_full, "log_lik_x_full", 18219 | stan::model::index_min_max(r1, r2))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::VectorBlock, -1>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:18705:0: required from here 18705 | stan::math::subtract( 18706 | stan::model::deep_copy( 18707 | stan::model::rvalue(log_lik_rep, "log_lik_rep", 18708 | stan::model::index_min_max(rr1, rr2))), 18709 | stan::model::rvalue(log_lik_x_rep, "log_lik_x_rep", 18710 | stan::model::index_min_max(rr1, rr2))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:35: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:17:8: required from ‘struct Eigen::internal::traits >’ 17 | struct traits > : traits > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:28:11: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 28 | ArrayAT a_array = as_array_or_scalar(a); | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:28:11: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 28 | ArrayAT a_array = as_array_or_scalar(a); | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar&>(const std::vector&)::; Args = {const std::vector >&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:72:21: required from ‘auto stan::math::as_array_or_scalar(T&&) [with T = const std::vector&; stan::require_std_vector_t* = 0; stan::require_not_std_vector_t::type>* = 0]’ 72 | return make_holder([](auto& x) { return T_map(x.data(), x.size()); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 73 | std::forward(v)); | ~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:28:39: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 28 | ArrayAT a_array = as_array_or_scalar(a); | ~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:47:43: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 47 | const auto& abs_apk = math::fabs((apk == 0).select(1.0, apk)); | ~~~~~^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Select.h:52:7: required from ‘class Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >’ 52 | class Select : public internal::dense_xpr_base< Select >::type, | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:47:55: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 47 | const auto& abs_apk = math::fabs((apk == 0).select(1.0, apk)); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/fabs.hpp:67:50: required from ‘stan::math::fabs, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >(const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >&):: [with auto:10 = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >]’ 67 | x, [](const auto& v) { return v.array().abs(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::fabs, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >(const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >&)::; T2 = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >; stan::require_t::type> >* = 0; T = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >]’ 53 | return make_holder([](const auto& a) { return a.array().derived(); }, f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/fabs.hpp:66:46: required from ‘auto stan::math::fabs(const Container&) [with Container = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >; stan::require_container_st* = 0]’ 66 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 67 | x, [](const auto& v) { return v.array().abs(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:47:37: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 47 | const auto& abs_apk = math::fabs((apk == 0).select(1.0, apk)); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >(const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >&):: [with auto:170 = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >(const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >&)::; T2 = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >; stan::require_t::type> >* = 0; T = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >]’ 53 | return make_holder([](const auto& a) { return a.array().derived(); }, f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:49:25: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 49 | T_return p = sum(log(abs_apk)) - sum(log(abs_bpk)); | ~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:75: required from ‘stan::return_type_t stan::math::lmgamma(int, T) [with T = double; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lmgamma.hpp:16:0: required from here 16 | : op_dv_vari(lmgamma(a, bvi->val_), a, bvi) {} /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:32: required from ‘stan::return_type_t stan::math::lmgamma(int, T) [with T = double; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lmgamma.hpp:16:0: required from here 16 | : op_dv_vari(lmgamma(a, bvi->val_), a, bvi) {} /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: required from ‘struct stan::math::apply_scalar_unary, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>’ 72 | apply_scalar_unary::apply(std::declval()))>; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lgamma.hpp:120:50: required from ‘auto stan::math::lgamma(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_not_var_matrix_t* = 0; stan::require_not_nonscalar_prim_or_rev_kernel_expression_t* = 0]’ 120 | return apply_scalar_unary::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:29: required from ‘stan::return_type_t stan::math::lmgamma(int, T) [with T = double; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lmgamma.hpp:16:0: required from here 16 | : op_dv_vari(lmgamma(a, bvi->val_), a, bvi) {} /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Matrix; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:28:0: required from here 28 | double variance = diff.squaredNorm() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:27:67: required from ‘Derived& Eigen::ArrayBase::operator+=(const Scalar&) [with Derived = Eigen::ArrayWrapper >; Scalar = double]’ 27 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:280:0: required from here 280 | L_chol_.array() += scalar; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:27:67: required from ‘Derived& Eigen::ArrayBase::operator+=(const Scalar&) [with Derived = Eigen::ArrayWrapper >; Scalar = double]’ 27 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:280:0: required from here 280 | L_chol_.array() += scalar; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp: In instantiation of ‘std::vector stan::io::array_var_context::validate_dims(const std::vector >&, T, const std::vector >&) [with T = long unsigned int]’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:97:0: required from here 97 | std::vector dim_vec = validate_dims(names, values.size(), dims); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:74: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 74 | for (int i = 0; i < dims.size(); i++) { /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp: In instantiation of ‘std::vector stan::io::array_var_context::validate_dims(const std::vector >&, T, const std::vector >&) [with T = long int]’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:118:0: required from here 118 | std::vector dim_vec = validate_dims(names, values.size(), dims); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:74: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 74 | for (int i = 0; i < dims.size(); i++) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of_rec.hpp:110:27: required from ‘stan::math::value_of_rec, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&):: [with auto:2 = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 110 | return m.unaryExpr([](auto x) { return value_of_rec(x); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::value_of_rec, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::; Args = {Eigen::Map, 0, Eigen::Stride<0, 0> >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of_rec.hpp:108:21: required from ‘auto stan::math::value_of_rec(T&&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; = void; = void]’ 108 | return make_holder( | ~~~~~~~~~~~^ 109 | [](auto& m) { | ~~~~~~~~~~~~~ 110 | return m.unaryExpr([](auto x) { return value_of_rec(x); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | }, | ~~ 112 | std::forward(M)); | ~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_greater_or_equal.hpp:157:30: required from ‘void stan::math::check_greater_or_equal(const char*, const char*, const T_y&, const T_low&, Idxs ...) [with T_y = std::vector; T_low = int; stan::require_vector_t* = 0; stan::require_not_std_vector_vt* = 0; stan::require_stan_scalar_t* = 0; Idxs = {}]’ 157 | auto&& y_arr = value_of_rec(as_array_or_scalar(to_ref(y))); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:5537:0: required from here 5537 | stan::math::check_greater_or_equal(function__, "N", N, 1); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tanh.hpp:59:44: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tanh.hpp:58:46: required from ‘auto stan::math::tanh(const Container&) [with Container = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_container_st* = 0]’ 58 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 59 | x, [](const auto& v) { return v.array().tanh(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_constrain.hpp:47:34: required from ‘auto stan::math::corr_constrain(const T_x&, T_lp&) [with T_x = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_lp = double]’ 47 | plain_type_t tanh_x = tanh(x); | ~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:41: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tanh.hpp:59:51: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tanh.hpp:58:46: required from ‘auto stan::math::tanh(const Container&) [with Container = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_container_st* = 0]’ 58 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 59 | x, [](const auto& v) { return v.array().tanh(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_constrain.hpp:47:34: required from ‘auto stan::math::corr_constrain(const T_x&, T_lp&) [with T_x = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_lp = double]’ 47 | plain_type_t tanh_x = tanh(x); | ~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:41: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, 0, Eigen::Stride<0, 0> >, void>::apply, 0, Eigen::Stride<0, 0> > >(const Eigen::Map, 0, Eigen::Stride<0, 0> >&):: >(const Eigen::Map, 0, Eigen::Stride<0, 0> >&, const stan::math::tanh, 0, Eigen::Stride<0, 0> > >(const Eigen::Map, 0, Eigen::Stride<0, 0> >&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tanh.hpp:58:46: required from ‘auto stan::math::tanh(const Container&) [with Container = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_container_st* = 0]’ 58 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 59 | x, [](const auto& v) { return v.array().tanh(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_constrain.hpp:47:34: required from ‘auto stan::math::corr_constrain(const T_x&, T_lp&) [with T_x = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_lp = double]’ 47 | plain_type_t tanh_x = tanh(x); | ~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:41: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, void>::apply >(const Eigen::Matrix&):: >(const Eigen::Matrix&, const stan::math::square >(const Eigen::Matrix&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:69:46: required from ‘auto stan::math::square(const Container&) [with Container = Eigen::Matrix; stan::require_container_st* = 0]’ 69 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_constrain.hpp:48:25: required from ‘auto stan::math::corr_constrain(const T_x&, T_lp&) [with T_x = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_lp = double]’ 48 | lp += sum(log1m(square(tanh_x))); | ~~~~~~^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:41: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > > >, void>::apply(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >&)::, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >, void>::apply(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >&)::, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper > > >, void>::apply(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >&)::, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper > > >, void>::apply(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >&)::, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, void>::apply(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >&)::, const Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log1m.hpp:74:49: required from ‘auto stan::math::log1m(const T&) [with T = Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >; stan::require_not_var_matrix_t* = 0; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0]’ 74 | return apply_scalar_unary::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_constrain.hpp:48:18: required from ‘auto stan::math::corr_constrain(const T_x&, T_lp&) [with T_x = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_lp = double]’ 48 | lp += sum(log1m(square(tanh_x))); | ~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:41: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:35: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Transpose > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Transpose > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Transpose > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Transpose > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Transpose > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Transpose > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ stanExports_stanmarg.h: In instantiation of ‘void model_stanmarg_namespace::model_stanmarg::unconstrain_array_impl(const VecVar&, const VecI&, VecVar&, std::ostream*) const [with VecVar = std::vector; VecI = std::vector; stan::require_vector_t* = 0; stan::require_vector_like_vt* = 0; std::ostream = std::basic_ostream]’: stanExports_stanmarg.h:22517:0: required from here 22517 | unconstrain_array_impl(params_constrained, params_i, 22518 | params_unconstrained, pstream); stanExports_stanmarg.h:19334: warning: variable ‘pos__’ set but not used [-Wunused-but-set-variable] 19334 | int pos__ = std::numeric_limits::min(); stanExports_stanmarg.h: In instantiation of ‘void model_stanmarg_namespace::model_stanmarg::unconstrain_array_impl(const VecVar&, const VecI&, VecVar&, std::ostream*) const [with VecVar = Eigen::Matrix; VecI = std::vector; stan::require_vector_t* = 0; stan::require_vector_like_vt* = 0; std::ostream = std::basic_ostream]’: stanExports_stanmarg.h:22527:0: required from here 22527 | unconstrain_array_impl(params_constrained, params_i, 22528 | params_unconstrained, pstream); stanExports_stanmarg.h:19334: warning: variable ‘pos__’ set but not used [-Wunused-but-set-variable] 19334 | int pos__ = std::numeric_limits::min(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp: In instantiation of ‘SEXPREC* rstan::stan_fit::standalone_gqs(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’: stanExports_stanmarg.cc:30:0: required from here 30 | .method("standalone_gqs", &rstan::stan_fit ::standalone_gqs) /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1252: warning: variable ‘ret’ set but not used [-Wunused-but-set-variable] 1252 | int ret = stan::services::error_codes::CONFIG; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:181:31: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 181 | Eigen::Matrix a_args(2); | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:181:31: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 181 | Eigen::Matrix a_args(2); | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:182:31: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 182 | Eigen::Matrix b_args(1); | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:117:39: required from ‘TupleT stan::math::internal::grad_2F1_impl_ab(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 117 | inner_diff = g_current.array().abs().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:204:78: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 204 | grad_tuple_ab = grad_2F1_impl_ab( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 205 | a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:513:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/../plugins/CommonCwiseUnaryOps.h:62:1: required by substitution of ‘template typename Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >::CastXpr::Type Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >::cast() const [with NewType = double]’ 62 | cast() const | ^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_row.hpp:102:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::append_row(const ColVec&, const Scal&) [with ColVec = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scal = double; stan::require_t >* = 0; stan::require_stan_scalar_t* = 0; typename stan::return_type::type = double]’ 102 | result << A.template cast(), B; | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:29:31: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 29 | ArrayBT b_array = append_row(as_array_or_scalar(b), 1.0); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:5, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_2F1_converges.hpp:5, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:12: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:47:0: required from here 47 | stan::math::check_not_nan(function, "Mean vector", mu); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)(((!(Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit)) && (! T::IsVectorAtCompileTime)) && (!(Eigen::internal::traits<_Rhs>::Flags & Eigen::RowMajorBit))))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:74:0: required from here 74 | stan::math::check_not_nan(function, "Cholesky factor", L_chol); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:207:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 207 | for (size_t i = 0; i < x.rows(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:208:26: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 208 | for (size_t j = 0; j < x.cols(); j++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_diag_inv_metric.hpp:21:0: required from here 21 | stan::math::check_finite("check_finite", "inv_metric", inv_metric); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive.hpp:29:20: required from ‘void stan::math::check_positive(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return x > 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | "positive"); | ~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_diag_inv_metric.hpp:22:0: required from here 22 | stan::math::check_positive("check_positive", "inv_metric", inv_metric); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:142:28: required from ‘bool Eigen::DenseBase::hasNaN() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >]’ 142 | return !((derived().array()==derived().array()).all()); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:156:40: required from ‘bool Eigen::DenseBase::allFinite() const [with Derived = Eigen::Matrix]’ 156 | return !((derived()-derived()).hasNaN()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:31:0: required from here 31 | if (!covar.allFinite()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:142:28: required from ‘bool Eigen::DenseBase::hasNaN() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >]’ 142 | return !((derived().array()==derived().array()).all()); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:156:40: required from ‘bool Eigen::DenseBase::allFinite() const [with Derived = Eigen::Matrix]’ 156 | return !((derived()-derived()).hasNaN()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:30:0: required from here 30 | if (!var.allFinite()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta.hpp:70, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/invalid_argument.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/core/init_threadpool_tbb.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/core.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:10: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_less_or_equal.hpp: In instantiation of ‘void stan::math::check_less_or_equal(const char*, const char*, const T_y&, const T_high&, Idxs ...) [with T_y = long unsigned int; T_high = long int; stan::require_all_stan_scalar_t* = 0; Idxs = {}]’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:79:0: required from ‘std::vector stan::io::array_var_context::validate_dims(const std::vector >&, T, const std::vector >&) [with T = long int]’ 79 | stan::math::check_less_or_equal("validate_dims", "array_var_context", 80 | elem_dims_total[dims.size()], array_size); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:118:0: required from here 118 | std::vector dim_vec = validate_dims(names, values.size(), dims); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_less_or_equal.hpp:39:20: warning: comparison of integer expressions of different signedness: ‘const long unsigned int’ and ‘const long int’ [-Wsign-compare] 39 | if (unlikely(!(y <= high))) { | ~~~^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/compiler_attributes.hpp:9:41: note: in definition of macro ‘unlikely’ 9 | #define unlikely(x) __builtin_expect(!!(x), 0) | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:79:21: required from ‘auto stan::math::subtract(const Mat&, Scal) [with Mat = Eigen::Matrix; Scal = int; stan::require_eigen_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_not_st_var* = 0]’ 79 | return (m.array() - c).matrix(); | ~~~~~~~~~~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lb_free.hpp:37:29: required from ‘auto stan::math::lb_free(T&&, L&&) [with T = const Eigen::Matrix&; L = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 37 | return eval(log(subtract(std::forward(y_ref), | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | std::forward(lb_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:253:0: required from ‘void stan::io::serializer::write_free_lb(const L&, const S&) [with S = Eigen::Matrix; L = int; T = double]’ 253 | this->write(stan::math::lb_free(x, lb)); stanExports_stanmarg.h:19873:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19873 | out__.write_free_lb(0, Theta_sd_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:79:32: required from ‘auto stan::math::subtract(const Mat&, Scal) [with Mat = Eigen::Matrix; Scal = int; stan::require_eigen_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_not_st_var* = 0]’ 79 | return (m.array() - c).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lb_free.hpp:37:29: required from ‘auto stan::math::lb_free(T&&, L&&) [with T = const Eigen::Matrix&; L = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 37 | return eval(log(subtract(std::forward(y_ref), | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | std::forward(lb_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:253:0: required from ‘void stan::io::serializer::write_free_lb(const L&, const S&) [with S = Eigen::Matrix; L = int; T = double]’ 253 | this->write(stan::math::lb_free(x, lb)); stanExports_stanmarg.h:19873:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19873 | out__.write_free_lb(0, Theta_sd_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:44: required from ‘stan::math::log, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):: [with auto:170 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; T2 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_t::type> >* = 0; T = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lb_free.hpp:37:20: required from ‘auto stan::math::lb_free(T&&, L&&) [with T = const Eigen::Matrix&; L = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 37 | return eval(log(subtract(std::forward(y_ref), | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | std::forward(lb_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:253:0: required from ‘void stan::io::serializer::write_free_lb(const L&, const S&) [with S = Eigen::Matrix; L = int; T = double]’ 253 | this->write(stan::math::lb_free(x, lb)); stanExports_stanmarg.h:19873:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19873 | out__.write_free_lb(0, Theta_sd_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):: [with auto:170 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; T2 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_t::type> >* = 0; T = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lb_free.hpp:37:20: required from ‘auto stan::math::lb_free(T&&, L&&) [with T = const Eigen::Matrix&; L = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 37 | return eval(log(subtract(std::forward(y_ref), | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | std::forward(lb_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:253:0: required from ‘void stan::io::serializer::write_free_lb(const L&, const S&) [with S = Eigen::Matrix; L = int; T = double]’ 253 | this->write(stan::math::lb_free(x, lb)); stanExports_stanmarg.h:19873:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19873 | out__.write_free_lb(0, Theta_sd_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):: >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&, const stan::math::log, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::apply_vector_unary, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):: >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&, const stan::math::log, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::&)::; Args = {Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:23: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; T2 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_t::type> >* = 0; T = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 47 | f(x)); | ~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lb_free.hpp:37:20: required from ‘auto stan::math::lb_free(T&&, L&&) [with T = const Eigen::Matrix&; L = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 37 | return eval(log(subtract(std::forward(y_ref), | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | std::forward(lb_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:253:0: required from ‘void stan::io::serializer::write_free_lb(const L&, const S&) [with S = Eigen::Matrix; L = int; T = double]’ 253 | this->write(stan::math::lb_free(x, lb)); stanExports_stanmarg.h:19873:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19873 | out__.write_free_lb(0, Theta_sd_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:62:13: required from ‘auto stan::math::subtract(Scal, const Mat&) [with Scal = int; Mat = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 62 | return (c - m.array()).matrix(); | ~~~^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ub_free.hpp:43:29: required from ‘auto stan::math::ub_free(T&&, U&&) [with T = Eigen::Matrix; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 43 | return eval(log(subtract(std::forward(ub_ref), | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44 | std::forward(y_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:54:19: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 54 | return ub_free(identity_free(y, lb), ub); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:62:32: required from ‘auto stan::math::subtract(Scal, const Mat&) [with Scal = int; Mat = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 62 | return (c - m.array()).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ub_free.hpp:43:29: required from ‘auto stan::math::ub_free(T&&, U&&) [with T = Eigen::Matrix; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 43 | return eval(log(subtract(std::forward(ub_ref), | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44 | std::forward(y_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:54:19: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 54 | return ub_free(identity_free(y, lb), ub); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:44: required from ‘stan::math::log, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >&):: [with auto:170 = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >&)::; T2 = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >; stan::require_t::type> >* = 0; T = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ub_free.hpp:43:20: required from ‘auto stan::math::ub_free(T&&, U&&) [with T = Eigen::Matrix; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 43 | return eval(log(subtract(std::forward(ub_ref), | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44 | std::forward(y_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:54:19: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 54 | return ub_free(identity_free(y, lb), ub); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ub_free.hpp:43:20: required from ‘auto stan::math::ub_free(T&&, U&&) [with T = Eigen::Matrix; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 43 | return eval(log(subtract(std::forward(ub_ref), | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44 | std::forward(y_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:54:19: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 54 | return ub_free(identity_free(y, lb), ub); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, void>::apply, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >&):: >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >&, const stan::math::log, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ub_free.hpp:43:20: required from ‘auto stan::math::ub_free(T&&, U&&) [with T = Eigen::Matrix; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 43 | return eval(log(subtract(std::forward(ub_ref), | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44 | std::forward(y_ref)))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:54:19: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 54 | return ub_free(identity_free(y, lb), ub); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:33: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; T2 = double; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:59:29: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 59 | return eval(logit(divide(subtract(std::forward(y_ref), lb), | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 | subtract(ub, lb)))); | ~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:64: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; T2 = double; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:59:29: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 59 | return eval(logit(divide(subtract(std::forward(y_ref), lb), | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 | subtract(ub, lb)))); | ~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/logit.hpp:113:51: required from ‘stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):::: [with auto:341 = Eigen::Matrix]’ 113 | [](const auto& v) { return (v.array() / (1 - v.array())).log(); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; Args = {Eigen::Matrix}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/logit.hpp:109:21: required from ‘auto stan::math::logit(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_container_st* = 0]’ 109 | return make_holder( | ~~~~~~~~~~~^ 110 | [](const auto& v_ref) { | ~~~~~~~~~~~~~~~~~~~~~~~ 111 | return apply_vector_unary>::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | v_ref, | ~~~~~~ 113 | [](const auto& v) { return (v.array() / (1 - v.array())).log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 | }, | ~~ 115 | to_ref(x)); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:59:22: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 59 | return eval(logit(divide(subtract(std::forward(y_ref), lb), | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 | subtract(ub, lb)))); | ~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/logit.hpp:113:73: required from ‘stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):::: [with auto:341 = Eigen::Matrix]’ 113 | [](const auto& v) { return (v.array() / (1 - v.array())).log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; Args = {Eigen::Matrix}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/logit.hpp:109:21: required from ‘auto stan::math::logit(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_container_st* = 0]’ 109 | return make_holder( | ~~~~~~~~~~~^ 110 | [](const auto& v_ref) { | ~~~~~~~~~~~~~~~~~~~~~~~ 111 | return apply_vector_unary>::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | v_ref, | ~~~~~~ 113 | [](const auto& v) { return (v.array() / (1 - v.array())).log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 | }, | ~~ 115 | to_ref(x)); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:59:22: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 59 | return eval(logit(divide(subtract(std::forward(y_ref), lb), | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 | subtract(ub, lb)))); | ~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, void>::apply, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):::: >(const Eigen::Matrix&, const stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::apply_vector_unary, void>::apply, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):::: >(const Eigen::Matrix&, const stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::::&)::; Args = {Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:23: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; Args = {Eigen::Matrix}; stan::require_plain_type_t()((declval)()...))>* = ]’ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/logit.hpp:109:21: required from ‘auto stan::math::logit(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_container_st* = 0]’ 109 | return make_holder( | ~~~~~~~~~~~^ 110 | [](const auto& v_ref) { | ~~~~~~~~~~~~~~~~~~~~~~~ 111 | return apply_vector_unary>::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | v_ref, | ~~~~~~ 113 | [](const auto& v) { return (v.array() / (1 - v.array())).log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 | }, | ~~ 115 | to_ref(x)); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:59:22: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 59 | return eval(logit(divide(subtract(std::forward(y_ref), lb), | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 | subtract(ub, lb)))); | ~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:115:7: required from ‘class stan::math::Holder, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, Eigen::Matrix >’ 115 | class Holder | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:312:16: required from ‘auto stan::math::internal::make_holder_impl_construct_object(T&&, std::index_sequence, const std::tuple&) [with T = Eigen::MatrixWrapper, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >; long unsigned int ...Is = {0}; Args = {Eigen::Matrix}; std::index_sequence = std::integer_sequence]’ 312 | return holder(std::forward(expr), std::get(ptrs)...); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:330:43: required from ‘auto stan::math::internal::make_holder_impl(const F&, std::index_sequence, Args&& ...) [with F = stan::math::logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; long unsigned int ...Is = {0}; Args = {Eigen::Matrix}; std::index_sequence = std::integer_sequence]’ 330 | return make_holder_impl_construct_object( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 331 | func(*std::get(res)...), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 332 | std::make_index_sequence::value>(), ptrs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:353:36: required from ‘auto stan::math::make_holder(const F&, Args&& ...) [with F = logit, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; Args = {Eigen::Matrix}; stan::require_not_plain_type_t()((declval)()...))>* = 0]’ 353 | return internal::make_holder_impl(func, | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ 354 | std::make_index_sequence(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 355 | std::forward(args)...); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/logit.hpp:109:21: required from ‘auto stan::math::logit(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_container_st* = 0]’ 109 | return make_holder( | ~~~~~~~~~~~^ 110 | [](const auto& v_ref) { | ~~~~~~~~~~~~~~~~~~~~~~~ 111 | return apply_vector_unary>::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | v_ref, | ~~~~~~ 113 | [](const auto& v) { return (v.array() / (1 - v.array())).log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 | }, | ~~ 115 | to_ref(x)); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lub_free.hpp:59:22: required from ‘auto stan::math::lub_free(T&&, L&&, U&&) [with T = const Eigen::Matrix&; L = const int&; U = const int&; stan::require_not_std_vector_t* = 0; stan::require_all_stan_scalar_t* = 0]’ 59 | return eval(logit(divide(subtract(std::forward(y_ref), lb), | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 | subtract(ub, lb)))); | ~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:281:0: required from ‘void stan::io::serializer::write_free_lub(const L&, const U&, const S&) [with S = Eigen::Matrix; L = int; U = int; T = double]’ 281 | this->write(stan::math::lub_free(x, lb, ub)); stanExports_stanmarg.h:19892:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19892 | out__.write_free_lub(-1, 1, Theta_r_free); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp: In instantiation of ‘int stan::services::standalone_generate(const Model&, const Eigen::MatrixXd&, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; Eigen::MatrixXd = Eigen::Matrix]’: /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1253:0: required from ‘SEXPREC* rstan::stan_fit::standalone_gqs(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1253 | ret = stan::services::standalone_generate(model_, draws, 1254 | Rcpp::as(seed), interrupt, logger, *sample_writer_ptr); stanExports_stanmarg.cc:30:0: required from here 30 | .method("standalone_gqs", &rstan::stan_fit ::standalone_gqs) /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:55: warning: comparison of integer expressions of different signedness: ‘std::vector >::size_type’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 55 | if (p_names.size() != draws.cols()) { /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:71: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 71 | for (size_t i = 0; i < draws.rows(); ++i) { In file included from /usr/local/lib/R/library/BH/include/boost/concept/assert.hpp:35, from /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:20, from /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:19, from /usr/local/lib/R/library/BH/include/boost/range/size_type.hpp:20, from /usr/local/lib/R/library/BH/include/boost/range/size.hpp:21, from /usr/local/lib/R/library/BH/include/boost/range/functions.hpp:20, from /usr/local/lib/R/library/BH/include/boost/range.hpp:18, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/resize.hpp:24: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::constraint::failed() [with Model = boost::algorithm::FinderConcept >, __gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:81:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:65:52: warning: ‘this’ pointer is null [-Wnonnull] 65 | static void failed() { ((Model*)0)->constraints(); } | ~~~~~~~~~~~~~~~~~~~~~~~~^~ In file included from /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:26, from /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:16, from /usr/local/lib/R/library/BH/include/boost/algorithm/string.hpp:23, from /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:4, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:46: /usr/local/lib/R/library/BH/include/boost/algorithm/string/concept.hpp:40: note: in a call to non-static member function ‘void boost::algorithm::FinderConcept::constraints() [with FinderT = boost::algorithm::detail::token_finderF >; IteratorT = __gnu_cxx::__normal_iterator >]’ 40 | void constraints() /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::constraint::failed() [with Model = boost::algorithm::FinderConcept, __gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/algorithm/string/find_format.hpp:98:0: required from ‘void boost::algorithm::find_format(SequenceT&, FinderT, FormatterT) [with SequenceT = std::__cxx11::basic_string; FinderT = detail::first_finderF; FormatterT = detail::const_formatF >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/replace.hpp:179:0: required from ‘void boost::algorithm::replace_first(SequenceT&, const Range1T&, const Range2T&) [with SequenceT = std::__cxx11::basic_string; Range1T = char [11]; Range2T = char [1]]’ 179 | ::boost::algorithm::find_format( 180 | Input, 181 | ::boost::algorithm::first_finder(Search), 182 | ::boost::algorithm::const_formatter(Format) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:133:0: required from here 133 | boost::replace_first(value, " (Default)", ""); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:65:52: warning: ‘this’ pointer is null [-Wnonnull] 65 | static void failed() { ((Model*)0)->constraints(); } | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/concept.hpp:40: note: in a call to non-static member function ‘void boost::algorithm::FinderConcept::constraints() [with FinderT = boost::algorithm::detail::first_finderF; IteratorT = __gnu_cxx::__normal_iterator >]’ 40 | void constraints() /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::constraint::failed() [with Model = boost::algorithm::FormatterConcept >, boost::algorithm::detail::first_finderF, __gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/algorithm/string/find_format.hpp:103:0: required from ‘void boost::algorithm::find_format(SequenceT&, FinderT, FormatterT) [with SequenceT = std::__cxx11::basic_string; FinderT = detail::first_finderF; FormatterT = detail::const_formatF >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/replace.hpp:179:0: required from ‘void boost::algorithm::replace_first(SequenceT&, const Range1T&, const Range2T&) [with SequenceT = std::__cxx11::basic_string; Range1T = char [11]; Range2T = char [1]]’ 179 | ::boost::algorithm::find_format( 180 | Input, 181 | ::boost::algorithm::first_finder(Search), 182 | ::boost::algorithm::const_formatter(Format) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:133:0: required from here 133 | boost::replace_first(value, " (Default)", ""); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:65:52: warning: ‘this’ pointer is null [-Wnonnull] 65 | static void failed() { ((Model*)0)->constraints(); } | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/concept.hpp:65: note: in a call to non-static member function ‘void boost::algorithm::FormatterConcept::constraints() [with FormatterT = boost::algorithm::detail::const_formatF >; FinderT = boost::algorithm::detail::first_finderF; IteratorT = __gnu_cxx::__normal_iterator >]’ 65 | void constraints() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<1> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::InnerStride<1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::InnerStride<1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::InnerStride<1> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:59:34: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:112:44: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t, stan::value_type_t&) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 112 | const Eigen::Ref>& CPCs_ref = CPCs; | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:62:47: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 62 | acc.tail(pull) = T_scalar(1.0) - temp.square(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:32:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 32 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:45:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int]’ 45 | return read_corr_matrix(corr_constrain(x), k); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:949:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 949 | return corr_matrix_constrain( 950 | this->read>((k * (k - 1)) / 2), 951 | k); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:62:34: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 62 | acc.tail(pull) = T_scalar(1.0) - temp.square(); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:32:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 32 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:45:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int]’ 45 | return read_corr_matrix(corr_constrain(x), k); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:949:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 949 | return corr_matrix_constrain( 950 | this->read>((k * (k - 1)) / 2), 951 | k); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, false> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:68:32: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 68 | L.col(i).tail(pull) = temp * acc.tail(pull).sqrt(); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:32:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 32 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:45:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int]’ 45 | return read_corr_matrix(corr_constrain(x), k); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:949:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 949 | return corr_matrix_constrain( 950 | this->read>((k * (k - 1)) / 2), 951 | k); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:58: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:330: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘class Eigen::internal::gebp_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:72:102: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 72 | typedef blas_data_mapper ResMapper; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 433 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 434 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 435 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 460 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 461 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 462 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 465 | typedef QuadPacket RhsPacketx4; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘class Eigen::internal::gebp_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1080:42: required from ‘struct Eigen::internal::gebp_kernel, 4, 4, false, false>’ 1080 | typedef typename HalfTraits::LhsPacket LhsPacketHalf; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:92:109: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 92 | gebp_kernel gebp; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 433 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 434 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 435 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 460 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 461 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 462 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 465 | typedef QuadPacket RhsPacketx4; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘class Eigen::internal::gebp_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1085:45: required from ‘struct Eigen::internal::gebp_kernel, 4, 4, false, false>’ 1085 | typedef typename QuarterTraits::LhsPacket LhsPacketQuarter; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:92:109: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 92 | gebp_kernel gebp; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 433 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 434 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 435 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 460 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 461 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 462 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 465 | typedef QuadPacket RhsPacketx4; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CommaInitializer.h:159:10: required from ‘Eigen::CommaInitializer Eigen::DenseBase::operator<<(const Eigen::DenseBase&) [with OtherDerived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Derived = Eigen::Matrix]’ 159 | return CommaInitializer(*static_cast(this), other); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_row.hpp:102:10: required from ‘Eigen::Matrix::type, -1, 1> stan::math::append_row(const ColVec&, const Scal&) [with ColVec = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scal = double; stan::require_t >* = 0; stan::require_stan_scalar_t* = 0; typename stan::return_type::type = double]’ 102 | result << A.template cast(), B; | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:29:31: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 29 | ArrayBT b_array = append_row(as_array_or_scalar(b), 1.0); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::Matrix; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::Matrix; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Matrix; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:478:32: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::mean() const [with Derived = Eigen::Matrix; typename Eigen::internal::traits::Scalar = double]’ 478 | return Scalar(derived().redux(Eigen::internal::scalar_sum_op())) / Scalar(this->size()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:25:0: required from here 25 | vector_d diff = dtrs_vals.array() - dtrs_vals.mean(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:451:40: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 451 | subdiag = mat.template diagonal<-1>().real(); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:91: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, 1, -1, false>, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:101: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<1> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<1> >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::InnerStride<1> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::InnerStride<1> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::InnerStride<1> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::InnerStride<1> >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:126:21: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t, stan::value_type_t&) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 126 | return read_corr_L(CPCs_ref, K); | ~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:35:46: required from ‘stan::math::matrix_d stan::math::multiply_lower_tri_self_transpose(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_matrix_dynamic_t* = 0; stan::require_not_st_autodiff* = 0; matrix_d = Eigen::Matrix]’ 35 | LLt(m, m) = Lt.col(m).head(k).squaredNorm(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:43: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:191:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 191 | _pk.noalias() = -_gk; /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:192:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 192 | auto exp_x = to_arena(arena_x.val().array().exp()); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:193:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 193 | arena_t ret = exp_x + lb_val; /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:197:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 197 | arena_x.adj().array() += ret.adj().array() * exp_x + lp.adj(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:197:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 197 | arena_x.adj().array() += ret.adj().array() * exp_x + lp.adj(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&):: [with auto:12 = const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:213:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 213 | arena_t ret = value_of(x_ref).array().exp() + lb_val; /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:213:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 213 | arena_t ret = value_of(x_ref).array().exp() + lb_val; /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:213:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 213 | arena_t ret = value_of(x_ref).array().exp() + lb_val; /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:386:0: required from ‘auto stan::io::deserializer::read_constrain_lb(const LB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 386 | return stan::math::lb_constrain(this->read(sizes...), lb, lp); stanExports_stanmarg.h:12963:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12962 | Theta_sd_free = in__.template read_constrain_lb< 12963 | Eigen::Matrix, jacobian__>(0, 12964 | lp__, Theta_sd_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:213:0: required from ‘auto stan::math::lb_constrain(const T&, const L&, stan::return_type_t&) [with T = Eigen::Matrix, -1, 1>; L = int; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_any_st_var* = 0; stan::return_type_t = var_value]’ 213 | arena_t ret = value_of(x_ref).array().exp() + lb_val; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:209:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 209 | return ret_type(lb_constrain(identity_constrain(x, ub), lb, lp)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:213:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lb_constrain.hpp:213:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/ub_constrain.hpp:195:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/ub_constrain.hpp:196:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/ub_constrain.hpp:215:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/ub_constrain.hpp:215:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1> >&>(arena_matrix, -1, 1> >&):: [with auto:12 = stan::math::arena_matrix, -1, 1> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:215:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 215 | auto neg_abs_x = to_arena(-(value_of(arena_x).array()).abs()); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:215:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 215 | auto neg_abs_x = to_arena(-(value_of(arena_x).array()).abs()); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:215:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 215 | auto neg_abs_x = to_arena(-(value_of(arena_x).array()).abs()); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::log1p_exp_fun; T = stan::math::arena_matrix, void>]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:217:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 217 | lp += (log(diff) + (neg_abs_x - (2.0 * log1p_exp(neg_abs_x)))).sum(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:217:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 217 | lp += (log(diff) + (neg_abs_x - (2.0 * log1p_exp(neg_abs_x)))).sum(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>, void>::apply(const stan::math::arena_matrix, void>&)::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:217:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 217 | lp += (log(diff) + (neg_abs_x - (2.0 * log1p_exp(neg_abs_x)))).sum(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::inv_logit_fun; T = Eigen::ArrayWrapper, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:219:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 219 | arena_t ret = diff * inv_logit_x + lb_val; /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:219:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 219 | arena_t ret = diff * inv_logit_x + lb_val; /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:224:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 224 | += ret.adj().array() * diff * inv_logit_x * (1.0 - inv_logit_x) /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:224:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 224 | += ret.adj().array() * diff * inv_logit_x * (1.0 - inv_logit_x) /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:224:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 224 | += ret.adj().array() * diff * inv_logit_x * (1.0 - inv_logit_x) /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:224:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 224 | += ret.adj().array() * diff * inv_logit_x * (1.0 - inv_logit_x) /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:225:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 225 | + lp.adj() * (1.0 - 2.0 * inv_logit_x); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:225:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 225 | + lp.adj() * (1.0 - 2.0 * inv_logit_x); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:225:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 225 | + lp.adj() * (1.0 - 2.0 * inv_logit_x); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:225:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 224 | += ret.adj().array() * diff * inv_logit_x * (1.0 - inv_logit_x) 225 | + lp.adj() * (1.0 - 2.0 * inv_logit_x); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lub_constrain.hpp:231:0: required from ‘auto stan::math::lub_constrain(const T&, const L&, const U&, stan::return_type_t&) [with T = Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >; L = int; U = int; stan::require_matrix_t* = 0; stan::require_all_stan_scalar_t* = 0; stan::require_var_t::type>* = 0; stan::return_type_t = var_value]’ 231 | += (ret.adj().array() * (1.0 - inv_logit_x)).sum() /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:441:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 441 | return stan::math::lub_constrain(this->read(sizes...), lb, ub, lp); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/ub_constrain.hpp:163:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:443:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 443 | return stan::math::lub_constrain(this->read(sizes...), lb, ub); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::inv_logit_fun; T = Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:443:0: required from ‘auto stan::io::deserializer::read_constrain_lub(const LB&, const UB&, LP&, Sizes ...) [with Ret = Eigen::Matrix, -1, 1>; bool Jacobian = true; LB = int; UB = int; LP = stan::math::var_value; Sizes = {int}; T = stan::math::var_value]’ 443 | return stan::math::lub_constrain(this->read(sizes...), lb, ub); stanExports_stanmarg.h:12970:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12969 | Theta_r_free = in__.template read_constrain_lub< 12970 | Eigen::Matrix, jacobian__>(-1, 12971 | 1, lp__, Theta_r_free_1dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:113:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Transpose, -1, -1> >; stan::require_all_rev_matrix_t* = 0]’ 113 | using op_ret_type = decltype(a.val() + b.val()); stanExports_stanmarg.h:13361:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:113:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Transpose, -1, -1> >; stan::require_all_rev_matrix_t* = 0]’ 113 | using op_ret_type = decltype(a.val() + b.val()); stanExports_stanmarg.h:13361:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_var_matrix.hpp:80:65: required from ‘struct stan::is_any_var_matrix, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1, 0, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1, 0, -1, -1> > > >, Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::Transpose, -1, -1, 0, -1, -1> > >’ 80 | : bool_constant...>::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> > >::val_Op, const Eigen::Transpose, -1, -1> > > >; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::Transpose, -1, -1, 0, -1, -1> >}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:114:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Transpose, -1, -1> >; stan::require_all_rev_matrix_t* = 0]’ 114 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:13361:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:117:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Transpose, -1, -1> >; stan::require_all_rev_matrix_t* = 0]’ 117 | arena_t ret(arena_a.val() + arena_b.val()); stanExports_stanmarg.h:13361:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:117:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Transpose, -1, -1> >; stan::require_all_rev_matrix_t* = 0]’ 117 | arena_t ret(arena_a.val() + arena_b.val()); stanExports_stanmarg.h:13361:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:117:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Transpose, -1, -1> >; stan::require_all_rev_matrix_t* = 0]’ 117 | arena_t ret(arena_a.val() + arena_b.val()); stanExports_stanmarg.h:13361:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1, 1, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:123:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Transpose, -1, -1> >; stan::require_all_rev_matrix_t* = 0]’ 123 | arena_b.adj().coeffRef(i, j) += ref_adj; stanExports_stanmarg.h:13361:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:154:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 154 | (a.val().array() - as_array_or_scalar(b)).matrix())>; stanExports_stanmarg.h:13360:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13360 | stan::math::subtract( 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), 13367 | stan::math::diag_matrix(stan::math::rep_vector(1, p))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:154:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 154 | (a.val().array() - as_array_or_scalar(b)).matrix())>; stanExports_stanmarg.h:13360:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13360 | stan::math::subtract( 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), 13367 | stan::math::diag_matrix(stan::math::rep_vector(1, p))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: recursively required by substitution of ‘template struct stan::plain_type, stan::is_eigen::type> >::value, void>::type> [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >]’ 22 | using plain_type_t = typename plain_type::type; | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: required by substitution of ‘template using stan::plain_type_t = typename stan::plain_type::type [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >]’ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:153:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 153 | using op_ret_type = plain_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13360 | stan::math::subtract( 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), 13367 | stan::math::diag_matrix(stan::math::rep_vector(1, p))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:157:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 157 | arena_t ret(arena_a.val().array() - as_array_or_scalar(b)); stanExports_stanmarg.h:13360:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13360 | stan::math::subtract( 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), 13367 | stan::math::diag_matrix(stan::math::rep_vector(1, p))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:157:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 157 | arena_t ret(arena_a.val().array() - as_array_or_scalar(b)); stanExports_stanmarg.h:13360:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13360 | stan::math::subtract( 13361 | stan::math::add( 13362 | stan::model::rvalue(T_r_lower, "T_r_lower", 13363 | stan::model::index_uni(g)), 13364 | stan::math::transpose( 13365 | stan::model::rvalue(T_r_lower, "T_r_lower", 13366 | stan::model::index_uni(g)))), 13367 | stan::math::diag_matrix(stan::math::rep_vector(1, p))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&):: [with auto:14 = const Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:180:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 180 | (as_array_or_scalar(a) - b.val().array()).matrix())>; stanExports_stanmarg.h:13574:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13574 | stan::math::subtract(I, 13575 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:180:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 180 | (as_array_or_scalar(a) - b.val().array()).matrix())>; stanExports_stanmarg.h:13574:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13574 | stan::math::subtract(I, 13575 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: recursively required by substitution of ‘template struct stan::plain_type, stan::is_eigen::type> >::value, void>::type> [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > >]’ 22 | using plain_type_t = typename plain_type::type; | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: required by substitution of ‘template using stan::plain_type_t = typename stan::plain_type::type [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > > >]’ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:179:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 179 | using op_ret_type = plain_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13574 | stan::math::subtract(I, 13575 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:183:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 183 | arena_t ret(as_array_or_scalar(a) - arena_b.val().array()); stanExports_stanmarg.h:13574:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13574 | stan::math::subtract(I, 13575 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:185:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 185 | [ret, arena_b]() mutable { arena_b.adj() -= ret.adj_op(); }); stanExports_stanmarg.h:13574:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13574 | stan::math::subtract(I, 13575 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_var_matrix.hpp:80:65: required from ‘struct stan::is_any_var_matrix, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1, 0, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1, 0, -1, -1> > >, Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::Matrix, -1, -1, 0, -1, -1> >’ 80 | : bool_constant...>::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:114:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Matrix, -1, -1>; stan::require_all_rev_matrix_t* = 0]’ 114 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:13615:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13615 | stan::math::add( 13616 | stan::model::deep_copy( 13617 | stan::model::rvalue(Sigma, "Sigma", 13618 | stan::model::index_uni(g), 13619 | stan::model::index_min_max(1, p), 13620 | stan::model::index_min_max(1, p))), 13621 | stan::math::quad_form_sym( 13622 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 13623 | stan::math::transpose( 13624 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13625 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:117:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Matrix, -1, -1>; stan::require_all_rev_matrix_t* = 0]’ 117 | arena_t ret(arena_a.val() + arena_b.val()); stanExports_stanmarg.h:13615:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13615 | stan::math::add( 13616 | stan::model::deep_copy( 13617 | stan::model::rvalue(Sigma, "Sigma", 13618 | stan::model::index_uni(g), 13619 | stan::model::index_min_max(1, p), 13620 | stan::model::index_min_max(1, p))), 13621 | stan::math::quad_form_sym( 13622 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 13623 | stan::math::transpose( 13624 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13625 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_var_matrix.hpp:80:65: required from ‘struct stan::is_any_var_matrix, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::VectorBlock, -1, -1, 0, -1, -1>, -1, 1, true>, -1> >’ 80 | : bool_constant...>::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::VectorBlock, -1, -1, 0, -1, -1>, -1, 1, true>, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:36:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 36 | using return_t stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:43:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 43 | arena_A.adj() += res.adj_op() * arena_B_val.transpose(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:43:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 43 | arena_A.adj() += res.adj_op() * arena_B_val.transpose(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:43:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 43 | arena_A.adj() += res.adj_op() * arena_B_val.transpose(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:44:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 44 | arena_B.adj() += arena_A_val.transpose() * res.adj_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:47:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 47 | arena_A.adj() += res_adj * arena_B_val.transpose(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:48:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 48 | arena_B.adj() += arena_A_val.transpose() * res_adj; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, -1>&>(const Eigen::Matrix, -1, -1>&):: [with auto:12 = const Eigen::Matrix, -1, -1>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:53:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 53 | arena_t> arena_A = value_of(A); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, -1, 1, true>, -1>&>(const Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>&)::::, const Eigen::Block, -1, -1>, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, -1, 1, true>, -1>&>(const Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>&)::::, const Eigen::Block, -1, -1>, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, -1, 1, true>, -1>&>(const Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>&)::::, const Eigen::Block, -1, -1>, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>, -1, 1, true>, -1>&>(const Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>&)::::, const Eigen::Block, -1, -1>, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>, -1, 1, true>, -1>&>(const Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>&)::::, const Eigen::Block, -1, -1>, -1, 1, true>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, -1>, -1, 1, true>, -1>&>(const Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>&):: [with auto:12 = const Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:56:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 56 | = return_var_matrix_t; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_var_matrix.hpp:80:65: required from ‘struct stan::is_any_var_matrix, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>, Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::VectorBlock, -1, -1, 0, -1, -1>, -1, 1, true>, -1> >’ 80 | : bool_constant...>::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::VectorBlock, -1, -1, 0, -1, -1>, -1, 1, true>, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:55:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 55 | using return_t stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:57:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 57 | arena_t res = arena_A * arena_B.val_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:57:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 57 | arena_t res = arena_A * arena_B.val_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, void>&>(arena_matrix, -1, -1>, void>&)::::, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, void>&>(arena_matrix, -1, -1>, void>&)::::, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, void>&>(arena_matrix, -1, -1>, void>&)::::, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>, void>&>(arena_matrix, -1, -1>, void>&)::::, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>, void>&>(arena_matrix, -1, -1>, void>&)::::, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, -1>, void>&>(arena_matrix, -1, -1>, void>&):: [with auto:12 = stan::math::arena_matrix, -1, -1>, void>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:66:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 66 | = return_var_matrix_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_var_matrix.hpp:80:65: required from ‘struct stan::is_any_var_matrix, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::VectorBlock, -1, -1, 0, -1, -1>, -1, 1, true>, -1> >’ 80 | : bool_constant...>::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::VectorBlock, -1, -1, 0, -1, -1>, -1, 1, true>, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:65:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 65 | using return_t stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:68:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 68 | arena_t res = arena_A.val_op() * arena_B; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:68:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 68 | arena_t res = arena_A.val_op() * arena_B; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:113:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, 1>; VarMat2 = Eigen::Matrix, -1, 1>; stan::require_all_rev_matrix_t* = 0]’ 113 | using op_ret_type = decltype(a.val() + b.val()); stanExports_stanmarg.h:13633:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13633 | stan::math::add( 13634 | stan::model::deep_copy( 13635 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(g), 13636 | stan::model::index_min_max(1, p))), 13637 | stan::math::to_vector( 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_var_matrix.hpp:80:65: required from ‘struct stan::is_any_var_matrix, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1, 0, -1, 1> >, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1, 0, -1, 1> > >, Eigen::Matrix, -1, 1, 0, -1, 1>, Eigen::Matrix, -1, 1, 0, -1, 1> >’ 80 | : bool_constant...>::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, const Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>, Eigen::Matrix, -1, 1, 0, -1, 1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:114:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, 1>; VarMat2 = Eigen::Matrix, -1, 1>; stan::require_all_rev_matrix_t* = 0]’ 114 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:13633:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13633 | stan::math::add( 13634 | stan::model::deep_copy( 13635 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(g), 13636 | stan::model::index_min_max(1, p))), 13637 | stan::math::to_vector( 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:117:0: required from ‘auto stan::math::add(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, 1>; VarMat2 = Eigen::Matrix, -1, 1>; stan::require_all_rev_matrix_t* = 0]’ 117 | arena_t ret(arena_a.val() + arena_b.val()); stanExports_stanmarg.h:13633:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13633 | stan::math::add( 13634 | stan::model::deep_copy( 13635 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(g), 13636 | stan::model::index_min_max(1, p))), 13637 | stan::math::to_vector( 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_stanmarg.h:14697:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_stanmarg.h:14697:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:148:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 148 | using ret_type = return_var_matrix_t; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_stanmarg.h:14697:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:150:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 150 | arena_t ret(arena_a.val().array() + as_array_or_scalar(b)); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = int; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_stanmarg.h:14697:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:145:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 145 | arena_t res = arena_A.val() * arena_B.val().array(); stanExports_stanmarg.h:14696:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:163:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 163 | arena_B.adj().array() += arena_A * res.adj().array(); stanExports_stanmarg.h:14696:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:170:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 170 | arena_t res = arena_A.val() * arena_B.array(); stanExports_stanmarg.h:14696:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:170:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 170 | arena_t res = arena_A.val() * arena_B.array(); stanExports_stanmarg.h:14696:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:172:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 172 | arena_A.adj() += (res.adj().array() * arena_B.array()).sum(); stanExports_stanmarg.h:14696:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::Transpose >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::Transpose > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:40:13: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~~~ 40 | .solve(Eigen::Matrix(b) | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 41 | .transpose()) | ~~~~~~~~~~~~~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Transpose > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Transpose > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, Eigen::Transpose > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:42:17: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~~~ 40 | .solve(Eigen::Matrix(b) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 41 | .transpose()) | ~~~~~~~~~~~~~ 42 | .transpose(); | ~~~~~~~~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:26: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 0>, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 0>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:34: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:36:40: required from ‘stan::math::quad_form_sym, Eigen::Matrix >(const Eigen::Matrix&, const Eigen::Matrix&):: [with auto:377 = Eigen::Matrix]’ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::quad_form_sym, Eigen::Matrix >(const Eigen::Matrix&, const Eigen::Matrix&)::; Args = {const Eigen::Matrix}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:35:21: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 35 | return make_holder( | ~~~~~~~~~~~^ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:115:7: required from ‘class stan::math::Holder, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix >’ 115 | class Holder | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:312:16: required from ‘auto stan::math::internal::make_holder_impl_construct_object(T&&, std::index_sequence, const std::tuple&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >; long unsigned int ...Is = {0}; Args = {const Eigen::Matrix}; std::index_sequence = std::integer_sequence]’ 312 | return holder(std::forward(expr), std::get(ptrs)...); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:330:43: required from ‘auto stan::math::internal::make_holder_impl(const F&, std::index_sequence, Args&& ...) [with F = stan::math::quad_form_sym, Eigen::Matrix >(const Eigen::Matrix&, const Eigen::Matrix&)::; long unsigned int ...Is = {0}; Args = {const Eigen::Matrix}; std::index_sequence = std::integer_sequence]’ 330 | return make_holder_impl_construct_object( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 331 | func(*std::get(res)...), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 332 | std::make_index_sequence::value>(), ptrs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:353:36: required from ‘auto stan::math::make_holder(const F&, Args&& ...) [with F = quad_form_sym, Eigen::Matrix >(const Eigen::Matrix&, const Eigen::Matrix&)::; Args = {const Eigen::Matrix}; stan::require_not_plain_type_t()((declval)()...))>* = 0]’ 353 | return internal::make_holder_impl(func, | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ 354 | std::make_index_sequence(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 355 | std::forward(args)...); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:35:21: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 35 | return make_holder( | ~~~~~~~~~~~^ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:26: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:34: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:36:47: required from ‘stan::math::quad_form_sym, Eigen::Transpose > >(const Eigen::Matrix&, const Eigen::Transpose >&):: [with auto:377 = Eigen::Matrix]’ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::quad_form_sym, Eigen::Transpose > >(const Eigen::Matrix&, const Eigen::Transpose >&)::; Args = {const Eigen::Matrix}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:35:21: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 35 | return make_holder( | ~~~~~~~~~~~^ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:36:40: required from ‘stan::math::quad_form_sym, Eigen::Transpose > >(const Eigen::Matrix&, const Eigen::Transpose >&):: [with auto:377 = Eigen::Matrix]’ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::quad_form_sym, Eigen::Transpose > >(const Eigen::Matrix&, const Eigen::Transpose >&)::; Args = {const Eigen::Matrix}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:35:21: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 35 | return make_holder( | ~~~~~~~~~~~^ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:115:7: required from ‘class stan::math::Holder, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, const Eigen::Matrix >’ 115 | class Holder | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:312:16: required from ‘auto stan::math::internal::make_holder_impl_construct_object(T&&, std::index_sequence, const std::tuple&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >; long unsigned int ...Is = {0}; Args = {const Eigen::Matrix}; std::index_sequence = std::integer_sequence]’ 312 | return holder(std::forward(expr), std::get(ptrs)...); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:330:43: required from ‘auto stan::math::internal::make_holder_impl(const F&, std::index_sequence, Args&& ...) [with F = stan::math::quad_form_sym, Eigen::Transpose > >(const Eigen::Matrix&, const Eigen::Transpose >&)::; long unsigned int ...Is = {0}; Args = {const Eigen::Matrix}; std::index_sequence = std::integer_sequence]’ 330 | return make_holder_impl_construct_object( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 331 | func(*std::get(res)...), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 332 | std::make_index_sequence::value>(), ptrs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:353:36: required from ‘auto stan::math::make_holder(const F&, Args&& ...) [with F = quad_form_sym, Eigen::Transpose > >(const Eigen::Matrix&, const Eigen::Transpose >&)::; Args = {const Eigen::Matrix}; stan::require_not_plain_type_t()((declval)()...))>* = 0]’ 353 | return internal::make_holder_impl(func, | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ 354 | std::make_index_sequence(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 355 | std::forward(args)...); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:35:21: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 35 | return make_holder( | ~~~~~~~~~~~^ 36 | [](const auto& ret) { return 0.5 * (ret + ret.transpose()); }, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:59:34: required from ‘class Eigen::RefBase, 0, Eigen::OuterStride<> > >’ 59 | template class RefBase | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:329:77: required from ‘class Eigen::Ref, 0, Eigen::OuterStride<> >’ 329 | template class Ref | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:31:49: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 31 | const Eigen::Ref>& m_ref = m; | ^~~~~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::OuterStride<> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::OuterStride<> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:33:60: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 33 | plain_type_t mmt = 0.5 * (m_ref + m_ref.transpose()); | ~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:33:43: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 33 | plain_type_t mmt = 0.5 * (m_ref + m_ref.transpose()); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Ref, 0, Eigen::OuterStride<> >, const Eigen::Transpose, 0, Eigen::OuterStride<> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:33:34: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 33 | plain_type_t mmt = 0.5 * (m_ref + m_ref.transpose()); | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseNullaryOp, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::CwiseNullaryOp, Eigen::Matrix >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::CwiseNullaryOp, Eigen::Matrix > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:44:20: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 44 | return ldlt.solve( | ~~~~~~~~~~^ 45 | Eigen::Matrix::Identity( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 46 | m.rows(), m.cols())); | ~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Product >, Eigen::Matrix, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:4436:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_cholesky_rng.hpp:72:55: required from ‘typename stan::StdVectorBuilder, T_loc>::type stan::math::multi_normal_cholesky_rng(const T_loc&, const Eigen::Matrix&, RNG&) [with T_loc = Eigen::Matrix; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; typename stan::StdVectorBuilder, T_loc>::type = Eigen::Matrix]’ 72 | output[n] = as_column_vector_or_scalar(mu_vec[n]) + L_ref * z; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:17222:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17222 | stan::math::multi_normal_cholesky_rng( 17223 | stan::model::rvalue(Mu_c, "Mu_c", 17224 | stan::model::index_uni(gg)), Sigma_c_chol, base_rng__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:513:38: required from ‘struct Eigen::internal::cast_return_type, const Eigen::CwiseUnaryOp, const Eigen::Matrix > >’ 513 | typedef typename _CastType::Scalar NewScalarType; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/../plugins/CommonCwiseUnaryOps.h:48:179: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_col.hpp:49:53: required from ‘auto stan::math::append_col(const T1&, const T2&) [with T1 = Eigen::Matrix; T2 = Eigen::Matrix; = void]’ 49 | result.leftCols(Acols) = A.template cast(); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:2847:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type>::type, -1, -1> model_stanmarg_namespace::calc_B_tilde(const T0__&, const T1__&, const std::vector&, const int&, std::ostream*) [with T0__ = Eigen::Matrix; T1__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 2847 | stan::model::assign(out, stan::math::append_col(mu2, sig2), stanExports_stanmarg.h:17229:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17229 | calc_B_tilde( 17230 | stan::model::rvalue(Sigma_c, "Sigma_c", 17231 | stan::model::index_uni(gg)), YXstar_rep_c, ov_idx2, 17232 | p_tilde, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:513:38: required from ‘struct Eigen::internal::cast_return_type, const Eigen::CwiseUnaryOp, const Eigen::Matrix > >’ 513 | typedef typename _CastType::Scalar NewScalarType; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/../plugins/CommonCwiseUnaryOps.h:48:179: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_col.hpp:50:54: required from ‘auto stan::math::append_col(const T1&, const T2&) [with T1 = Eigen::Matrix; T2 = Eigen::Matrix; = void]’ 50 | result.rightCols(Bcols) = B.template cast(); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:2847:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type>::type, -1, -1> model_stanmarg_namespace::calc_B_tilde(const T0__&, const T1__&, const std::vector&, const int&, std::ostream*) [with T0__ = Eigen::Matrix; T1__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 2847 | stan::model::assign(out, stan::math::append_col(mu2, sig2), stanExports_stanmarg.h:17229:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17229 | calc_B_tilde( 17230 | stan::model::rvalue(Sigma_c, "Sigma_c", 17231 | stan::model::index_uni(gg)), YXstar_rep_c, ov_idx2, 17232 | p_tilde, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:4576:0: required from ‘std::vector::type, -1, 1> > model_stanmarg_namespace::calc_mean_vecs(const std::vector >&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; stan::require_all_t, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4576 | stan::math::add(stan::model::deep_copy(ov_mean), 4577 | stan::model::rvalue(YXstar, "YXstar", stan::model::index_uni(i), 4578 | stan::model::index_multi( 4579 | stan::model::rvalue(Xvar, "Xvar", 4580 | stan::model::index_min_max(1, Nx))))), stanExports_stanmarg.h:17686:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17686 | calc_mean_vecs( 17687 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17688 | stan::model::index_min_max(rr1, (r1 - 1))), 17689 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17690 | stan::model::index_min_max(r2, (clusidx - 1))), 17691 | stan::model::rvalue(nclus, "nclus", 17692 | stan::model::index_uni(gg)), 17693 | stan::model::rvalue(Xvar, "Xvar", 17694 | stan::model::index_uni(gg)), 17695 | stan::model::rvalue(Xbetvar, "Xbetvar", 17696 | stan::model::index_uni(gg)), 17697 | stan::model::rvalue(Nx, "Nx", 17698 | stan::model::index_uni(gg)), 17699 | stan::model::rvalue(Nx_between, "Nx_between", 17700 | stan::model::index_uni(gg)), p_tilde, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::VectorBlock, -1>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:4600:0: required from ‘std::vector::type, -1, 1> > model_stanmarg_namespace::calc_mean_vecs(const std::vector >&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; stan::require_all_t, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4600 | stan::math::add(stan::model::deep_copy(ov_mean_d), 4601 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4602 | stan::model::index_min_max(1, Nx_between))), stanExports_stanmarg.h:17686:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17686 | calc_mean_vecs( 17687 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17688 | stan::model::index_min_max(rr1, (r1 - 1))), 17689 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17690 | stan::model::index_min_max(r2, (clusidx - 1))), 17691 | stan::model::rvalue(nclus, "nclus", 17692 | stan::model::index_uni(gg)), 17693 | stan::model::rvalue(Xvar, "Xvar", 17694 | stan::model::index_uni(gg)), 17695 | stan::model::rvalue(Xbetvar, "Xbetvar", 17696 | stan::model::index_uni(gg)), 17697 | stan::model::rvalue(Nx, "Nx", 17698 | stan::model::index_uni(gg)), 17699 | stan::model::rvalue(Nx_between, "Nx_between", 17700 | stan::model::index_uni(gg)), p_tilde, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; Mat2 = Eigen::VectorBlock, -1>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:4696:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::calc_cov_mats(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4696 | stan::math::subtract( 4697 | stan::model::rvalue(YXstar, "YXstar", 4698 | stan::model::index_uni(i), 4699 | stan::model::index_multi( 4700 | stan::model::rvalue(Xvar, "Xvar", 4701 | stan::model::index_min_max(1, Nx)))), 4702 | stan::model::rvalue(mean_vecs, "mean_vecs", 4703 | stan::model::index_uni(1), 4704 | stan::model::index_min_max(1, Nx)))))), stanExports_stanmarg.h:17704:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17704 | calc_cov_mats( 17705 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17706 | stan::model::index_min_max(rr1, (r1 - 1))), 17707 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17708 | stan::model::index_min_max(r2, (clusidx - 1))), 17709 | mnvecs, 17710 | stan::model::rvalue(nclus, "nclus", 17711 | stan::model::index_uni(gg)), 17712 | stan::model::rvalue(Xvar, "Xvar", 17713 | stan::model::index_uni(gg)), 17714 | stan::model::rvalue(Xbetvar, "Xbetvar", 17715 | stan::model::index_uni(gg)), 17716 | stan::model::rvalue(Nx, "Nx", 17717 | stan::model::index_uni(gg)), 17718 | stan::model::rvalue(Nx_between, "Nx_between", 17719 | stan::model::index_uni(gg)), p_tilde, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::VectorBlock, -1>; Mat2 = Eigen::VectorBlock, -1>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:4740:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::calc_cov_mats(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4740 | stan::math::subtract( 4741 | stan::model::rvalue(mean_d, "mean_d", 4742 | stan::model::index_uni(cc), 4743 | stan::model::index_min_max(1, Nx_between)), 4744 | stan::model::rvalue(mean_vecs, "mean_vecs", 4745 | stan::model::index_uni(2), 4746 | stan::model::index_min_max(1, Nx_between)))))), stanExports_stanmarg.h:17704:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17704 | calc_cov_mats( 17705 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17706 | stan::model::index_min_max(rr1, (r1 - 1))), 17707 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17708 | stan::model::index_min_max(r2, (clusidx - 1))), 17709 | mnvecs, 17710 | stan::model::rvalue(nclus, "nclus", 17711 | stan::model::index_uni(gg)), 17712 | stan::model::rvalue(Xvar, "Xvar", 17713 | stan::model::index_uni(gg)), 17714 | stan::model::rvalue(Xbetvar, "Xbetvar", 17715 | stan::model::index_uni(gg)), 17716 | stan::model::rvalue(Nx, "Nx", 17717 | stan::model::index_uni(gg)), 17718 | stan::model::rvalue(Nx_between, "Nx_between", 17719 | stan::model::index_uni(gg)), p_tilde, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:107:13: required from ‘auto stan::math::multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Product, Eigen::Matrix, 0>; Mat2 = Eigen::Transpose >; stan::require_all_eigen_vt* = 0; stan::require_not_eigen_row_and_col_t* = 0]’ 107 | return m1 * m2; | ~~~^~~~ stanExports_stanmarg.h:4183:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4183 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4184 | stan::math::transpose(Sig12))), "assigning variable T2p11"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:4182:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4182 | stan::math::subtract(Sig11, 4183 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4184 | stan::math::transpose(Sig12))), "assigning variable T2p11"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::VectorBlock, -1>; Mat2 = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:4201:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4201 | stan::math::subtract( 4202 | stan::model::rvalue(YXstar, "YXstar", 4203 | stan::model::index_uni(jj), 4204 | stan::model::index_min_max(1, 4205 | stan::model::rvalue(Nobs, "Nobs", 4206 | stan::model::index_uni(mm)))), 4207 | stan::model::rvalue(Mu, "Mu", 4208 | stan::model::index_uni(grpidx), 4209 | stan::model::index_multi( 4210 | stan::model::rvalue(obsidx, "obsidx", 4211 | stan::model::index_min_max(1, 4212 | stan::model::rvalue(Nobs, "Nobs", 4213 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:107:13: required from ‘auto stan::math::multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Product, Eigen::Matrix, 0>; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >; stan::require_all_eigen_vt* = 0; stan::require_not_eigen_row_and_col_t* = 0]’ 107 | return m1 * m2; | ~~~^~~~ stanExports_stanmarg.h:4200:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4200 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4201 | stan::math::subtract( 4202 | stan::model::rvalue(YXstar, "YXstar", 4203 | stan::model::index_uni(jj), 4204 | stan::model::index_min_max(1, 4205 | stan::model::rvalue(Nobs, "Nobs", 4206 | stan::model::index_uni(mm)))), 4207 | stan::model::rvalue(Mu, "Mu", 4208 | stan::model::index_uni(grpidx), 4209 | stan::model::index_multi( 4210 | stan::model::rvalue(obsidx, "obsidx", 4211 | stan::model::index_min_max(1, 4212 | stan::model::rvalue(Nobs, "Nobs", 4213 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; Mat2 = Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:4193:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4193 | stan::math::add( 4194 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx), 4195 | stan::model::index_multi( 4196 | stan::model::rvalue(obsidx, "obsidx", 4197 | stan::model::index_min_max( 4198 | (stan::model::rvalue(Nobs, "Nobs", 4199 | stan::model::index_uni(mm)) + 1), p)))), 4200 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4201 | stan::math::subtract( 4202 | stan::model::rvalue(YXstar, "YXstar", 4203 | stan::model::index_uni(jj), 4204 | stan::model::index_min_max(1, 4205 | stan::model::rvalue(Nobs, "Nobs", 4206 | stan::model::index_uni(mm)))), 4207 | stan::model::rvalue(Mu, "Mu", 4208 | stan::model::index_uni(grpidx), 4209 | stan::model::index_multi( 4210 | stan::model::rvalue(obsidx, "obsidx", 4211 | stan::model::index_min_max(1, 4212 | stan::model::rvalue(Nobs, "Nobs", 4213 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Product, Eigen::Transpose >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Product, Eigen::Transpose >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Product, Eigen::Transpose >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Product, Eigen::Transpose >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, Eigen::Transpose >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Product, Eigen::Transpose >, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:3277:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3277 | stan::math::subtract(Sigma_b, 3278 | stan::math::multiply(Sigma_yz, stan::math::transpose(Sigma_yz_zi))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:3396:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3396 | stan::math::add(stan::math::multiply(nj, Sigma_b_z), Sigma_w), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:84:12: required from ‘auto stan::math::multiply(Scal, const Mat&) [with Scal = int; Mat = Eigen::Product >, Eigen::Matrix, 0>; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 84 | return c * m; | ~~^~~ stanExports_stanmarg.h:3415:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:3414:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/elt_multiply.hpp:28:25: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 28 | return m1.cwiseProduct(m2); | ~~~~~~~~~~~~~~~^~~~ stanExports_stanmarg.h:3419:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3419 | q_zz = stan::math::sum(stan::math::elt_multiply(Vinv_11, Y2Yc_zz)); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; Mat2 = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:3450:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3450 | stan::math::subtract( 3451 | stan::model::rvalue(YX, "YX", 3452 | stan::model::index_uni(((r1 - 1) + i)), 3453 | stan::model::index_multi(notbidx)), 3454 | stan::model::rvalue(mean_d, "mean_d", 3455 | stan::model::index_uni(clz), 3456 | stan::model::index_multi(uord_notbidx))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:28:12: required from ‘auto stan::math::multiply(const Mat&, Scal) [with Mat = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Scal = double; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 28 | return c * m; | ~~^~~ stanExports_stanmarg.h:3486:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3486 | stan::math::multiply( 3487 | stan::math::subtract(nperclus, stan::math::to_vector(clus_size_ns)), 3488 | stan::math::sum(stan::math::elt_multiply(Sigma_w_inv, S_PW))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:3501:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3501 | stan::math::add( 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), 3503 | stan::math::elt_multiply(B, stan::math::to_vector(clus_size_ns))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:3500:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3500 | stan::math::add( 3501 | stan::math::add( 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), 3503 | stan::math::elt_multiply(B, stan::math::to_vector(clus_size_ns))), 3504 | q_W), L_W)), "assigning variable loglik"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:3499:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3499 | stan::math::add( 3500 | stan::math::add( 3501 | stan::math::add( 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), 3503 | stan::math::elt_multiply(B, stan::math::to_vector(clus_size_ns))), 3504 | q_W), L_W)), "assigning variable loglik"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:84:12: required from ‘auto stan::math::multiply(Scal, const Mat&) [with Scal = double; Mat = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 84 | return c * m; | ~~^~~ stanExports_stanmarg.h:3498:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3498 | stan::math::multiply(-.5, 3499 | stan::math::add( 3500 | stan::math::add( 3501 | stan::math::add( 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), 3503 | stan::math::elt_multiply(B, stan::math::to_vector(clus_size_ns))), 3504 | q_W), L_W)), "assigning variable loglik"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Mat2 = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:3507:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3507 | stan::math::add(stan::math::multiply(nperclus, (N_within + N_both)), 3508 | stan::math::multiply(stan::math::to_vector(clus_size_ns), N_between)), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:84:12: required from ‘auto stan::math::multiply(Scal, const Mat&) [with Scal = double; Mat = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 84 | return c * m; | ~~^~~ stanExports_stanmarg.h:3513:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3513 | stan::math::multiply(-.5, 3514 | stan::math::multiply(P, stan::math::log((2 * stan::math::pi()))))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:3512:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3512 | stan::math::add(stan::model::deep_copy(loglik), 3513 | stan::math::multiply(-.5, 3514 | stan::math::multiply(P, stan::math::log((2 * stan::math::pi()))))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:277: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:44:50: required from ‘struct Eigen::internal::traits, 0, Eigen::InnerStride<1> > >::match, -1, 1, false> >’ 44 | DerivedAlignment = int(evaluator::Alignment), | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:42:38: required from ‘struct stan::ref_type_if, -1>&, void>’ 42 | template match::MatchAtCompileTime | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:54:7: required by substitution of ‘template using stan::ref_type_t = typename stan::ref_type_if::type [with T = const Eigen::VectorBlock, -1>&]’ 54 | using ref_type_t = typename ref_type_if::type; | ^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:17:24: required by substitution of ‘template stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::VectorBlock, -1>&]’ 17 | inline ref_type_t to_ref(T&& a) { | ^~~~~~ stanExports_stanmarg.h:4478:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4478 | const auto& xbar = stan::math::to_ref(xbar_arg__); stanExports_stanmarg.h:18448:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18448 | multi_normal_suff( 18449 | stan::model::rvalue(YXstar, "YXstar", 18450 | stan::model::index_uni(jj), 18451 | stan::model::index_min_max(1, 18452 | stan::model::rvalue(Nobs, "Nobs", 18453 | stan::model::index_uni(mm)))), 18454 | stan::model::rvalue(zmat, "zmat", 18455 | stan::model::index_min_max(1, 18456 | stan::model::rvalue(Nobs, "Nobs", 18457 | stan::model::index_uni(mm))), 18458 | stan::model::index_min_max(1, 18459 | stan::model::rvalue(Nobs, "Nobs", 18460 | stan::model::index_uni(mm)))), 18461 | stan::model::rvalue(Mu, "Mu", 18462 | stan::model::index_uni(grpidx), 18463 | stan::model::index_multi( 18464 | stan::model::rvalue(obsidx, "obsidx", 18465 | stan::model::index_min_max(1, 18466 | stan::model::rvalue(Nobs, "Nobs", 18467 | stan::model::index_uni(mm)))))), 18468 | stan::model::rvalue(Sigmainv, "Sigmainv", 18469 | stan::model::index_uni(mm)), 1, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:44:50: required from ‘struct Eigen::internal::traits, 0, Eigen::OuterStride<> > >::match, -1, -1, false> >’ 44 | DerivedAlignment = int(evaluator::Alignment), | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:42:38: required from ‘struct stan::ref_type_if, -1, -1, false>&, void>’ 42 | template match::MatchAtCompileTime | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:54:7: required by substitution of ‘template using stan::ref_type_t = typename stan::ref_type_if::type [with T = const Eigen::Block, -1, -1, false>&]’ 54 | using ref_type_t = typename ref_type_if::type; | ^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:17:24: required by substitution of ‘template stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Block, -1, -1, false>&]’ 17 | inline ref_type_t to_ref(T&& a) { | ^~~~~~ stanExports_stanmarg.h:4479:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4479 | const auto& S = stan::math::to_ref(S_arg__); stanExports_stanmarg.h:18448:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18448 | multi_normal_suff( 18449 | stan::model::rvalue(YXstar, "YXstar", 18450 | stan::model::index_uni(jj), 18451 | stan::model::index_min_max(1, 18452 | stan::model::rvalue(Nobs, "Nobs", 18453 | stan::model::index_uni(mm)))), 18454 | stan::model::rvalue(zmat, "zmat", 18455 | stan::model::index_min_max(1, 18456 | stan::model::rvalue(Nobs, "Nobs", 18457 | stan::model::index_uni(mm))), 18458 | stan::model::index_min_max(1, 18459 | stan::model::rvalue(Nobs, "Nobs", 18460 | stan::model::index_uni(mm)))), 18461 | stan::model::rvalue(Mu, "Mu", 18462 | stan::model::index_uni(grpidx), 18463 | stan::model::index_multi( 18464 | stan::model::rvalue(obsidx, "obsidx", 18465 | stan::model::index_min_max(1, 18466 | stan::model::rvalue(Nobs, "Nobs", 18467 | stan::model::index_uni(mm)))))), 18468 | stan::model::rvalue(Sigmainv, "Sigmainv", 18469 | stan::model::index_uni(mm)), 1, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, false>, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: required from ‘auto stan::math::subtract(const Mat1&, const Mat2&) [with Mat1 = Eigen::VectorBlock, -1>; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 - m2; | ~~~^~~~ stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), stanExports_stanmarg.h:18448:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18448 | multi_normal_suff( 18449 | stan::model::rvalue(YXstar, "YXstar", 18450 | stan::model::index_uni(jj), 18451 | stan::model::index_min_max(1, 18452 | stan::model::rvalue(Nobs, "Nobs", 18453 | stan::model::index_uni(mm)))), 18454 | stan::model::rvalue(zmat, "zmat", 18455 | stan::model::index_min_max(1, 18456 | stan::model::rvalue(Nobs, "Nobs", 18457 | stan::model::index_uni(mm))), 18458 | stan::model::index_min_max(1, 18459 | stan::model::rvalue(Nobs, "Nobs", 18460 | stan::model::index_uni(mm)))), 18461 | stan::model::rvalue(Mu, "Mu", 18462 | stan::model::index_uni(grpidx), 18463 | stan::model::index_multi( 18464 | stan::model::rvalue(obsidx, "obsidx", 18465 | stan::model::index_min_max(1, 18466 | stan::model::rvalue(Nobs, "Nobs", 18467 | stan::model::index_uni(mm)))))), 18468 | stan::model::rvalue(Sigmainv, "Sigmainv", 18469 | stan::model::index_uni(mm)), 1, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/transpose.hpp:18:21: required from ‘auto stan::math::transpose(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >; stan::require_matrix_t* = 0]’ 18 | return m.transpose(); | ~~~~~~~~~~~^~ stanExports_stanmarg.h:4503:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:18448:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18448 | multi_normal_suff( 18449 | stan::model::rvalue(YXstar, "YXstar", 18450 | stan::model::index_uni(jj), 18451 | stan::model::index_min_max(1, 18452 | stan::model::rvalue(Nobs, "Nobs", 18453 | stan::model::index_uni(mm)))), 18454 | stan::model::rvalue(zmat, "zmat", 18455 | stan::model::index_min_max(1, 18456 | stan::model::rvalue(Nobs, "Nobs", 18457 | stan::model::index_uni(mm))), 18458 | stan::model::index_min_max(1, 18459 | stan::model::rvalue(Nobs, "Nobs", 18460 | stan::model::index_uni(mm)))), 18461 | stan::model::rvalue(Mu, "Mu", 18462 | stan::model::index_uni(grpidx), 18463 | stan::model::index_multi( 18464 | stan::model::rvalue(obsidx, "obsidx", 18465 | stan::model::index_min_max(1, 18466 | stan::model::rvalue(Nobs, "Nobs", 18467 | stan::model::index_uni(mm)))))), 18468 | stan::model::rvalue(Sigmainv, "Sigmainv", 18469 | stan::model::index_uni(mm)), 1, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:107:13: required from ‘auto stan::math::multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >; Mat2 = Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >; stan::require_all_eigen_vt* = 0; stan::require_not_eigen_row_and_col_t* = 0]’ 107 | return m1 * m2; | ~~~^~~~ stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:18448:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18448 | multi_normal_suff( 18449 | stan::model::rvalue(YXstar, "YXstar", 18450 | stan::model::index_uni(jj), 18451 | stan::model::index_min_max(1, 18452 | stan::model::rvalue(Nobs, "Nobs", 18453 | stan::model::index_uni(mm)))), 18454 | stan::model::rvalue(zmat, "zmat", 18455 | stan::model::index_min_max(1, 18456 | stan::model::rvalue(Nobs, "Nobs", 18457 | stan::model::index_uni(mm))), 18458 | stan::model::index_min_max(1, 18459 | stan::model::rvalue(Nobs, "Nobs", 18460 | stan::model::index_uni(mm)))), 18461 | stan::model::rvalue(Mu, "Mu", 18462 | stan::model::index_uni(grpidx), 18463 | stan::model::index_multi( 18464 | stan::model::rvalue(obsidx, "obsidx", 18465 | stan::model::index_min_max(1, 18466 | stan::model::rvalue(Nobs, "Nobs", 18467 | stan::model::index_uni(mm)))))), 18468 | stan::model::rvalue(Sigmainv, "Sigmainv", 18469 | stan::model::index_uni(mm)), 1, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1, false>; Mat2 = Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:4501:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:18448:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18448 | multi_normal_suff( 18449 | stan::model::rvalue(YXstar, "YXstar", 18450 | stan::model::index_uni(jj), 18451 | stan::model::index_min_max(1, 18452 | stan::model::rvalue(Nobs, "Nobs", 18453 | stan::model::index_uni(mm)))), 18454 | stan::model::rvalue(zmat, "zmat", 18455 | stan::model::index_min_max(1, 18456 | stan::model::rvalue(Nobs, "Nobs", 18457 | stan::model::index_uni(mm))), 18458 | stan::model::index_min_max(1, 18459 | stan::model::rvalue(Nobs, "Nobs", 18460 | stan::model::index_uni(mm)))), 18461 | stan::model::rvalue(Mu, "Mu", 18462 | stan::model::index_uni(grpidx), 18463 | stan::model::index_multi( 18464 | stan::model::rvalue(obsidx, "obsidx", 18465 | stan::model::index_min_max(1, 18466 | stan::model::rvalue(Nobs, "Nobs", 18467 | stan::model::index_uni(mm)))))), 18468 | stan::model::rvalue(Sigmainv, "Sigmainv", 18469 | stan::model::index_uni(mm)), 1, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/elt_multiply.hpp:28:25: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1, false>; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 28 | return m1.cwiseProduct(m2); | ~~~~~~~~~~~~~~~^~~~ stanExports_stanmarg.h:4497:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:18448:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18448 | multi_normal_suff( 18449 | stan::model::rvalue(YXstar, "YXstar", 18450 | stan::model::index_uni(jj), 18451 | stan::model::index_min_max(1, 18452 | stan::model::rvalue(Nobs, "Nobs", 18453 | stan::model::index_uni(mm)))), 18454 | stan::model::rvalue(zmat, "zmat", 18455 | stan::model::index_min_max(1, 18456 | stan::model::rvalue(Nobs, "Nobs", 18457 | stan::model::index_uni(mm))), 18458 | stan::model::index_min_max(1, 18459 | stan::model::rvalue(Nobs, "Nobs", 18460 | stan::model::index_uni(mm)))), 18461 | stan::model::rvalue(Mu, "Mu", 18462 | stan::model::index_uni(grpidx), 18463 | stan::model::index_multi( 18464 | stan::model::rvalue(obsidx, "obsidx", 18465 | stan::model::index_min_max(1, 18466 | stan::model::rvalue(Nobs, "Nobs", 18467 | stan::model::index_uni(mm)))))), 18468 | stan::model::rvalue(Sigmainv, "Sigmainv", 18469 | stan::model::index_uni(mm)), 1, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:107:13: required from ‘auto stan::math::multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Mat2 = Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >; stan::require_all_eigen_vt* = 0; stan::require_not_eigen_row_and_col_t* = 0]’ 107 | return m1 * m2; | ~~~^~~~ stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:18483:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18483 | multi_normal_suff( 18484 | stan::model::rvalue(YXstar, "YXstar", 18485 | stan::model::index_uni(jj), 18486 | stan::model::index_multi( 18487 | stan::model::rvalue(xdatidx, "xdatidx", 18488 | stan::model::index_min_max(1, 18489 | stan::model::rvalue(Nx, "Nx", 18490 | stan::model::index_uni(mm)))))), 18491 | stan::model::rvalue(zmat, "zmat", 18492 | stan::model::index_min_max(1, 18493 | stan::model::rvalue(Nx, "Nx", 18494 | stan::model::index_uni(mm))), 18495 | stan::model::index_min_max(1, 18496 | stan::model::rvalue(Nx, "Nx", 18497 | stan::model::index_uni(mm)))), 18498 | stan::model::rvalue(Mu, "Mu", 18499 | stan::model::index_uni(grpidx), 18500 | stan::model::index_multi( 18501 | stan::model::rvalue(xidx, "xidx", 18502 | stan::model::index_min_max(1, 18503 | stan::model::rvalue(Nx, "Nx", 18504 | stan::model::index_uni(mm)))))), 18505 | sig_inv_update( 18506 | stan::model::rvalue(Sigmainv, "Sigmainv", 18507 | stan::model::index_uni(grpidx)), xidx, 18508 | stan::model::rvalue(Nx, "Nx", 18509 | stan::model::index_uni(mm)), (p + q), 18510 | stan::model::rvalue(logdetSigma_grp, 18511 | "logdetSigma_grp", stan::model::index_uni(grpidx)), 18512 | pstream__), 1, pstream__))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1, false>; Mat2 = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:4501:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:18483:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18483 | multi_normal_suff( 18484 | stan::model::rvalue(YXstar, "YXstar", 18485 | stan::model::index_uni(jj), 18486 | stan::model::index_multi( 18487 | stan::model::rvalue(xdatidx, "xdatidx", 18488 | stan::model::index_min_max(1, 18489 | stan::model::rvalue(Nx, "Nx", 18490 | stan::model::index_uni(mm)))))), 18491 | stan::model::rvalue(zmat, "zmat", 18492 | stan::model::index_min_max(1, 18493 | stan::model::rvalue(Nx, "Nx", 18494 | stan::model::index_uni(mm))), 18495 | stan::model::index_min_max(1, 18496 | stan::model::rvalue(Nx, "Nx", 18497 | stan::model::index_uni(mm)))), 18498 | stan::model::rvalue(Mu, "Mu", 18499 | stan::model::index_uni(grpidx), 18500 | stan::model::index_multi( 18501 | stan::model::rvalue(xidx, "xidx", 18502 | stan::model::index_min_max(1, 18503 | stan::model::rvalue(Nx, "Nx", 18504 | stan::model::index_uni(mm)))))), 18505 | sig_inv_update( 18506 | stan::model::rvalue(Sigmainv, "Sigmainv", 18507 | stan::model::index_uni(grpidx)), xidx, 18508 | stan::model::rvalue(Nx, "Nx", 18509 | stan::model::index_uni(mm)), (p + q), 18510 | stan::model::rvalue(logdetSigma_grp, 18511 | "logdetSigma_grp", stan::model::index_uni(grpidx)), 18512 | pstream__), 1, pstream__))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/elt_multiply.hpp:28:25: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1, false>; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 28 | return m1.cwiseProduct(m2); | ~~~~~~~~~~~~~~~^~~~ stanExports_stanmarg.h:4497:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:18483:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18483 | multi_normal_suff( 18484 | stan::model::rvalue(YXstar, "YXstar", 18485 | stan::model::index_uni(jj), 18486 | stan::model::index_multi( 18487 | stan::model::rvalue(xdatidx, "xdatidx", 18488 | stan::model::index_min_max(1, 18489 | stan::model::rvalue(Nx, "Nx", 18490 | stan::model::index_uni(mm)))))), 18491 | stan::model::rvalue(zmat, "zmat", 18492 | stan::model::index_min_max(1, 18493 | stan::model::rvalue(Nx, "Nx", 18494 | stan::model::index_uni(mm))), 18495 | stan::model::index_min_max(1, 18496 | stan::model::rvalue(Nx, "Nx", 18497 | stan::model::index_uni(mm)))), 18498 | stan::model::rvalue(Mu, "Mu", 18499 | stan::model::index_uni(grpidx), 18500 | stan::model::index_multi( 18501 | stan::model::rvalue(xidx, "xidx", 18502 | stan::model::index_min_max(1, 18503 | stan::model::rvalue(Nx, "Nx", 18504 | stan::model::index_uni(mm)))))), 18505 | sig_inv_update( 18506 | stan::model::rvalue(Sigmainv, "Sigmainv", 18507 | stan::model::index_uni(grpidx)), xidx, 18508 | stan::model::rvalue(Nx, "Nx", 18509 | stan::model::index_uni(mm)), (p + q), 18510 | stan::model::rvalue(logdetSigma_grp, 18511 | "logdetSigma_grp", stan::model::index_uni(grpidx)), 18512 | pstream__), 1, pstream__))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:35:15: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 35 | check_finite("hypergeometric_pFq", "a", a_ref); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:36:15: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 36 | check_finite("hypergeometric_pFq", "b", b_ref); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:39:16: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 39 | check_not_nan("hypergeometric_pFq", "a", a_ref); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:40:16: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 40 | check_not_nan("hypergeometric_pFq", "b", b_ref); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, member_sum, 1>; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 2, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, 2, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, 2, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Matrix >, 2, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Matrix >, 2, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Matrix >, 2, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:203:15: required from ‘PacketType Eigen::internal::evaluator >::packet(Eigen::Index) const [with int LoadMode = 0; PacketType = __vector(2) double; ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Eigen::Index = long int]’ 203 | PanelType panel(m_arg, | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:251:78: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 251 | PacketScalar packet_res0 = eval.template packet(alignedStart); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Matrix >, 2, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Matrix >, 2, -1, true> >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:217:20: required from ‘PacketType Eigen::internal::evaluator >::packet(Eigen::Index) const [with int LoadMode = 0; PacketType = __vector(2) double; ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Eigen::Index = long int]’ 217 | PanelEvaluator panel_eval(panel); | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:251:78: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 251 | PacketScalar packet_res0 = eval.template packet(alignedStart); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Matrix >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Matrix >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Matrix >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:183:72: required from ‘const Eigen::internal::evaluator >::Scalar Eigen::internal::evaluator >::coeff(Eigen::Index) const [with ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Scalar = double; Eigen::Index = long int]’ 183 | return m_functor(m_arg.template subVector(index)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:268:34: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 268 | res = func(res,eval.coeff(index)); | ~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_rhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int nr = 4; bool Conjugate = false; bool PanelMode = false]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:100:15: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 100 | pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2459:62: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2459 | PacketBlock kernel; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_lhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int Pack1 = 4; int Pack2 = 2; Packet = __vector(2) double; bool Conjugate = false; bool PanelMode = false]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:106:17: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 106 | pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2256:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2256 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2258:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2258 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2259:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2259 | QuarterPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2259:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2298:39: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2298 | PacketBlock kernel_half; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2298:39: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2304 | PacketBlock kernel_quarter; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gebp_kernel::operator()(const DataMapper&, const LhsScalar*, const RhsScalar*, Index, Index, Index, ResScalar, Index, Index, Index, Index) [with LhsScalar = double; RhsScalar = double; Index = long int; DataMapper = Eigen::internal::blas_data_mapper; int mr = 4; int nr = 4; bool ConjugateLhs = false; bool ConjugateRhs = false; ResScalar = double]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:113:15: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 113 | gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 | (std::min)(size,i2), alpha, -1, -1, 0, 0); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1920:103: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1920 | const int SResPacketHalfSize = unpacket_traits::half>::size; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1921:138: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1921 | const int SResPacketQuarterSize = unpacket_traits::half>::half>::size; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1921:138: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1977:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1977 | typedef typename conditional=8,typename unpacket_traits::half,SResPacket>::type SResPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1978:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1978 | typedef typename conditional=8,typename unpacket_traits::half,SLhsPacket>::type SLhsPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1979:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1979 | typedef typename conditional=8,typename unpacket_traits::half,SRhsPacket>::type SRhsPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1980:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1980 | typedef typename conditional=8,typename unpacket_traits::half,SAccPacket>::type SAccPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:155:52: required from ‘void Eigen::internal::tribb_kernel::operator()(ResScalar*, Index, Index, const LhsScalar*, const RhsScalar*, Index, Index, const ResScalar&) [with LhsScalar = double; RhsScalar = double; Index = long int; int mr = 4; int nr = 4; bool ConjLhs = false; bool ConjRhs = false; int ResInnerStride = 1; int UpLo = 2; ResScalar = double]’ 155 | Matrix buffer((internal::constructor_without_unaligned_array_assert())); | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:116:13: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 116 | sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:116:13: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 116 | sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:46: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Matrix; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:28:0: required from here 28 | double variance = diff.squaredNorm() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:370:46: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:370:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:325:26: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 325 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | ~~~~~~~~~~~~~~~~~~~^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 0>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 0>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 0>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, 0>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, 0>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:325:43: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 325 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:352:35: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 352 | Block A21(mat,k+1,k,rs,1); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:358:80: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 358 | temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:358:67: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 358 | temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Block, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Block, -1, 1, false>, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Block, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Block, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:359:35: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 359 | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); | ~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:32: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, true>, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1, true>, -1, 1, false> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:379:56: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 379 | ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1, false> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:387:32: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 387 | ret = ret && (A21.array()==Scalar(0)).all(); | ~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<1> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::InnerStride<1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::InnerStride<1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::InnerStride<1> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::InnerStride<1> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:887:41: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:120:49: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t, stan::value_type_t&) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 120 | acc += (K - k - 1) * log1m(square(CPCs_ref(pos))); | ~~~~~~~~^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:44: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:37:52: required from ‘stan::math::matrix_d stan::math::multiply_lower_tri_self_transpose(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_matrix_dynamic_t* = 0; stan::require_not_st_autodiff* = 0; matrix_d = Eigen::Matrix]’ 37 | LLt(n, m) = LLt(m, n) = Lt.col(m).head(k).dot(Lt.col(n).head(k)); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:43: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0, Eigen::OuterStride<> >, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:32:27: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 32 | sds = Sigma_ref.diagonal().array(); | ~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::OuterStride<> >, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::OuterStride<> >, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:32:35: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 32 | sds = Sigma_ref.diagonal().array(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:36:17: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 36 | sds = sds.sqrt(); | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:39:29: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 39 | D.diagonal() = sds.inverse(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:40:16: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 40 | sds = sds.log(); // now unbounded | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Ref, 0, Eigen::OuterStride<> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Ref, 0, Eigen::OuterStride<> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Ref, 0, Eigen::OuterStride<> >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Ref, 0, Eigen::OuterStride<> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:42:65: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 42 | Eigen::Matrix R = D * Sigma_ref * D; | ~~^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, Eigen::DiagonalMatrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, Eigen::DiagonalMatrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, Eigen::DiagonalMatrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, Eigen::DiagonalMatrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, Eigen::DiagonalMatrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, Eigen::DiagonalMatrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:42:77: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 42 | Eigen::Matrix R = D * Sigma_ref * D; | ~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >(Eigen::Matrix&&, const char*, const index_multi&)::::, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >(Eigen::Matrix&&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >(Eigen::Matrix&&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp >(Eigen::Matrix&&, const char*, const index_multi&)::::, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:158:0: required from ‘stan::model::rvalue >(Eigen::Matrix&&, const char*, const index_multi&):: [with auto:767 = Eigen::Matrix]’ 158 | return plain_type_t::NullaryExpr( 159 | idx.ns_.size(), [name, &idx, &v_ref](Eigen::Index i) { 160 | math::check_range("vector[multi] indexing", name, v_ref.size(), 161 | idx.ns_[i]); 162 | return v_ref.coeff(idx.ns_[i] - 1); 163 | }); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::model::rvalue >(Eigen::Matrix&&, const char*, const index_multi&)::; Args = {Eigen::Matrix&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:156:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14456:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14456 | stan::model::rvalue(YXstar, "YXstar", 14457 | stan::model::index_min_max(r1, r2), 14458 | stan::model::index_multi( 14459 | stan::model::rvalue(xdatidx, "xdatidx", 14460 | stan::model::index_min_max(1, 14461 | stan::model::rvalue(Nx, "Nx", 14462 | stan::model::index_uni(mm)))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:77:13: required from ‘auto stan::math::add(Scal, const Mat&) [with Scal = int; Mat = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 77 | return (c + m.array()).matrix(); | ~~~^~~~~~~~~~~~ stanExports_stanmarg.h:14697:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:77:32: required from ‘auto stan::math::add(Scal, const Mat&) [with Scal = int; Mat = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 77 | return (c + m.array()).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:14697:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:84:12: required from ‘auto stan::math::multiply(Scal, const Mat&) [with Scal = double; Mat = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_all_not_complex_t::type>* = 0]’ 84 | return c * m; | ~~^~~ stanExports_stanmarg.h:14696:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_linesearch.hpp:247:0: required from ‘int stan::optimization::WolfeLineSearch(FunctorType&, Scalar&, XType&, Scalar&, XType&, const XType&, const XType&, const Scalar&, const XType&, const Scalar&, const Scalar&, const Scalar&, const Scalar&, const Scalar&) [with FunctorType = ModelAdaptor; Scalar = double; XType = Eigen::Matrix]’ 247 | x1.noalias() = x0 + alpha1 * p; /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:209:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 209 | = WolfeLineSearch(_func, _alpha, _xk_1, _fk_1, _gk_1, _pk, _xk, _fk, 210 | _gk, _ls_opts.c1, _ls_opts.c2, _ls_opts.minAlpha, 211 | _ls_opts.maxLSIts, _ls_opts.maxLSRestarts); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:34:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 34 | = HessianT::Identity(yk.size(), yk.size()) - rhok * sk * yk.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:34:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 34 | = HessianT::Identity(yk.size(), yk.size()) - rhok * sk * yk.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Product, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Product, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Product, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Product, Eigen::Matrix, 0> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:55:0: required from ‘void stan::optimization::BFGSUpdate_HInv::search_direction(VectorT&, const VectorT&) const [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 55 | pk.noalias() = -(_Hk * gk); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:254:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 254 | _qn.search_direction(_pk, _gk); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Inverse.h:68:7: required from ‘class Eigen::InverseImpl >, Eigen::SolverStorage>’ 68 | class InverseImpl | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Inverse.h:43:7: required from ‘class Eigen::Inverse > >’ 43 | class Inverse : public InverseImpl::StorageKind> | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant.hpp:23:0: required from ‘stan::math::var stan::math::log_determinant(const T&) [with T = Eigen::Matrix, -1, -1>; stan::require_rev_matrix_t* = 0; var = var_value]’ 23 | auto arena_m_inv_transpose = to_arena(m_hh.inverse().transpose()); stanExports_stanmarg.h:14144:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14144 | stan::math::log_determinant( 14145 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant.hpp:23:0: required from ‘stan::math::var stan::math::log_determinant(const T&) [with T = Eigen::Matrix, -1, -1>; stan::require_rev_matrix_t* = 0; var = var_value]’ 23 | auto arena_m_inv_transpose = to_arena(m_hh.inverse().transpose()); stanExports_stanmarg.h:14144:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14144 | stan::math::log_determinant( 14145 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant.hpp:27:0: required from ‘stan::math::var stan::math::log_determinant(const T&) [with T = Eigen::Matrix, -1, -1>; stan::require_rev_matrix_t* = 0; var = var_value]’ 27 | arena_m.adj() += log_det.adj() * arena_m_inv_transpose; stanExports_stanmarg.h:14144:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14144 | stan::math::log_determinant( 14145 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1> >&>(const Eigen::Transpose, -1, -1> >&)::::, const Eigen::Transpose, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1> >&>(const Eigen::Transpose, -1, -1> >&)::::, const Eigen::Transpose, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1> >&>(const Eigen::Transpose, -1, -1> >&)::::, const Eigen::Transpose, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1> >&>(const Eigen::Transpose, -1, -1> >&)::::, const Eigen::Transpose, -1, -1> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1> >&>(const Eigen::Transpose, -1, -1> >&)::::, const Eigen::Transpose, -1, -1> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, -1> >&>(const Eigen::Transpose, -1, -1> >&):: [with auto:12 = const Eigen::Transpose, -1, -1> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>; Types = {Eigen::Transpose, -1, -1, 0, -1, -1> >, Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:55:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Transpose, -1, -1> >; T2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 55 | using return_t stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>; Types = {Eigen::Transpose, -1, -1, 0, -1, -1> >, Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:65:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Transpose, -1, -1> >; T2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 65 | using return_t stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:121:0: required from ‘auto stan::math::subtract(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Matrix, -1, -1>; stan::require_all_rev_matrix_t* = 0]’ 121 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:4436:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:124:0: required from ‘auto stan::math::subtract(const VarMat1&, const VarMat2&) [with VarMat1 = Eigen::Matrix, -1, -1>; VarMat2 = Eigen::Matrix, -1, -1>; stan::require_all_rev_matrix_t* = 0]’ 124 | arena_t ret((arena_a.val() - arena_b.val())); stanExports_stanmarg.h:4436:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::Transpose, -1, -1, 0, -1, -1> >}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:55:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::Transpose, -1, -1> >; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 55 | using return_t stanExports_stanmarg.h:3278:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3278 | stan::math::multiply(Sigma_yz, stan::math::transpose(Sigma_yz_zi))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:180:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 180 | (as_array_or_scalar(a) - b.val().array()).matrix())>; stanExports_stanmarg.h:3309:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: recursively required by substitution of ‘template struct stan::plain_type, stan::is_eigen::type> >::value, void>::type> [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >]’ 22 | using plain_type_t = typename plain_type::type; | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: required by substitution of ‘template using stan::plain_type_t = typename stan::plain_type::type [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >]’ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:179:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 179 | using op_ret_type = plain_type_t::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:183:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 183 | arena_t ret(as_array_or_scalar(a) - arena_b.val().array()); stanExports_stanmarg.h:3309:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/tcrossprod.hpp:28:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/tcrossprod.hpp:28:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/tcrossprod.hpp:33:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/tcrossprod.hpp:33:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/tcrossprod.hpp:33:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); stanExports_stanmarg.h:3351:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3351 | stan::math::add(stan::model::deep_copy(Y2Yc), 3352 | stan::model::rvalue(cov_d, "cov_d", stan::model::index_uni(clz))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper > > >; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:148:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 148 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:3351:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3351 | stan::math::add(stan::model::deep_copy(Y2Yc), 3352 | stan::model::rvalue(cov_d, "cov_d", stan::model::index_uni(clz))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:150:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 150 | arena_t ret(arena_a.val().array() + as_array_or_scalar(b)); stanExports_stanmarg.h:3351:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3351 | stan::math::add(stan::model::deep_copy(Y2Yc), 3352 | stan::model::rvalue(cov_d, "cov_d", stan::model::index_uni(clz))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3396:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3396 | stan::math::add(stan::math::multiply(nj, Sigma_b_z), Sigma_w), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:145:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = int; T2 = Eigen::Matrix, -1, -1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 145 | arena_t res = arena_A.val() * arena_B.val().array(); stanExports_stanmarg.h:3396:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3396 | stan::math::add(stan::math::multiply(nj, Sigma_b_z), Sigma_w), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3396:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3396 | stan::math::add(stan::math::multiply(nj, Sigma_b_z), Sigma_w), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:163:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = int; T2 = Eigen::Matrix, -1, -1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 163 | arena_B.adj().array() += arena_A * res.adj().array(); stanExports_stanmarg.h:3396:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3396 | stan::math::add(stan::math::multiply(nj, Sigma_b_z), Sigma_w), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:170:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = int; T2 = Eigen::Matrix, -1, -1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 170 | arena_t res = arena_A.val() * arena_B.array(); stanExports_stanmarg.h:3396:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3396 | stan::math::add(stan::math::multiply(nj, Sigma_b_z), Sigma_w), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:172:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = int; T2 = Eigen::Matrix, -1, -1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 172 | arena_A.adj() += (res.adj().array() * arena_B.array()).sum(); stanExports_stanmarg.h:3396:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3396 | stan::math::add(stan::math::multiply(nj, Sigma_b_z), Sigma_w), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >; Types = {Eigen::Matrix, -1, -1, 0, -1, -1>, Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:31:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, -1>; Mat2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 31 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:3419:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3419 | q_zz = stan::math::sum(stan::math::elt_multiply(Vinv_11, Y2Yc_zz)); stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:35:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, -1>; Mat2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 35 | arena_t ret(arena_m1.val().cwiseProduct(arena_m2.val())); stanExports_stanmarg.h:3419:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3419 | q_zz = stan::math::sum(stan::math::elt_multiply(Vinv_11, Y2Yc_zz)); stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:49:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, -1>; Mat2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 49 | arena_t ret(arena_m1.val().cwiseProduct(arena_m2)); stanExports_stanmarg.h:3419:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3419 | q_zz = stan::math::sum(stan::math::elt_multiply(Vinv_11, Y2Yc_zz)); stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:51:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, -1>; Mat2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 51 | arena_m1.adj().array() += arena_m2.array() * ret.adj().array(); stanExports_stanmarg.h:3419:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3419 | q_zz = stan::math::sum(stan::math::elt_multiply(Vinv_11, Y2Yc_zz)); stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:57:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, -1>; Mat2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 57 | arena_t ret(arena_m1.cwiseProduct(arena_m2.val())); stanExports_stanmarg.h:3419:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3419 | q_zz = stan::math::sum(stan::math::elt_multiply(Vinv_11, Y2Yc_zz)); stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:154:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 154 | (a.val().array() - as_array_or_scalar(b)).matrix())>; stanExports_stanmarg.h:3487:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3487 | stan::math::subtract(nperclus, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: recursively required by substitution of ‘template struct stan::plain_type, stan::is_eigen::type> >::value, void>::type> [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >]’ 22 | using plain_type_t = typename plain_type::type; | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: required by substitution of ‘template using stan::plain_type_t = typename stan::plain_type::type [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >]’ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:153:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 153 | using op_ret_type = plain_type_t::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3487 | stan::math::subtract(nperclus, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:157:0: required from ‘auto stan::math::subtract(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 157 | arena_t ret(arena_a.val().array() - as_array_or_scalar(b)); stanExports_stanmarg.h:3487:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3487 | stan::math::subtract(nperclus, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, const Eigen::Matrix >; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>, Eigen::Matrix}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:31:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, 1>; Mat2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 31 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:3502:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:35:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, 1>; Mat2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 35 | arena_t ret(arena_m1.val().cwiseProduct(arena_m2.val())); stanExports_stanmarg.h:3502:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:49:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, 1>; Mat2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 49 | arena_t ret(arena_m1.val().cwiseProduct(arena_m2)); stanExports_stanmarg.h:3502:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:51:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, 1>; Mat2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 51 | arena_m1.adj().array() += arena_m2.array() * ret.adj().array(); stanExports_stanmarg.h:3502:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:57:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix, -1, 1>; Mat2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 57 | arena_t ret(arena_m1.cwiseProduct(arena_m2.val())); stanExports_stanmarg.h:3502:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3502 | stan::math::elt_multiply(L, stan::math::to_vector(clus_size_ns)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >&>(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >&):: [with auto:14 = const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >&>(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >&)::; Args = {const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:21: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3507:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3507 | stan::math::add(stan::math::multiply(nperclus, (N_within + N_both)), 3508 | stan::math::multiply(stan::math::to_vector(clus_size_ns), N_between)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); stanExports_stanmarg.h:3507:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3507 | stan::math::add(stan::math::multiply(nperclus, (N_within + N_both)), 3508 | stan::math::multiply(stan::math::to_vector(clus_size_ns), N_between)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:148:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 148 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:3507:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3507 | stan::math::add(stan::math::multiply(nperclus, (N_within + N_both)), 3508 | stan::math::multiply(stan::math::to_vector(clus_size_ns), N_between)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:150:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 150 | arena_t ret(arena_a.val().array() + as_array_or_scalar(b)); stanExports_stanmarg.h:3507:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3507 | stan::math::add(stan::math::multiply(nperclus, (N_within + N_both)), 3508 | stan::math::multiply(stan::math::to_vector(clus_size_ns), N_between)), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_ldlt.hpp:32:0: required from ‘auto stan::math::mdivide_left_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0]’ 32 | check_multiplicable("mdivide_left_ldlt", "A", A.matrix().val(), "B", B); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_ldlt.hpp:41:0: required from ‘auto stan::math::mdivide_left_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0]’ 41 | arena_t res = A.ldlt().solve(arena_B.val()); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_ldlt.hpp:45:0: required from ‘auto stan::math::mdivide_left_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::Matrix; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0]’ 45 | promote_scalar_t adjB = ldlt_ptr->solve(res.adj()); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:44:50: required from ‘struct Eigen::internal::traits, 0, Eigen::InnerStride<1> > >::match, -1, 1, false> >’ 44 | DerivedAlignment = int(evaluator::Alignment), | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:42:38: required from ‘struct stan::ref_type_if, -1>&, void>’ 42 | template match::MatchAtCompileTime | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:54:7: required by substitution of ‘template using stan::ref_type_t = typename stan::ref_type_if::type [with T = const Eigen::VectorBlock, -1>&]’ 54 | using ref_type_t = typename ref_type_if::type; | ^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:17:24: required by substitution of ‘template stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::VectorBlock, -1>&]’ 17 | inline ref_type_t to_ref(T&& a) { | ^~~~~~ stanExports_stanmarg.h:4478:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4478 | const auto& xbar = stan::math::to_ref(xbar_arg__); stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:44:50: required from ‘struct Eigen::internal::traits, 0, Eigen::OuterStride<> > >::match, -1, -1, false> >’ 44 | DerivedAlignment = int(evaluator::Alignment), | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:42:38: required from ‘struct stan::ref_type_if, -1, -1, false>&, void>’ 42 | template match::MatchAtCompileTime | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/ref_type.hpp:54:7: required by substitution of ‘template using stan::ref_type_t = typename stan::ref_type_if::type [with T = const Eigen::Block, -1, -1, false>&]’ 54 | using ref_type_t = typename ref_type_if::type; | ^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:17:24: required by substitution of ‘template stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Block, -1, -1, false>&]’ 17 | inline ref_type_t to_ref(T&& a) { | ^~~~~~ stanExports_stanmarg.h:4479:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4479 | const auto& S = stan::math::to_ref(S_arg__); stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1, false> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, -1>&>(const Eigen::VectorBlock, -1>&):: [with auto:14 = const Eigen::VectorBlock, -1>]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:180:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::VectorBlock, -1>; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 180 | (as_array_or_scalar(a) - b.val().array()).matrix())>; stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: recursively required by substitution of ‘template struct stan::plain_type, stan::is_eigen::type> >::value, void>::type> [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >]’ 22 | using plain_type_t = typename plain_type::type; | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/plain_type.hpp:22:7: required by substitution of ‘template using stan::plain_type_t = typename stan::plain_type::type [with T = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > > >]’ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:179:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::VectorBlock, -1>; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 179 | using op_ret_type = plain_type_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_subtraction.hpp:183:0: required from ‘auto stan::math::subtract(const Arith&, const VarMat&) [with Arith = Eigen::VectorBlock, -1>; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 183 | arena_t ret(as_array_or_scalar(a) - arena_b.val().array()); stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>, Eigen::Transpose, -1, 1, 0, -1, 1> >}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:36:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, 1>; T2 = Eigen::Transpose, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 36 | using return_t stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >&>(const Eigen::Transpose, -1, 1> >&)::::, const Eigen::Transpose, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >&>(const Eigen::Transpose, -1, 1> >&)::::, const Eigen::Transpose, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >&>(const Eigen::Transpose, -1, 1> >&)::::, const Eigen::Transpose, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> >&>(const Eigen::Transpose, -1, 1> >&)::::, const Eigen::Transpose, -1, 1> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> >&>(const Eigen::Transpose, -1, 1> >&)::::, const Eigen::Transpose, -1, 1> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1> >&>(const Eigen::Transpose, -1, 1> >&):: [with auto:12 = const Eigen::Transpose, -1, 1> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Matrix, 0>; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>, Eigen::Transpose, -1, 1, 0, -1, 1> >}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:55:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, 1>; T2 = Eigen::Transpose, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 55 | using return_t stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:57:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, 1>; T2 = Eigen::Transpose, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 57 | arena_t res = arena_A * arena_B.val_op(); stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, 1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::Product, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>, Eigen::Transpose, -1, 1, 0, -1, 1> >}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:65:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, 1>; T2 = Eigen::Transpose, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 65 | using return_t stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, -1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, -1, false> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, -1, -1, false>&>(const Eigen::Block, -1, -1, false>&):: [with auto:14 = const Eigen::Block, -1, -1, false>]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4501:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4501:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, -1> >::val_Op, const Eigen::Matrix, -1, -1> > >, const Eigen::ArrayWrapper, -1, -1, false> > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:148:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Block, -1, -1, false>; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 148 | using ret_type = return_var_matrix_t; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Block, -1, -1, false>; VarMat = Eigen::Matrix, -1, -1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_stanmarg.h:4501:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, -1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, -1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, -1, false> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, -1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, -1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:150:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4501:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&):: [with auto:12 = const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4497:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >; Types = {Eigen::Block, -1, -1, 0, -1, -1>, -1, -1, false>, -1, -1, false>, Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:31:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1>, -1, -1, false>, -1, -1, false>; Mat2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 31 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:4497:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&):: [with auto:12 = const Eigen::Block, -1, -1>, -1, -1, false>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4497:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Matrix; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14525:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14525 | multi_normal_suff( 14526 | stan::model::rvalue(YXbarstar, "YXbarstar", 14527 | stan::model::index_uni(mm), 14528 | stan::model::index_multi( 14529 | stan::model::rvalue(xdatidx, "xdatidx", 14530 | stan::model::index_min_max(1, 14531 | stan::model::rvalue(Nx, "Nx", 14532 | stan::model::index_uni(mm)))))), 14533 | stan::model::rvalue(Sstar, "Sstar", 14534 | stan::model::index_uni(mm), 14535 | stan::model::index_multi( 14536 | stan::model::rvalue(xdatidx, "xdatidx", 14537 | stan::model::index_min_max(1, 14538 | stan::model::rvalue(Nx, "Nx", 14539 | stan::model::index_uni(mm))))), 14540 | stan::model::index_multi( 14541 | stan::model::rvalue(xdatidx, "xdatidx", 14542 | stan::model::index_min_max(1, 14543 | stan::model::rvalue(Nx, "Nx", 14544 | stan::model::index_uni(mm)))))), 14545 | stan::model::rvalue(Mu, "Mu", 14546 | stan::model::index_uni(grpidx), 14547 | stan::model::index_multi( 14548 | stan::model::rvalue(xidx, "xidx", 14549 | stan::model::index_min_max(1, 14550 | stan::model::rvalue(Nx, "Nx", 14551 | stan::model::index_uni(mm)))))), 14552 | sig_inv_update( 14553 | stan::model::rvalue(Sigmainv, "Sigmainv", 14554 | stan::model::index_uni(mm)), xidx, 14555 | stan::model::rvalue(Nx, "Nx", 14556 | stan::model::index_uni(mm)), (p + q), 14557 | stan::model::rvalue(logdetSigma_grp, 14558 | "logdetSigma_grp", stan::model::index_uni(grpidx)), 14559 | pstream__), ((r2 - r1) + 1), pstream__))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, -1, -1, false>&>(const Eigen::Block, -1, -1>, -1, -1, false>&)::::, const Eigen::Block, -1, -1>, -1, -1, false> >, const Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >; Types = {Eigen::Block, -1, -1, 0, -1, -1>, -1, -1, false>, Eigen::Matrix, -1, -1, 0, -1, -1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:31:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1>, -1, -1, false>; Mat2 = Eigen::Matrix, -1, -1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 31 | using ret_type = return_var_matrix_t; stanExports_stanmarg.h:4497:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Matrix; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14525:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14525 | multi_normal_suff( 14526 | stan::model::rvalue(YXbarstar, "YXbarstar", 14527 | stan::model::index_uni(mm), 14528 | stan::model::index_multi( 14529 | stan::model::rvalue(xdatidx, "xdatidx", 14530 | stan::model::index_min_max(1, 14531 | stan::model::rvalue(Nx, "Nx", 14532 | stan::model::index_uni(mm)))))), 14533 | stan::model::rvalue(Sstar, "Sstar", 14534 | stan::model::index_uni(mm), 14535 | stan::model::index_multi( 14536 | stan::model::rvalue(xdatidx, "xdatidx", 14537 | stan::model::index_min_max(1, 14538 | stan::model::rvalue(Nx, "Nx", 14539 | stan::model::index_uni(mm))))), 14540 | stan::model::index_multi( 14541 | stan::model::rvalue(xdatidx, "xdatidx", 14542 | stan::model::index_min_max(1, 14543 | stan::model::rvalue(Nx, "Nx", 14544 | stan::model::index_uni(mm)))))), 14545 | stan::model::rvalue(Mu, "Mu", 14546 | stan::model::index_uni(grpidx), 14547 | stan::model::index_multi( 14548 | stan::model::rvalue(xidx, "xidx", 14549 | stan::model::index_min_max(1, 14550 | stan::model::rvalue(Nx, "Nx", 14551 | stan::model::index_uni(mm)))))), 14552 | sig_inv_update( 14553 | stan::model::rvalue(Sigmainv, "Sigmainv", 14554 | stan::model::index_uni(mm)), xidx, 14555 | stan::model::rvalue(Nx, "Nx", 14556 | stan::model::index_uni(mm)), (p + q), 14557 | stan::model::rvalue(logdetSigma_grp, 14558 | "logdetSigma_grp", stan::model::index_uni(grpidx)), 14559 | pstream__), ((r2 - r1) + 1), pstream__))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&):: [with auto:12 = Eigen::ArrayWrapper, -1, 1> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:58:64: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 58 | decltype(auto) y_val = to_ref(as_value_column_array_or_scalar(y_ref)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&):: [with auto:14 = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:60:68: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 60 | decltype(auto) sigma_val = to_ref(as_value_column_array_or_scalar(sigma_ref)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inv.hpp:55:54: required from ‘stan::math::inv, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: [with auto:221 = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 55 | x, [](const auto& v) { return v.array().inverse(); }); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:76:68: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 76 | = to_ref_if::value>(inv(sigma_val)); | ~~~^~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:40: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~^~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:79:62: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 79 | = to_ref_if::value>(y_scaled * y_scaled); | ~~~~~~~~~^~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: [with auto:170 = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:20: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:45: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~^~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:94:23: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 94 | logp = -sum(lgamma(alpha_val)) * N / math::size(alpha); | ~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:100:27: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 100 | logp += sum(alpha_val * log_beta) * N / max_size(alpha, beta); | ~~~~~~~~~~^~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:102:44: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | partials<1>(ops_partials) = log_beta + log_y - digamma(alpha_val); | ~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::digamma_fun; T = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:102:61: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | partials<1>(ops_partials) = log_beta + log_y - digamma(alpha_val); | ~~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:102:52: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | partials<1>(ops_partials) = log_beta + log_y - digamma(alpha_val); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:106:28: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 106 | logp += sum((alpha_val - 1.0) * log_y) * N / max_size(alpha, y); | ~~~~~~~~~~~^~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:106:35: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 106 | logp += sum((alpha_val - 1.0) * log_y) * N / max_size(alpha, y); | ~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:26: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:44: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~^~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:49: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:57: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:116:43: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 116 | partials<2>(ops_partials) = alpha_val / beta_val - y_val; | ~~~~~~~~~~^~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:116:54: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 116 | partials<2>(ops_partials) = alpha_val / beta_val - y_val; | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, void>::apply(const Eigen::Array&)::, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, void>::apply(const Eigen::Array&)::, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::log1m_fun; T = Eigen::Array]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:79:37: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 79 | const auto& log1m_y = to_ref(log1m(y_val)); | ~~~~~^~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:99:61: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | = (alpha_val - 1) / y_val + (beta_val - 1) / (y_val - 1); | ~~~~~~~^~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:99:52: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | = (alpha_val - 1) / y_val + (beta_val - 1) / (y_val - 1); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:99:35: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | = (alpha_val - 1) / y_val + (beta_val - 1) / (y_val - 1); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:105:23: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | alpha_val + beta_val); | ~~~~~~~~~~^~~~~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:106:23: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 106 | logp += sum(lgamma(alpha_beta)) * N / max_size(alpha, beta); | ~~~~~~^~~~~~~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::digamma_fun; T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:110:64: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 110 | && !is_constant_all::value > (digamma(alpha_beta)); | ~~~~~~~^~~~~~~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:113:21: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | = log_y + digamma_alpha_beta - digamma(alpha_val); | ~~~~~~^~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >, const Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/beta_lpdf.hpp:113:42: required from ‘stan::return_type_t stan::math::beta_lpdf(const T_y&, const T_scale_succ&, const T_scale_fail&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_scale_succ = std::vector; T_scale_fail = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | = log_y + digamma_alpha_beta - digamma(alpha_val); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::OuterStride<> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:887:41: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_symmetric.hpp:41:29: required from ‘void stan::math::check_symmetric(const char*, const char*, const EigMat&) [with EigMat = Eigen::Ref, 0, Eigen::OuterStride<> >; stan::require_matrix_t* = 0]’ 41 | const auto& y_ref = to_ref(y); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:32:18: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 32 | check_symmetric("inverse_spd", "m", m_ref); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Diagonal, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Diagonal, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Diagonal, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Diagonal, 0>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Diagonal, 0> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:463:34: required from ‘typename MatrixType::RealScalar Eigen::ColPivHouseholderQR::logAbsDeterminant() const [with _MatrixType = Eigen::Matrix; typename MatrixType::RealScalar = double]’ 463 | return m_qr.diagonal().cwiseAbs().array().log().sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:51: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Diagonal, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Diagonal, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Diagonal, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Diagonal, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:463:42: required from ‘typename MatrixType::RealScalar Eigen::ColPivHouseholderQR::logAbsDeterminant() const [with _MatrixType = Eigen::Matrix; typename MatrixType::RealScalar = double]’ 463 | return m_qr.diagonal().cwiseAbs().array().log().sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:51: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::Diagonal, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::Diagonal, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, const Eigen::Diagonal, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, const Eigen::Diagonal, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::Diagonal, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:463:48: required from ‘typename MatrixType::RealScalar Eigen::ColPivHouseholderQR::logAbsDeterminant() const [with _MatrixType = Eigen::Matrix; typename MatrixType::RealScalar = double]’ 463 | return m_qr.diagonal().cwiseAbs().array().log().sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:51: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1>, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1>, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1>, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl, 1>, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve, 1>, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_left_spd.hpp:46:19: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_left_spd(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_var* = 0; typename stan::return_type::type = double]’ 46 | return llt.solve( | ~~~~~~~~~^ 47 | Eigen::Matrix, EigMat2::RowsAtCompileTime, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 48 | EigMat2::ColsAtCompileTime>(b)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:4445:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4498:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Block, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), stanExports_stanmarg.h:4825:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4825 | multi_normal_suff( 4826 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4827 | stan::model::index_multi( 4828 | stan::model::rvalue(Xvar, "Xvar", 4829 | stan::model::index_min_max(1, Nx)))), 4830 | stan::model::rvalue(cov_w, "cov_w", 4831 | stan::model::index_min_max(1, Nx), 4832 | stan::model::index_min_max(1, Nx)), 4833 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4834 | stan::model::index_multi( 4835 | stan::model::rvalue(Xvar, "Xvar", 4836 | stan::model::index_min_max(1, Nx)))), 4837 | stan::model::rvalue(cov_w_inv, "cov_w_inv", 4838 | stan::model::index_min_max(1, (Nx + 1)), 4839 | stan::model::index_min_max(1, (Nx + 1))), 4840 | stan::model::rvalue(cluster_size, "cluster_size", 4841 | stan::model::index_uni(cc)), pstream__)), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1, false>; Mat2 = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0>; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_stanmarg.h:4501:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Block, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:4825:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4825 | multi_normal_suff( 4826 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4827 | stan::model::index_multi( 4828 | stan::model::rvalue(Xvar, "Xvar", 4829 | stan::model::index_min_max(1, Nx)))), 4830 | stan::model::rvalue(cov_w, "cov_w", 4831 | stan::model::index_min_max(1, Nx), 4832 | stan::model::index_min_max(1, Nx)), 4833 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4834 | stan::model::index_multi( 4835 | stan::model::rvalue(Xvar, "Xvar", 4836 | stan::model::index_min_max(1, Nx)))), 4837 | stan::model::rvalue(cov_w_inv, "cov_w_inv", 4838 | stan::model::index_min_max(1, (Nx + 1)), 4839 | stan::model::index_min_max(1, (Nx + 1))), 4840 | stan::model::rvalue(cluster_size, "cluster_size", 4841 | stan::model::index_uni(cc)), pstream__)), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/elt_multiply.hpp:28:25: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Block, -1, -1, false>, -1, -1, false>; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 28 | return m1.cwiseProduct(m2); | ~~~~~~~~~~~~~~~^~~~ stanExports_stanmarg.h:4497:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Block, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:4825:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4825 | multi_normal_suff( 4826 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4827 | stan::model::index_multi( 4828 | stan::model::rvalue(Xvar, "Xvar", 4829 | stan::model::index_min_max(1, Nx)))), 4830 | stan::model::rvalue(cov_w, "cov_w", 4831 | stan::model::index_min_max(1, Nx), 4832 | stan::model::index_min_max(1, Nx)), 4833 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4834 | stan::model::index_multi( 4835 | stan::model::rvalue(Xvar, "Xvar", 4836 | stan::model::index_min_max(1, Nx)))), 4837 | stan::model::rvalue(cov_w_inv, "cov_w_inv", 4838 | stan::model::index_min_max(1, (Nx + 1)), 4839 | stan::model::index_min_max(1, (Nx + 1))), 4840 | stan::model::rvalue(cluster_size, "cluster_size", 4841 | stan::model::index_uni(cc)), pstream__)), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase&>(Eigen::Matrix&, const char*, const index_multi&, index_uni)::::, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase&>(Eigen::Matrix&, const char*, const index_multi&, index_uni)::::, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase&>(Eigen::Matrix&, const char*, const index_multi&, index_uni)::::, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&, index_uni)::::, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:470:0: required from ‘stan::model::rvalue&>(Eigen::Matrix&, const char*, const index_multi&, index_uni):: [with auto:770 = Eigen::Matrix]’ 469 | return Eigen::Matrix, Eigen::Dynamic, 1>:: 470 | NullaryExpr(row_idx.ns_.size(), 471 | [name, &row_idx, col_i = col_idx.n_ - 1, 472 | &x_ref](Eigen::Index i) { 473 | math::check_range("matrix[multi, uni] row indexing", 474 | name, x_ref.rows(), row_idx.ns_[i]); 475 | return x_ref.coeff(row_idx.ns_[i] - 1, col_i); 476 | }); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::model::rvalue&>(Eigen::Matrix&, const char*, const index_multi&, index_uni)::; Args = {Eigen::Matrix&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:467:0: required from ‘Eigen::Matrix::type, -1, 1> stan::model::rvalue(EigMat&&, const char*, const index_multi&, index_uni) [with EigMat = Eigen::Matrix&; stan::require_eigen_dense_dynamic_t* = 0; typename stan::value_type::type = double]’ 467 | return stan::math::make_holder( 468 | [name, &row_idx, col_idx](auto& x_ref) { 469 | return Eigen::Matrix, Eigen::Dynamic, 1>:: 470 | NullaryExpr(row_idx.ns_.size(), 471 | [name, &row_idx, col_i = col_idx.n_ - 1, 472 | &x_ref](Eigen::Index i) { 473 | math::check_range("matrix[multi, uni] row indexing", 474 | name, x_ref.rows(), row_idx.ns_[i]); 475 | return x_ref.coeff(row_idx.ns_[i] - 1, col_i); 476 | }); 477 | }, 478 | stan::math::to_ref(x)); stanExports_stanmarg.h:3204:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3204 | stan::model::rvalue(B_tilde, "B_tilde", 3205 | stan::model::index_multi(bidx), stan::model::index_uni(1))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Transpose > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Transpose > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Transpose > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Transpose > > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Transpose > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_ldlt_factor.hpp:32:45: required from ‘void stan::math::check_ldlt_factor(const char*, const char*, LDLT_factor&) [with T = Eigen::Matrix]’ 32 | auto too_small = A.ldlt().vectorD().tail(1)(0); | ~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:73:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = double]’ 73 | check_ldlt_factor(function, "LDLT_Factor of random variable", ldlt_W); stanExports_stanmarg.h:18267:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18267 | stan::math::wishart_lpdf( 18268 | stan::math::multiply( 18269 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18270 | 1), 18271 | stan::model::rvalue(Sstar, "Sstar", 18272 | stan::model::index_uni(mm))), 18273 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18274 | 1), 18275 | stan::model::rvalue(Sigma, "Sigma", 18276 | stan::model::index_uni(mm))), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, 0> > >(const Eigen::ArrayWrapper, 0> >&):: [with auto:170 = Eigen::ArrayWrapper, 0> >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant_ldlt.hpp:22:17: required from ‘stan::value_type_t stan::math::log_determinant_ldlt(LDLT_factor&) [with T = Eigen::Matrix; stan::require_not_rev_matrix_t* = 0; stan::value_type_t = double]’ 22 | return sum(log(A.ldlt().vectorD().array())); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:88:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = double]’ 88 | lp -= 0.5 * nu_ref * log_determinant_ldlt(ldlt_S); stanExports_stanmarg.h:18267:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18267 | stan::math::wishart_lpdf( 18268 | stan::math::multiply( 18269 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18270 | 1), 18271 | stan::model::rvalue(Sstar, "Sstar", 18272 | stan::model::index_uni(mm))), 18273 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18274 | 1), 18275 | stan::model::rvalue(Sigma, "Sigma", 18276 | stan::model::index_uni(mm))), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:24: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:268:7: required from ‘Eigen::MapBase::ScalarWithConstIfNotLvalue& Eigen::MapBase::coeffRef(Eigen::Index) [with Derived = Eigen::Block, -1, 1, true>; ScalarWithConstIfNotLvalue = double; Eigen::Index = long int]’ 15 | EIGEN_STATIC_ASSERT((int(internal::evaluator::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \ | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:367:25: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 367 | matA.col(i).coeffRef(i+1) = 1; | ~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Jacobi/Jacobi.h:475:5: required from ‘void Eigen::internal::apply_rotation_in_the_plane(Eigen::DenseBase&, Eigen::DenseBase&, const Eigen::JacobiRotation&) [with VectorX = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; VectorY = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; OtherScalar = double]’ 475 | EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment), | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Jacobi/Jacobi.h:315:40: required from ‘void Eigen::MatrixBase::applyOnTheRight(Eigen::Index, Eigen::Index, const Eigen::JacobiRotation&) [with OtherScalar = double; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Eigen::Index = long int]’ 315 | internal::apply_rotation_in_the_plane(x, y, j.transpose()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:895:24: required from ‘void Eigen::internal::tridiagonal_qr_step(RealScalar*, RealScalar*, Index, Index, Scalar*, Index) [with int StorageOrder = 0; RealScalar = double; Scalar = double; Index = long int]’ 895 | q.applyOnTheRight(k,k+1,rot); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:548:87: required from ‘Eigen::ComputationInfo Eigen::internal::computeFromTridiagonal_impl(DiagType&, SubDiagType&, Eigen::Index, bool, MatrixType&) [with MatrixType = Eigen::Matrix; DiagType = Eigen::Matrix; SubDiagType = Eigen::Matrix; Eigen::Index = long int]’ 548 | internal::tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:460:49: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 460 | m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:221:22: required from ‘static typename Eigen::NumTraits::Scalar>::Real Eigen::internal::lpNorm_selector::run(const Eigen::MatrixBase&) [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 221 | return m.cwiseAbs().sum(); | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:74: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, 1, -1, false>, 1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, 1, -1, false>, 1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:221:22: required from ‘static typename Eigen::NumTraits::Scalar>::Real Eigen::internal::lpNorm_selector::run(const Eigen::MatrixBase&) [with Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 221 | return m.cwiseAbs().sum(); | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:125: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1384:41: required from ‘struct Eigen::internal::evaluator_wrapper_base, -1, 1, true>, -1, 1, false> > >’ 1384 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1464:8: required from ‘struct Eigen::internal::unary_evaluator, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 1464 | struct unary_evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::ArrayWrapper, -1, 1, true>, -1, 1, false> >, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:379:74: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 379 | ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1384:41: required from ‘struct Eigen::internal::evaluator_wrapper_base, -1, 1, false> > >’ 1384 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1464:8: required from ‘struct Eigen::internal::unary_evaluator, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 1464 | struct unary_evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:387:50: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 387 | ret = ret && (A21.array()==Scalar(0)).all(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >, -1, 1, false> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:44:37: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 44 | acc.tail(pull) = 1.0 - temp.square(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:44:24: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 44 | acc.tail(pull) = 1.0 - temp.square(); | ~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:49:33: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 49 | temp /= sqrt(acc.tail(pull) / acc(i)); | ~~~~~~~~~~~~~~~^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sqrt.hpp:58:51: required from ‘stan::math::sqrt, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > > >(const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > >&):: [with auto:219 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Array > >]’ 58 | x, [](const auto& v) { return v.array().sqrt(); }); | ~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:53:22: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 53 | CPCs = 0.5 * ((1.0 + CPCs) / (1.0 - CPCs)).log(); // now unbounded | ~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:53:37: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 53 | CPCs = 0.5 * ((1.0 + CPCs) / (1.0 - CPCs)).log(); // now unbounded | ~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:53:30: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 53 | CPCs = 0.5 * ((1.0 + CPCs) / (1.0 - CPCs)).log(); // now unbounded | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:53:49: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 53 | CPCs = 0.5 * ((1.0 + CPCs) / (1.0 - CPCs)).log(); // now unbounded | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_U.hpp:53:14: required from ‘void stan::math::factor_U(const T_U&, T_CPCs&&) [with T_U = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >&; stan::require_eigen_t* = 0; stan::require_eigen_vector_t* = 0; stan::require_vt_same* = 0]’ 53 | CPCs = 0.5 * ((1.0 + CPCs) / (1.0 - CPCs)).log(); // now unbounded | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, false>, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/subtract.hpp:45:13: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/transpose.hpp:18:21: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:107:13: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/elt_multiply.hpp:28:25: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14525:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14525 | multi_normal_suff( 14526 | stan::model::rvalue(YXbarstar, "YXbarstar", 14527 | stan::model::index_uni(mm), 14528 | stan::model::index_multi( 14529 | stan::model::rvalue(xdatidx, "xdatidx", 14530 | stan::model::index_min_max(1, 14531 | stan::model::rvalue(Nx, "Nx", 14532 | stan::model::index_uni(mm)))))), 14533 | stan::model::rvalue(Sstar, "Sstar", 14534 | stan::model::index_uni(mm), 14535 | stan::model::index_multi( 14536 | stan::model::rvalue(xdatidx, "xdatidx", 14537 | stan::model::index_min_max(1, 14538 | stan::model::rvalue(Nx, "Nx", 14539 | stan::model::index_uni(mm))))), 14540 | stan::model::index_multi( 14541 | stan::model::rvalue(xdatidx, "xdatidx", 14542 | stan::model::index_min_max(1, 14543 | stan::model::rvalue(Nx, "Nx", 14544 | stan::model::index_uni(mm)))))), 14545 | stan::model::rvalue(Mu, "Mu", 14546 | stan::model::index_uni(grpidx), 14547 | stan::model::index_multi( 14548 | stan::model::rvalue(xidx, "xidx", 14549 | stan::model::index_min_max(1, 14550 | stan::model::rvalue(Nx, "Nx", 14551 | stan::model::index_uni(mm)))))), 14552 | sig_inv_update( 14553 | stan::model::rvalue(Sigmainv, "Sigmainv", 14554 | stan::model::index_uni(mm)), xidx, 14555 | stan::model::rvalue(Nx, "Nx", 14556 | stan::model::index_uni(mm)), (p + q), 14557 | stan::model::rvalue(logdetSigma_grp, 14558 | "logdetSigma_grp", stan::model::index_uni(grpidx)), 14559 | pstream__), ((r2 - r1) + 1), pstream__))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/elt_multiply.hpp:28:25: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14525:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14525 | multi_normal_suff( 14526 | stan::model::rvalue(YXbarstar, "YXbarstar", 14527 | stan::model::index_uni(mm), 14528 | stan::model::index_multi( 14529 | stan::model::rvalue(xdatidx, "xdatidx", 14530 | stan::model::index_min_max(1, 14531 | stan::model::rvalue(Nx, "Nx", 14532 | stan::model::index_uni(mm)))))), 14533 | stan::model::rvalue(Sstar, "Sstar", 14534 | stan::model::index_uni(mm), 14535 | stan::model::index_multi( 14536 | stan::model::rvalue(xdatidx, "xdatidx", 14537 | stan::model::index_min_max(1, 14538 | stan::model::rvalue(Nx, "Nx", 14539 | stan::model::index_uni(mm))))), 14540 | stan::model::index_multi( 14541 | stan::model::rvalue(xdatidx, "xdatidx", 14542 | stan::model::index_min_max(1, 14543 | stan::model::rvalue(Nx, "Nx", 14544 | stan::model::index_uni(mm)))))), 14545 | stan::model::rvalue(Mu, "Mu", 14546 | stan::model::index_uni(grpidx), 14547 | stan::model::index_multi( 14548 | stan::model::rvalue(xidx, "xidx", 14549 | stan::model::index_min_max(1, 14550 | stan::model::rvalue(Nx, "Nx", 14551 | stan::model::index_uni(mm)))))), 14552 | sig_inv_update( 14553 | stan::model::rvalue(Sigmainv, "Sigmainv", 14554 | stan::model::index_uni(mm)), xidx, 14555 | stan::model::rvalue(Nx, "Nx", 14556 | stan::model::index_uni(mm)), (p + q), 14557 | stan::model::rvalue(logdetSigma_grp, 14558 | "logdetSigma_grp", stan::model::index_uni(grpidx)), 14559 | pstream__), ((r2 - r1) + 1), pstream__))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:40: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~^~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:94:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 94 | >= 2>(inv_sigma * y_scaled); | ~~~~~~~~~~^~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:45: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~^~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log > >(const Eigen::ArrayWrapper >&):: [with auto:170 = Eigen::ArrayWrapper >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:26: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:49: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:57: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:116:54: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 116 | partials<2>(ops_partials) = alpha_val / beta_val - y_val; | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >&>(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >&):: [with auto:14 = const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >&>(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >&)::; Args = {const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > > >&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:21: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14695:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14695 | lp_accum__.add((stan::math::beta_lpdf( 14696 | stan::math::multiply(.5, 14697 | stan::math::add(1, Theta_r_free)), theta_r_alpha, 14698 | theta_r_beta) + (stan::math::log(.5) * stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:44: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::Matrix; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:199:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 199 | * CubicInterp(_gk_1.dot(_pk_1), _alphak_1, _fk - _fk_1, /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector, -1, -1>, std::allocator, -1, -1> > >; bool Jacobian = true; LP = stan::math::var_value; Sizes = {int}; stan::require_std_vector_t* = 0; T = stan::math::var_value; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:12986:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12984 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 12985 | std::vector>, 12986 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 12987 | Psi_r_mat_1_3dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = Eigen::Matrix, -1, -1>; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector, -1, -1>, std::allocator, -1, -1> > >; bool Jacobian = true; LP = stan::math::var_value; Sizes = {int}; stan::require_std_vector_t* = 0; T = stan::math::var_value; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:12986:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12984 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 12985 | std::vector>, 12986 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 12987 | Psi_r_mat_1_3dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:32:0: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector, -1, -1>, std::allocator, -1, -1> > >; bool Jacobian = true; LP = stan::math::var_value; Sizes = {int}; stan::require_std_vector_t* = 0; T = stan::math::var_value; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:12986:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12984 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 12985 | std::vector>, 12986 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 12987 | Psi_r_mat_1_3dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:510:28: required from ‘typename Eigen::internal::traits::Scalar Eigen::MatrixBase::trace() const [with Derived = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 510 | return derived().diagonal().sum(); | ~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace.hpp:26:0: required from ‘auto stan::math::trace(const T&) [with T = Eigen::Matrix, -1, -1>; stan::require_rev_matrix_t* = 0]’ 26 | return make_callback_var(arena_m.val_op().trace(), /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace_inv_quad_form_ldlt.hpp:41:0: required from ‘stan::math::var stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::CwiseBinaryOp, var_value >, const Eigen::Matrix, -1, 1>, const Eigen::Matrix, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0; var = var_value]’ 41 | auto AsolveB = to_arena(A.ldlt().solve(arena_B.val())); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace_inv_quad_form_ldlt.hpp:43:0: required from ‘stan::math::var stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::CwiseBinaryOp, var_value >, const Eigen::Matrix, -1, 1>, const Eigen::Matrix, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0; var = var_value]’ 43 | var res = (arena_B.val_op().transpose() * AsolveB).trace(); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace_inv_quad_form_ldlt.hpp:46:0: required from ‘stan::math::var stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::CwiseBinaryOp, var_value >, const Eigen::Matrix, -1, 1>, const Eigen::Matrix, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0; var = var_value]’ 46 | arena_A.adj() += -res.adj() * AsolveB * AsolveB.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace_inv_quad_form_ldlt.hpp:55:0: required from ‘stan::math::var stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::CwiseBinaryOp, var_value >, const Eigen::Matrix, -1, 1>, const Eigen::Matrix, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0; var = var_value]’ 55 | auto AsolveB = to_arena(A.ldlt().solve(value_of(B_ref))); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace_inv_quad_form_ldlt.hpp:57:0: required from ‘stan::math::var stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::CwiseBinaryOp, var_value >, const Eigen::Matrix, -1, 1>, const Eigen::Matrix, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0; var = var_value]’ 57 | var res = (value_of(B_ref).transpose() * AsolveB).trace(); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>&>(const Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of_rec.hpp:110:27: required from ‘stan::math::value_of_rec, -1, -1>&>(const Eigen::Matrix, -1, -1>&):: [with auto:2 = const Eigen::Matrix, -1, -1>]’ 110 | return m.unaryExpr([](auto x) { return value_of_rec(x); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lkj_corr_lpdf.hpp:55:20: required from ‘stan::return_type_t stan::math::lkj_corr_lpdf(const T_y&, const T_shape&) [with bool propto = false; T_y = Eigen::Matrix, -1, -1>; T_shape = int; stan::return_type_t = var_value]’ 55 | check_corr_matrix(function, "Correlation matrix", y_ref); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14715:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14715 | lp_accum__.add(stan::math::lkj_corr_lpdf( 14716 | stan::model::rvalue(Psi_r_mat_1, 14717 | "Psi_r_mat_1", 14718 | stan::model::index_uni(blkidx)), 14719 | stan::model::rvalue(blkse, "blkse", 14720 | stan::model::index_uni(k), 14721 | stan::model::index_uni(7)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/accumulator.hpp:135:0: required from ‘stan::math::var stan::math::accumulator::type>::value, void>::type>::sum() const [with T = stan::math::var_value; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = stan::math::var_value; stan::math::var = stan::math::var_value]’ 135 | inline var sum() const { return stan::math::sum(buf_); } stanExports_stanmarg.h:14942:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14942 | return lp_accum__.sum(); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:24: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::VectorBlock, -1>; T_loc = Eigen::VectorBlock, -1>; T_covar = Eigen::Block, -1, -1, false>; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:4849:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4849 | stan::math::multi_normal_lpdf( 4850 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4851 | stan::model::index_min_max(1, Nx_between)), 4852 | stan::model::rvalue(ov_mean_d, "ov_mean_d", 4853 | stan::model::index_min_max(1, Nx_between)), 4854 | stan::model::rvalue(cov_mean_d, "cov_mean_d", 4855 | stan::model::index_min_max(1, Nx_between), 4856 | stan::model::index_min_max(1, Nx_between)))), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_left_ldlt.hpp:37:24: required from ‘Eigen::Matrix::type, -1, EigMat::ColsAtCompileTime> stan::math::mdivide_left_ldlt(LDLT_factor&, const EigMat&) [with T = Eigen::Matrix; EigMat = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_any_not_t::type>, stan::is_fvar::type, void> >* = 0; typename stan::return_type::type = double]’ 37 | return A.ldlt().solve( | ~~~~~~~~~~~~~~^ 38 | Eigen::Matrix, EigMat::RowsAtCompileTime, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 39 | EigMat::ColsAtCompileTime>(b)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:116:13: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 116 | sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:453:45: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 453 | RealScalar scale = mat.cwiseAbs().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, false>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:93:22: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:44: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:372:86: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 372 | hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointRank2Update.h:34:74: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointRank2Update.h:35:60: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointRank2Update.h:35:23: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive, -1, 1> >(const char*, const char*, const Eigen::Matrix, -1, 1>&)::; T = Eigen::Matrix, -1, 1>; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive.hpp:29:20: required from ‘void stan::math::check_positive(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix, -1, 1>]’ 29 | elementwise_check([](double x) { return x > 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | "positive"); | ~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:42:17: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix, -1, -1>; typename stan::value_type::type = var_value]’ 42 | check_positive("inverse_spd", "matrix not positive definite", diag_ldlt); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14139:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14139 | stan::math::inverse_spd( 14140 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, -1, 1> >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:634:22: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:88:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 88 | lp -= 0.5 * nu_ref * log_determinant_ldlt(ldlt_S); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite, -1, 1> >(const char*, const char*, const Eigen::Matrix, -1, 1>&)::; T = Eigen::Matrix, -1, 1>; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix, -1, 1>]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:71:17: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 71 | check_finite(function, "Location parameter", mu_vec[i]); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, -1, 1> >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan, -1, 1> >(const char*, const char*, const Eigen::Matrix, -1, 1>&)::; T = Eigen::Matrix, -1, 1>; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix, -1, 1>]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:72:18: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 72 | check_not_nan(function, "Random variable", y_vec[i]); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, -1, 1> >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:510:28: required from ‘typename Eigen::internal::traits::Scalar Eigen::MatrixBase::trace() const [with Derived = Eigen::Product, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>; typename Eigen::internal::traits::Scalar = double]’ 510 | return derived().diagonal().sum(); | ~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace_inv_quad_form_ldlt.hpp:43:0: required from ‘stan::math::var stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::CwiseBinaryOp, var_value >, const Eigen::Matrix, -1, 1>, const Eigen::Matrix, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0; var = var_value]’ 43 | var res = (arena_B.val_op().transpose() * AsolveB).trace(); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:510:28: required from ‘typename Eigen::internal::traits::Scalar Eigen::MatrixBase::trace() const [with Derived = Eigen::Product, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>; typename Eigen::internal::traits::Scalar = double]’ 510 | return derived().diagonal().sum(); | ~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/trace_inv_quad_form_ldlt.hpp:57:0: required from ‘stan::math::var stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::CwiseBinaryOp, var_value >, const Eigen::Matrix, -1, 1>, const Eigen::Matrix, -1, 1> >; stan::require_all_matrix_t* = 0; stan::require_any_st_var* = 0; var = var_value]’ 57 | var res = (value_of(B_ref).transpose() * AsolveB).trace(); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:62:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 62 | check_not_nan(function, "Random variable", y_val); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:63:15: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 63 | check_finite(function, "Location parameter", mu_val); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive, 0, Eigen::Stride<0, 0> > > >(const char*, const char*, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::; T = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive.hpp:29:20: required from ‘void stan::math::check_positive(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 29 | elementwise_check([](double x) { return x > 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | "positive"); | ~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:64:17: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 64 | check_positive(function, "Scale parameter", sigma_val); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, 0, Eigen::Stride<0, 0> > > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/operands_and_partials.hpp:67:0: required from ‘void stan::math::internal::update_adjoints(Matrix1&, const Matrix2&, const stan::math::var&) [with Matrix1 = stan::math::arena_matrix, -1, 1> >; Matrix2 = stan::math::arena_matrix >; stan::require_rev_matrix_t* = 0; stan::require_st_arithmetic* = 0; stan::math::var = stan::math::var_value]’ 67 | x.adj().array() += z.adj() * y.array(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/partials_propagator.hpp:91:0: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:105:28: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | return ops_partials.build(logp); | ~~~~~~~~~~~~~~~~~~^~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/operands_and_partials.hpp:67:0: required from ‘void stan::math::internal::update_adjoints(Matrix1&, const Matrix2&, const stan::math::var&) [with Matrix1 = stan::math::arena_matrix, -1, 1> >; Matrix2 = stan::math::arena_matrix >; stan::require_rev_matrix_t* = 0; stan::require_st_arithmetic* = 0; stan::math::var = stan::math::var_value]’ 67 | x.adj().array() += z.adj() * y.array(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/partials_propagator.hpp:91:0: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:105:28: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | return ops_partials.build(logp); | ~~~~~~~~~~~~~~~~~~^~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive_finite >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive_finite.hpp:24:20: required from ‘void stan::math::check_positive_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 24 | elementwise_check([](double x) { return x > 0 && std::isfinite(x); }, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 25 | function, name, y, "positive finite"); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:71:24: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 71 | check_positive_finite(function, "Random variable", y_val); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive_finite, 0, Eigen::Stride<0, 0> > > >(const char*, const char*, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::; T = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive_finite.hpp:24:20: required from ‘void stan::math::check_positive_finite(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 24 | elementwise_check([](double x) { return x > 0 && std::isfinite(x); }, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 25 | function, name, y, "positive finite"); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:72:24: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 72 | check_positive_finite(function, "Shape parameter", alpha_val); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, 0, Eigen::Stride<0, 0> > > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘struct Eigen::internal::gemm_pack_rhs, 4, 1, false, false>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:91:77: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 0; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 91 | gemm_pack_rhs pack_rhs; | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2504:50: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2504 | typedef typename unpacket_traits::half HalfPacket; | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2505 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2508 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2509 | QuarterPacketSize = unpacket_traits::size}; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite, -1> >(const char*, const char*, const Eigen::VectorBlock, -1>&)::; T = Eigen::VectorBlock, -1>; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::VectorBlock, -1>]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:71:17: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::VectorBlock, -1>; T_loc = Eigen::VectorBlock, -1>; T_covar = Eigen::Block, -1, -1, false>; stan::return_type_t = double]’ 71 | check_finite(function, "Location parameter", mu_vec[i]); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:4849:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4849 | stan::math::multi_normal_lpdf( 4850 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4851 | stan::model::index_min_max(1, Nx_between)), 4852 | stan::model::rvalue(ov_mean_d, "ov_mean_d", 4853 | stan::model::index_min_max(1, Nx_between)), 4854 | stan::model::rvalue(cov_mean_d, "cov_mean_d", 4855 | stan::model::index_min_max(1, Nx_between), 4856 | stan::model::index_min_max(1, Nx_between)))), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, -1, 1, false> >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan, -1> >(const char*, const char*, const Eigen::VectorBlock, -1>&)::; T = Eigen::VectorBlock, -1>; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::VectorBlock, -1>]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:72:18: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::VectorBlock, -1>; T_loc = Eigen::VectorBlock, -1>; T_covar = Eigen::Block, -1, -1, false>; stan::return_type_t = double]’ 72 | check_not_nan(function, "Random variable", y_vec[i]); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:4849:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4849 | stan::math::multi_normal_lpdf( 4850 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4851 | stan::model::index_min_max(1, Nx_between)), 4852 | stan::model::rvalue(ov_mean_d, "ov_mean_d", 4853 | stan::model::index_min_max(1, Nx_between)), 4854 | stan::model::rvalue(cov_mean_d, "cov_mean_d", 4855 | stan::model::index_min_max(1, Nx_between), 4856 | stan::model::index_min_max(1, Nx_between)))), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, -1, 1, false> >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:142:7: required from ‘Eigen::DenseCoeffsBase::CoeffReturnType Eigen::DenseCoeffsBase::coeff(Eigen::Index) const [with Derived = Eigen::Block, 0>, -1, 1, false>; CoeffReturnType = double; Eigen::Index = long int]’ 142 | EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:182:19: required from ‘Eigen::DenseCoeffsBase::CoeffReturnType Eigen::DenseCoeffsBase::operator()(Eigen::Index) const [with Derived = Eigen::Block, 0>, -1, 1, false>; CoeffReturnType = double; Eigen::Index = long int]’ 182 | return coeff(index); | ~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_ldlt_factor.hpp:32:48: required from ‘void stan::math::check_ldlt_factor(const char*, const char*, LDLT_factor&) [with T = Eigen::Matrix]’ 32 | auto too_small = A.ldlt().vectorD().tail(1)(0); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:73:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = double]’ 73 | check_ldlt_factor(function, "LDLT_Factor of random variable", ldlt_W); stanExports_stanmarg.h:18267:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18267 | stan::math::wishart_lpdf( 18268 | stan::math::multiply( 18269 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18270 | 1), 18271 | stan::model::rvalue(Sstar, "Sstar", 18272 | stan::model::index_uni(mm))), 18273 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18274 | 1), 18275 | stan::model::rvalue(Sigma, "Sigma", 18276 | stan::model::index_uni(mm))), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Matrix >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Matrix >, 1, -1, false> >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Block, const Eigen::Matrix >, 1, -1, false>; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::Block, const Eigen::Matrix >, 1, -1, false>; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:114:1: required from ‘ResultType Eigen::internal::member_sum::operator()(const XprType&) const [with XprType = Eigen::Block, const Eigen::Matrix >, 1, -1, false>; ResultType = double; Scalar = double]’ 97 | { return mat.MEMBER(); } \ | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:183:21: required from ‘const Eigen::internal::evaluator >::Scalar Eigen::internal::evaluator >::coeff(Eigen::Index) const [with ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Scalar = double; Eigen::Index = long int]’ 183 | return m_functor(m_arg.template subVector(index)); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:268:34: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 268 | res = func(res,eval.coeff(index)); | ~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::Block >, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, true>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, true>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, true>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 1, -1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, 1, -1, true>, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:78:71: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:125: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, 1, -1, false>, 1, -1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:125: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 0>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 0>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:79:51: required from ‘class Eigen::internal::visitor_evaluator, const Eigen::Block, 0>, -1, 1, false> > >’ 79 | CoeffReadCost = internal::evaluator::CoeffReadCost | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:123:17: required from ‘void Eigen::DenseBase::visit(Visitor&) const [with Visitor = Eigen::internal::max_coeff_visitor, const Eigen::Block, 0>, -1, 1, false> >, 0>; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, 0>, -1, 1, false> >]’ 123 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:374:14: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:325:54: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 325 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:46: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:35:46: required from ‘stan::math::matrix_d stan::math::multiply_lower_tri_self_transpose(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_matrix_dynamic_t* = 0; stan::require_not_st_autodiff* = 0; matrix_d = Eigen::Matrix]’ 35 | LLt(m, m) = Lt.col(m).head(k).squaredNorm(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:43: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >; Functor = mul_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >; Functor = Eigen::internal::mul_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >; Func = mul_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >; Func = mul_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:207:18: required from ‘Derived& Eigen::ArrayBase::operator*=(const Eigen::ArrayBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >; Derived = Eigen::Block, -1, 1, false>]’ 207 | call_assignment(derived(), other.derived(), internal::mul_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:69:20: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 69 | acc.tail(pull) *= T_scalar(1.0) - temp.square(); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:32:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int]’ 32 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:45:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int]’ 45 | return read_corr_matrix(corr_constrain(x), k); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:949:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 949 | return corr_matrix_constrain( 950 | this->read>((k * (k - 1)) / 2), 951 | k); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, const Eigen::Block > >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, const Eigen::Block > >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, const Eigen::Block > >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, const Eigen::Block > >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, const Eigen::Block > >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, const Eigen::Block > >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase > >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense > >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval > >, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl >, const Eigen::Block > >, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Transpose > >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Transpose > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, Eigen::Transpose > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true>, Eigen::Transpose > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true>, Eigen::Transpose > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, 1, -1, true>, Eigen::Transpose > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, 1, -1, true>, Eigen::Transpose > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, 1, -1, true>, Eigen::Transpose > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, 1, -1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl >, 1, -1, true>, Eigen::Transpose > >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Transpose > >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Transpose > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:62:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 62 | check_not_nan(function, "Random variable", y_val); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:63:15: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 63 | check_finite(function, "Location parameter", mu_val); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive_finite > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive_finite.hpp:24:20: required from ‘void stan::math::check_positive_finite(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 24 | elementwise_check([](double x) { return x > 0 && std::isfinite(x); }, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 25 | function, name, y, "positive finite"); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:71:24: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 71 | check_positive_finite(function, "Random variable", y_val); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:25:0: required from ‘void stan::math::internal::quad_form_vari_alloc::compute(const Eigen::Matrix&, const Eigen::Matrix&) [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 25 | matrix_d M = 0.5 * (Cd + Cd.transpose()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:40:0: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form_sym.hpp:37:0: required from ‘auto stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix, -1, -1>; EigMat2 = Eigen::Matrix, -1, -1>; stan::require_all_eigen_t* = 0; stan::require_any_vt_var* = 0]’ 37 | return quad_form(A_ref, B, true); stanExports_stanmarg.h:13579:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13579 | stan::math::quad_form_sym( 13580 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 13581 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan, -1, -1> >(const char*, const char*, const Eigen::Matrix, -1, -1>&)::; T = Eigen::Matrix, -1, -1>; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)(((!(Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit)) && (! T::IsVectorAtCompileTime)) && (!(Eigen::internal::traits<_Rhs>::Flags & Eigen::RowMajorBit))))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix, -1, -1>]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:161:0: required from ‘Eigen::Matrix, EigMat1::RowsAtCompileTime, EigMat2::ColsAtCompileTime> stan::math::mdivide_left_spd(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix, -1, -1>; EigMat2 = Eigen::Matrix, -1, -1>; stan::require_all_eigen_matrix_base_vt* = 0]’ 161 | check_not_nan(function, "A", A_ref); stanExports_stanmarg.h:4445:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:207:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 207 | for (size_t i = 0; i < x.rows(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:208:26: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 208 | for (size_t j = 0; j < x.cols(); j++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:533:30: required from ‘void Eigen::PartialPivLU::compute() [with _MatrixType = Eigen::Matrix]’ 533 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:133:14: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, Eigen::internal::member_sum, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, Eigen::internal::member_sum, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, Eigen::internal::member_sum, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:56:7: required from ‘class Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>’ 56 | class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr >::type, | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:533:46: required from ‘void Eigen::PartialPivLU::compute() [with _MatrixType = Eigen::Matrix]’ 533 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:133:14: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, 0, Eigen::Stride<0, 0> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:478:32: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::mean() const [with Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Eigen::internal::traits::Scalar = double]’ 478 | return Scalar(derived().redux(Eigen::internal::scalar_sum_op())) / Scalar(this->size()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mean.hpp:25:73: required from ‘stan::math::mean >(const std::vector&):: [with auto:230 = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 25 | [](const auto& a) { return a.mean(); }); | ~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::mean >(const std::vector&)::; T = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:158:45: required from ‘static auto stan::math::apply_vector_unary::type, void>, stan::is_stan_scalar::type> >::value>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::mean >(const std::vector&)::; T = std::vector]’ 158 | return apply_vector_unary::reduce(as_column_vector_or_scalar(x), f); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mean.hpp:24:39: required from ‘stan::return_type_t stan::math::mean(const T&) [with T = std::vector; stan::require_container_t* = 0; stan::return_type_t = double]’ 24 | return apply_vector_unary::reduce(m, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ 25 | [](const auto& a) { return a.mean(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17288:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17288 | stan::math::mean( 17289 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17290 | stan::model::index_min_max(r1, ((r1 + 17291 | stan::model::rvalue(cluster_size, "cluster_size", 17292 | stan::model::index_uni(clusidx))) - 1)), 17293 | stan::model::index_uni(jj))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_lhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int Pack1 = 4; int Pack2 = 2; Packet = __vector(2) double; bool Conjugate = false; bool PanelMode = false]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:106:17: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 0; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 106 | pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2100:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2100 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2102:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2102 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2103 | QuarterPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Matrix, const Eigen::Matrix > >, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4496:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T3__ = Eigen::Block, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4496 | ((stan::math::sum( 4497 | stan::math::elt_multiply( 4498 | stan::model::rvalue(Supdate, "Supdate", 4499 | stan::model::index_min_max(1, Nobs), 4500 | stan::model::index_min_max(1, Nobs)), 4501 | stan::math::add(S, 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:4825:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4825 | multi_normal_suff( 4826 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4827 | stan::model::index_multi( 4828 | stan::model::rvalue(Xvar, "Xvar", 4829 | stan::model::index_min_max(1, Nx)))), 4830 | stan::model::rvalue(cov_w, "cov_w", 4831 | stan::model::index_min_max(1, Nx), 4832 | stan::model::index_min_max(1, Nx)), 4833 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4834 | stan::model::index_multi( 4835 | stan::model::rvalue(Xvar, "Xvar", 4836 | stan::model::index_min_max(1, Nx)))), 4837 | stan::model::rvalue(cov_w_inv, "cov_w_inv", 4838 | stan::model::index_min_max(1, (Nx + 1)), 4839 | stan::model::index_min_max(1, (Nx + 1))), 4840 | stan::model::rvalue(cluster_size, "cluster_size", 4841 | stan::model::index_uni(cc)), pstream__)), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; SrcXprType = Eigen::Block, 1, -1, false>; Functor = assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; SrcXprType = Eigen::Block, 1, -1, false>; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, 1, -1, false>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, 1, -1, false>; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, 1, -1, false>]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: required from ‘Derived& Eigen::MatrixBase::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, 1, -1, false>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 66 | internal::call_assignment(derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:72:0: required from ‘int stan::services::standalone_generate(const Model&, const Eigen::MatrixXd&, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; Eigen::MatrixXd = Eigen::Matrix]’ 72 | Eigen::Map(&row[0], draws.cols()) = draws.row(i); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1253:0: required from ‘SEXPREC* rstan::stan_fit::standalone_gqs(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1253 | ret = stan::services::standalone_generate(model_, draws, 1254 | Rcpp::as(seed), interrupt, logger, *sample_writer_ptr); stanExports_stanmarg.cc:30:0: required from here 30 | .method("standalone_gqs", &rstan::stan_fit ::standalone_gqs) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 16, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 16, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 16, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 16, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 16, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 16, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::Matrix; Src = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Func = add_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:39: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:280:48: required from ‘void Eigen::internal::outer_product_selector_run(Dst&, const Lhs&, const Rhs&, const Func&, const false_type&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Func = generic_product_impl, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 5>::set]’ 280 | func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:317:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::Matrix; Src = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Func = add_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:39: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, true>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, true>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:333: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h: In instantiation of ‘class Eigen::internal::gemv_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:306:38: required from ‘struct Eigen::internal::general_matrix_vector_product, 1, false, double, Eigen::internal::const_blas_data_mapper, false, 0>’ 306 | typedef typename Traits::LhsPacket LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:347:132: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; typename Dest::Scalar = double]’ 346 | general_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 347 | ::run( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 348 | actualLhs.rows(), actualLhs.cols(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 350 | RhsMapper(actualRhsPtr, 1), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 351 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 352 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Scalar = double]’ 385 | internal::gemv_dense_selector::HasUsableDirectAccess) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 388 | >::run(actual_lhs, actual_rhs, dst, alpha); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 51 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 52 | unpacket_traits<_RhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 54 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 55 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 56 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1 | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 59 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 60 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 61 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h: In instantiation of ‘class Eigen::internal::gemv_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:310:42: required from ‘struct Eigen::internal::general_matrix_vector_product, 1, false, double, Eigen::internal::const_blas_data_mapper, false, 0>’ 310 | typedef typename HalfTraits::LhsPacket LhsPacketHalf; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:347:132: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; typename Dest::Scalar = double]’ 346 | general_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 347 | ::run( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 348 | actualLhs.rows(), actualLhs.cols(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 350 | RhsMapper(actualRhsPtr, 1), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 351 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 352 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Scalar = double]’ 385 | internal::gemv_dense_selector::HasUsableDirectAccess) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 388 | >::run(actual_lhs, actual_rhs, dst, alpha); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 51 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 52 | unpacket_traits<_RhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 54 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 55 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 56 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1 | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 59 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 60 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 61 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h: In instantiation of ‘class Eigen::internal::gemv_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:314:45: required from ‘struct Eigen::internal::general_matrix_vector_product, 1, false, double, Eigen::internal::const_blas_data_mapper, false, 0>’ 314 | typedef typename QuarterTraits::LhsPacket LhsPacketQuarter; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:347:132: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; typename Dest::Scalar = double]’ 346 | general_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 347 | ::run( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 348 | actualLhs.rows(), actualLhs.cols(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 350 | RhsMapper(actualRhsPtr, 1), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 351 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 352 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Scalar = double]’ 385 | internal::gemv_dense_selector::HasUsableDirectAccess) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 388 | >::run(actual_lhs, actual_rhs, dst, alpha); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 51 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 52 | unpacket_traits<_RhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 54 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 55 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 56 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1 | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 59 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 60 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 61 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:51: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, true>, -1, 1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, false>; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>, -1, 1, false>; Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:37:52: required from ‘stan::math::matrix_d stan::math::multiply_lower_tri_self_transpose(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_matrix_dynamic_t* = 0; stan::require_not_st_autodiff* = 0; matrix_d = Eigen::Matrix]’ 37 | LLt(n, m) = LLt(m, n) = Lt.col(m).head(k).dot(Lt.col(n).head(k)); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:43: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Transpose > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Transpose > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Transpose > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Transpose > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Transpose > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Transpose > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, -1, 1, true>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase > >, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense > >, -1, 1, true>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, 1, -1, true>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, 1, -1, true>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, -1, -1, false>, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1, false>, const Eigen::Product, const Eigen::Block, -1, 1, false>, const Eigen::Matrix >, Eigen::Transpose, const Eigen::Block, -1, 1, false>, const Eigen::Matrix > >, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:29:8: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1626:36: required from ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 1626 | typedef typename XprType::Scalar Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:65:8: required from ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0> >’ 65 | struct evaluator, DiagIndex> > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:29:8: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1626:36: required from ‘struct Eigen::internal::evaluator, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 1626 | typedef typename XprType::Scalar Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:65:8: required from ‘struct Eigen::internal::evaluator, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0> >’ 65 | struct evaluator, DiagIndex> > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, true>, -1, 1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:129:38: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:129:41: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:131:25: required from ‘void Eigen::MatrixBase::applyHouseholderOnTheLeft(const EssentialPart&, const Scalar&, Scalar*) [with EssentialPart = Eigen::VectorBlock, -1, 1, true>, -1>; Derived = Eigen::Block, -1, -1, false>; Scalar = double]’ 131 | this->row(0) -= tau * tmp; | ~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:550:35: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:132:41: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::Block, -1, 1, true>, -1, 1, false>; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, -1, 1, true>, -1, 1, false> >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::VectorBlock, -1, 1, true>, -1>; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ stanExports_stanmarg.h:4337:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4337 | stan::math::sum( 4338 | stan::model::rvalue(YXfull, "YXfull", 4339 | stan::model::index_min_max(r1, r2), stan::model::index_uni(i)))), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ stanExports_stanmarg.h:3419:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3419 | q_zz = stan::math::sum(stan::math::elt_multiply(Vinv_11, Y2Yc_zz)); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:53: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Functor = assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Map, 0, Eigen::Stride<0, 0> >; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Map, 0, Eigen::Stride<0, 0> >; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CommaInitializer.h:159:10: required from ‘Eigen::CommaInitializer Eigen::DenseBase::operator<<(const Eigen::DenseBase&) [with OtherDerived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Derived = Eigen::Matrix]’ 159 | return CommaInitializer(*static_cast(this), other); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_row.hpp:102:10: required from ‘Eigen::Matrix::type, -1, 1> stan::math::append_row(const ColVec&, const Scal&) [with ColVec = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scal = double; stan::require_t >* = 0; stan::require_stan_scalar_t* = 0; typename stan::return_type::type = double]’ 102 | result << A.template cast(), B; | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:29:31: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 29 | ArrayBT b_array = append_row(as_array_or_scalar(b), 1.0); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:221:28: required from ‘static typename Eigen::NumTraits::Scalar>::Real Eigen::internal::lpNorm_selector::run(const Eigen::MatrixBase&) [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 221 | return m.cwiseAbs().sum(); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:74: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:54: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Block, 1, -1, false>; Rhs = Eigen::Block, -1, 1, false>]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:359:56: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 359 | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:51: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::Matrix; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:199:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 199 | * CubicInterp(_gk_1.dot(_pk_1), _alphak_1, _fk - _fk_1, /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/accumulator.hpp:73:0: required from ‘void stan::math::accumulator::type>::value, void>::type>::add(const S&) [with S = Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; stan::require_matrix_t* = 0; T = stan::math::var_value; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = stan::math::var_value]’ 73 | buf_.push_back(stan::math::sum(m)); stanExports_stanmarg.h:14316:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14316 | lp_accum__.add(stan::math::minus(log_lik_x)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Array, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:82:38: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 82 | T_partials_return logp = -0.5 * sum(y_scaled_sq); | ~~~^~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix, -1, 1>; T_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14607:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14607 | lp_accum__.add(stan::math::normal_lpdf(Lambda_y_free, 14608 | lambda_y_primn, lambda_y_sd)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:100:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 100 | logp += sum(alpha_val * log_beta) * N / max_size(alpha, beta); | ~~~^~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:106:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 106 | logp += sum((alpha_val - 1.0) * log_y) * N / max_size(alpha, y); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix, -1, 1>; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~^~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<-1, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<-1, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<-1, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<-1, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<-1, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<-1, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:44:50: required from ‘struct Eigen::internal::traits, 0, Eigen::OuterStride<> > >::match, 0, Eigen::OuterStride<> >, -1, -1, false> >’ 44 | DerivedAlignment = int(evaluator::Alignment), | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:288:101: required by substitution of ‘template Eigen::Ref, 0, Eigen::OuterStride<> >::Ref(const Eigen::DenseBase&, typename Eigen::internal::enable_if<(bool)(Eigen::internal::traits, 0, Eigen::OuterStride<> > >::match::MatchAtCompileTime), Derived>::type*) [with Derived = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>]’ 288 | typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0); | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:463:17: required from ‘static Eigen::Index Eigen::internal::partial_lu_impl::blocked_lu(Eigen::Index, Eigen::Index, Scalar*, Eigen::Index, PivIndex*, PivIndex&, Eigen::Index) [with Scalar = double; int StorageOrder = 1; PivIndex = int; int SizeAtCompileTime = -1; Eigen::Index = long int]’ 463 | BlockType A_0 = lu.block(0,0,rows,k); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:519:17: required from ‘void Eigen::internal::partial_lu_inplace(MatrixType&, TranspositionType&, typename TranspositionType::StorageIndex&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; typename TranspositionType::StorageIndex = int]’ 515 | partial_lu_impl | ~~~~~~~~~~~~~~~ 516 | < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 517 | typename TranspositionType::StorageIndex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 | EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 519 | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:543:31: required from ‘void Eigen::PartialPivLU::compute() [with _MatrixType = Eigen::Matrix]’ 543 | internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:133:14: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:495:30: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:110:23: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:332:45: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:332:58: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:332:45: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::Matrix; Functor = assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::Matrix; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, true>; Src = Eigen::Matrix; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, true>; Src = Eigen::Matrix; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_col.hpp:49:26: required from ‘auto stan::math::append_col(const T1&, const T2&) [with T1 = Eigen::Matrix; T2 = Eigen::Matrix; = void]’ 49 | result.leftCols(Acols) = A.template cast(); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:2847:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type>::type, -1, -1> model_stanmarg_namespace::calc_B_tilde(const T0__&, const T1__&, const std::vector&, const int&, std::ostream*) [with T0__ = Eigen::Matrix; T1__ = Eigen::Matrix; stan::require_all_t, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 2847 | stan::model::assign(out, stan::math::append_col(mu2, sig2), stanExports_stanmarg.h:17229:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17229 | calc_B_tilde( 17230 | stan::model::rvalue(Sigma_c, "Sigma_c", 17231 | stan::model::index_uni(gg)), YXstar_rep_c, ov_idx2, 17232 | p_tilde, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:53: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, false> >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::VectorBlock, -1>; T_loc = Eigen::VectorBlock, -1>; T_covar = Eigen::Block, -1, -1, false>; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:4849:0: required from ‘Eigen::Matrix::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type, -1, 1> model_stanmarg_namespace::calc_log_lik_x(const std::vector >&, const T1__&, const T2__&, const T3__&, const T4__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = Eigen::Matrix; T2__ = Eigen::Matrix; T3__ = Eigen::Matrix; T4__ = Eigen::Matrix; stan::require_all_t, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4849 | stan::math::multi_normal_lpdf( 4850 | stan::model::rvalue(mean_d, "mean_d", stan::model::index_uni(cc), 4851 | stan::model::index_min_max(1, Nx_between)), 4852 | stan::model::rvalue(ov_mean_d, "ov_mean_d", 4853 | stan::model::index_min_max(1, Nx_between)), 4854 | stan::model::rvalue(cov_mean_d, "cov_mean_d", 4855 | stan::model::index_min_max(1, Nx_between), 4856 | stan::model::index_min_max(1, Nx_between)))), stanExports_stanmarg.h:17723:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17723 | calc_log_lik_x( 17724 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17725 | stan::model::index_min_max(r2, (clusidx - 1))), 17726 | stan::model::rvalue(mnvecs, "mnvecs", 17727 | stan::model::index_uni(2)), 17728 | stan::model::rvalue(covmats, "covmats", 17729 | stan::model::index_uni(1)), 17730 | stan::model::rvalue(covmats, "covmats", 17731 | stan::model::index_uni(2)), 17732 | stan::model::rvalue(covmats, "covmats", 17733 | stan::model::index_uni(3)), 17734 | stan::model::rvalue(nclus, "nclus", 17735 | stan::model::index_uni(gg)), 17736 | stan::model::rvalue(cluster_size, "cluster_size", 17737 | stan::model::index_min_max(r2, (clusidx - 1))), 17738 | stan::model::rvalue(Xvar, "Xvar", 17739 | stan::model::index_uni(gg)), 17740 | stan::model::rvalue(Xbetvar, "Xbetvar", 17741 | stan::model::index_uni(gg)), 17742 | stan::model::rvalue(Nx, "Nx", 17743 | stan::model::index_uni(gg)), 17744 | stan::model::rvalue(Nx_between, "Nx_between", 17745 | stan::model::index_uni(gg)), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>; U = Eigen::Block >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, true>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>, 1, -1, true>; U = Eigen::Block >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:166:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:51: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, false>; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>, -1, 1, false>; Derived = Eigen::Block, -1, 1, false>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:372:86: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 372 | hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::InnerStride<1> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Array; SrcXprType = Eigen::Block, 0, Eigen::InnerStride<1> >, -1, 1, false>; Functor = assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Array; SrcXprType = Eigen::Block, 0, Eigen::InnerStride<1> >, -1, 1, false>; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Array; Src = Eigen::Block, 0, Eigen::InnerStride<1> >, -1, 1, false>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Array; Src = Eigen::Block, 0, Eigen::InnerStride<1> >, -1, 1, false>; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Array; Src = Eigen::Block, 0, Eigen::InnerStride<1> >, -1, 1, false>]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:779:32: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_L.hpp:126:21: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_L(const T&, size_t, stan::value_type_t&) [with T = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 126 | return read_corr_L(CPCs_ref, K); | ~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/read_corr_matrix.hpp:61:55: required from ‘Eigen::Matrix::type, -1, -1> stan::math::read_corr_matrix(const T_CPCs&, size_t, stan::value_type_t&) [with T_CPCs = Eigen::Matrix; stan::require_eigen_vector_t* = 0; typename stan::value_type::type = double; size_t = long unsigned int; stan::value_type_t = double]’ 61 | return multiply_lower_tri_self_transpose(read_corr_L(CPCs, K, log_prob)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_constrain.hpp:74:26: required from ‘Eigen::Matrix::type, -1, -1> stan::math::corr_matrix_constrain(const T&, Eigen::Index, stan::return_type_t&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_eigen_col_vector_t* = 0; typename stan::value_type::type = double; Eigen::Index = long int; stan::return_type_t = double]’ 74 | return read_corr_matrix(corr_constrain(x, lp), k, lp); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:945:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, Eigen::Index) [with Ret = Eigen::Matrix; bool Jacobian = false; LP = double; stan::require_not_std_vector_t* = 0; stan::require_matrix_t* = 0; T = double; Eigen::Index = long int]’ 945 | return corr_matrix_constrain( 946 | this->read>((k * (k - 1)) / 2), 947 | k, lp); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector >; bool Jacobian = false; LP = double; Sizes = {int}; stan::require_std_vector_t* = 0; T = double; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:15015:0: required from here 15013 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 15014 | std::vector>, 15015 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 15016 | Psi_r_mat_1_3dim__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block > >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 1, -1, true>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, 1, -1, true>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>, 1, -1, true>; U = Eigen::Block > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = std::vector; T_inv_scale = std::vector; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~^~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14689:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 14689 | lp_accum__.add(stan::math::gamma_lpdf(Theta_pri, 14690 | theta_sd_shape, theta_sd_rate)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:469:72: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:469:55: required from ‘static void Eigen::internal::generic_product_impl::eval_dynamic_impl(Dst&, const LhsT&, const RhsT&, const Func&, const Scalar&, Eigen::internal::true_type) [with Dst = Eigen::Matrix; LhsT = Eigen::Matrix; RhsT = Eigen::Transpose >; Func = Eigen::internal::assign_op; Scalar = double; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 469 | call_restricted_packet_assignment_no_alias(dst, s * lhs.lazyProduct(rhs), func); | ~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:446:22: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:377:43: required from ‘static Eigen::Index Eigen::internal::partial_lu_impl::unblocked_lu(MatrixTypeRef&, PivIndex*, PivIndex&) [with Scalar = double; int StorageOrder = 1; PivIndex = int; int SizeAtCompileTime = -1; Eigen::Index = long int; MatrixTypeRef = Eigen::Ref, 0, Eigen::OuterStride<> >]’ 377 | = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:439:26: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:400:114: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::CwiseNullaryOp, Eigen::Matrix >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::CwiseNullaryOp, Eigen::Matrix >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::CwiseNullaryOp, Eigen::Matrix >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::CwiseNullaryOp, Eigen::Matrix >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::CwiseNullaryOp, Eigen::Matrix >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::CwiseNullaryOp, Eigen::Matrix >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Solve >, Eigen::CwiseNullaryOp, Eigen::Matrix > >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:44:20: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 44 | return ldlt.solve( | ~~~~~~~~~~^ 45 | Eigen::Matrix::Identity( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 46 | m.rows(), m.cols())); | ~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:610:38: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Solve >, Eigen::CwiseNullaryOp, Eigen::Matrix > >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inverse_spd.hpp:44:20: required from ‘Eigen::Matrix::type, -1, -1> stan::math::inverse_spd(const EigMat&) [with EigMat = Eigen::Matrix; typename stan::value_type::type = double]’ 44 | return ldlt.solve( | ~~~~~~~~~~^ 45 | Eigen::Matrix::Identity( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 46 | m.rows(), m.cols())); | ~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:16304:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16304 | stan::math::inverse_spd( 16305 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:79:51: required from ‘class Eigen::internal::visitor_evaluator, 1, -1, false> >’ 79 | CoeffReadCost = internal::evaluator::CoeffReadCost | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:123:17: required from ‘void Eigen::DenseBase::visit(Visitor&) const [with Visitor = Eigen::internal::max_coeff_visitor, 1, -1, false>, 0>; Derived = Eigen::Block, 1, -1, false>]’ 123 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:374:14: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff(IndexType*) const [with int NaNPropagation = 0; IndexType = long int; Derived = Eigen::Block, 1, -1, false>; typename Eigen::internal::traits::Scalar = double]’ 374 | this->visit(maxVisitor); | ~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:501:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff(IndexType*) const [with IndexType = long int; Derived = Eigen::Block, 1, -1, false>; typename Eigen::internal::traits::Scalar = double]’ 501 | return maxCoeff(index); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:521:90: required from ‘void Eigen::ColPivHouseholderQR::computeInPlace() [with _MatrixType = Eigen::Matrix]’ 521 | RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:477:3: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, 1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, 1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:328:36: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, -1, false>, 1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:328:36: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::Block >, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> >; Functor = assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> >; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/access_helpers.hpp:92:0: required from ‘void stan::model::internal::assign_impl(T1&&, T2&&, const char*) [with T1 = Eigen::VectorBlock, -1>; T2 = const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> >&; stan::require_all_eigen_t* = 0]’ 92 | x = std::forward(y); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:141:0: required from ‘void stan::model::assign(Vec1&&, const Vec2&, const char*, index_min_max) [with Vec1 = Eigen::Matrix&; Vec2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false> >; stan::require_all_vector_t* = 0; stan::require_all_not_std_vector_t* = 0]’ 141 | internal::assign_impl(x.segment(slice_start, slice_size), y, name); stanExports_stanmarg.h:18213:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18213 | stan::model::assign(log_lik, 18214 | stan::math::subtract( 18215 | stan::model::deep_copy( 18216 | stan::model::rvalue(log_lik, "log_lik", 18217 | stan::model::index_min_max(r1, r2))), 18218 | stan::model::rvalue(log_lik_x_full, "log_lik_x_full", 18219 | stan::model::index_min_max(r1, r2))), 18220 | "assigning variable log_lik", 18221 | stan::model::index_min_max(r1, r2)); stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:46: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:78:71: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 2, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 2, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 2, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 2, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 2, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 2, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:296:40: required from ‘static void Eigen::internal::gemv_dense_selector<2, 0, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, -1, -1, false>; Rhs = Eigen::Block, -1, 1, false>; Dest = Eigen::Block, -1, 1, false>; typename Dest::Scalar = double]’ 296 | dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Array; SrcXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Functor = assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Array; SrcXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Array; Src = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Array; SrcXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Functor = assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Array; SrcXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Array; Src = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Derived = Eigen::Array]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, false>, 1, -1, false>; Derived = Eigen::Array]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:288:29: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator >, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose >, -1, 1, false> >; SrcXprType = Eigen::Array; Functor = assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose >, -1, 1, false> >; SrcXprType = Eigen::Array; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block >, -1, 1, false>; Src = Eigen::Array; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/factor_cov_matrix.hpp:51:11: required from ‘bool stan::math::factor_cov_matrix(const T_Sigma&, T_CPCs&&, T_sds&&) [with T_Sigma = Eigen::Matrix; T_CPCs = Eigen::ArrayWrapper >; T_sds = Eigen::Array&; stan::require_eigen_t* = 0; stan::require_all_eigen_vector_t* = 0; stan::require_all_vt_same* = 0]’ 51 | factor_U(U, CPCs); | ~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/corr_matrix_free.hpp:45:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::corr_matrix_free(const T&) [with T = Eigen::Matrix; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 45 | bool successful = factor_cov_matrix(y, x.array(), sds); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:480:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const Mat&) [with Mat = Eigen::Matrix; stan::require_not_std_vector_t* = 0; T = double]’ 480 | this->write(stan::math::corr_matrix_free(x)); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/serializer.hpp:492:0: required from ‘void stan::io::serializer::write_free_corr_matrix(const StdVec&) [with StdVec = std::vector >; stan::require_std_vector_t* = 0; T = double]’ 492 | this->write_free_corr_matrix(ret_i); stanExports_stanmarg.h:19940:0: required from ‘void model_stanmarg_namespace::model_stanmarg::transform_inits_impl(const stan::io::var_context&, VecVar&, std::ostream*) const [with VecVar = std::vector; stan::require_vector_t* = 0; std::ostream = std::basic_ostream]’ 19940 | out__.write_free_corr_matrix(Psi_r_mat_1); stanExports_stanmarg.h:22508:0: required from here 22508 | transform_inits_impl(context, vars, pstream__); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>; Rhs = Eigen::Transpose >; Dest = Eigen::Block, 1, -1, false>; int StorageOrder = 1; bool BlasCompatible = true; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: required from ‘struct Eigen::internal::blas_traits, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 506 | >::type DirectLinearAccessType; | ^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:422:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, const Eigen::Block, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, const Eigen::Block, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, const Eigen::Block, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 0>, const Eigen::Block, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 0>, const Eigen::Block, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 0>, const Eigen::Block, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl >, Eigen::Matrix, 0>, const Eigen::Block, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Product >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense >, Eigen::Matrix, 0>, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl >, Eigen::Matrix, 0>, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block >, Eigen::Matrix, 0>, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, Eigen::Matrix, 0>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, Eigen::Matrix, 0>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Product >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense > >, Eigen::Matrix, 0>, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl > >, Eigen::Matrix, 0>, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block > >, Eigen::Matrix, 0>, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > >, Eigen::Matrix, 0>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, Eigen::Matrix, 0>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Product > >, Eigen::Matrix, 0>; Rhs = Eigen::Transpose >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product > >, Eigen::Matrix, 0>; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1, false>, -1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Lhs = Eigen::Transpose, -1, 1, true>, -1, 1, false> >; Rhs = Eigen::Block, -1, -1, false>, -1, -1, false>; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Product, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/NoAlias.h:43:31: required from ‘ExpressionType& Eigen::NoAlias::operator=(const StorageBase&) [with OtherDerived = Eigen::Product, -1, 1, true>, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>; ExpressionType = Eigen::Map, 0, Eigen::Stride<0, 0> >; StorageBase = Eigen::MatrixBase]’ 43 | call_assignment_no_alias(m_expression, other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:129:19: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘struct Eigen::internal::gemm_pack_rhs, 4, 1, false, true>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverMatrix.h:233:85: required from ‘static void Eigen::internal::triangular_solve_matrix::run(Index, Index, const Scalar*, Index, Scalar*, Index, Index, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 2; bool Conjugate = false; int TriStorageOrder = 1; int OtherInnerStride = 1]’ 233 | gemm_pack_rhs pack_rhs_panel; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:102:12: required from ‘static void Eigen::internal::triangular_solver_selector::run(const Lhs&, Rhs&) [with Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; int Side = 2; int Mode = 2]’ 100 | triangular_solve_matrix | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 | ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.innerStride(), rhs.outerStride(), blocking); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:182:21: required from ‘void Eigen::TriangularViewImpl<_MatrixType, _Mode, Eigen::Dense>::solveInPlace(const Eigen::MatrixBase&) const [with int Side = 2; OtherDerived = Eigen::Block, -1, -1, false>; _MatrixType = const Eigen::Transpose, -1, -1, false> >; unsigned int _Mode = 2]’ 181 | internal::triangular_solver_selector::type, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 182 | Side, Mode>::run(derived().nestedExpression(), otherCopy); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:364:96: required from ‘static Eigen::Index Eigen::internal::llt_inplace::blocked(MatrixType&) [with MatrixType = Eigen::Matrix; Scalar = double; Eigen::Index = long int]’ 364 | if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:408:68: required from ‘static bool Eigen::internal::LLT_Traits::inplace_decomposition(MatrixType&) [with MatrixType = Eigen::Matrix]’ 408 | { return llt_inplace::blocked(m)==-1; } | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:456:42: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2504:50: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2504 | typedef typename unpacket_traits::half HalfPacket; | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2505 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2508 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2509 | QuarterPacketSize = unpacket_traits::size}; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, false>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> > >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false> > >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false> > >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1, false> > >, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1, false> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Transpose, -1, -1, false> > >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Transpose, -1, -1, false> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true>, Eigen::Transpose, -1, -1, false> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, 1, -1, true>, Eigen::Transpose, -1, -1, false> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, 1, -1, true>, Eigen::Transpose, -1, -1, false> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false> >, 1, -1, true>, Eigen::Transpose, -1, -1, false> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false> >, 1, -1, true>, Eigen::Transpose, -1, -1, false> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false> >, 1, -1, true>, Eigen::Transpose, -1, -1, false> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false> >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1, false> >, 1, -1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1, false> >, 1, -1, true>, Eigen::Transpose, -1, -1, false> > >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Transpose, -1, -1, false> > >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Transpose, -1, -1, false> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, const Eigen::Block > > >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, const Eigen::Block > > >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, const Eigen::Block > > >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, const Eigen::Block > > >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, const Eigen::Block > > >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, const Eigen::Block > > >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > > >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > > >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase > > >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense > > >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > > >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > > >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval > > >, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl > >, const Eigen::Block > > >, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose > >; Rhs = Eigen::Transpose > > >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose > >; Rhs = Eigen::Transpose > > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, Eigen::Transpose > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, 1, -1, false>, Eigen::Transpose > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, 1, -1, false>, Eigen::Transpose > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, 1, -1, false>, Eigen::Transpose > > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, 1, -1, false>, Eigen::Transpose > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, 1, -1, false>, Eigen::Transpose > > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase > >, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense > >, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval > >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl > >, 1, -1, false>, Eigen::Transpose > > >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose > >; Rhs = Eigen::Transpose > > >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose > >; Rhs = Eigen::Transpose > > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_left_ldlt.hpp:37:24: required from ‘Eigen::Matrix::type, -1, EigMat::ColsAtCompileTime> stan::math::mdivide_left_ldlt(LDLT_factor&, const EigMat&) [with T = Eigen::Matrix; EigMat = Eigen::Matrix; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0; stan::require_any_not_t::type>, stan::is_fvar::type, void> >* = 0; typename stan::return_type::type = double]’ 37 | return A.ldlt().solve( | ~~~~~~~~~~~~~~^ 38 | Eigen::Matrix, EigMat::RowsAtCompileTime, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 39 | EigMat::ColsAtCompileTime>(b)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = double]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:18267:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18267 | stan::math::wishart_lpdf( 18268 | stan::math::multiply( 18269 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18270 | 1), 18271 | stan::model::rvalue(Sstar, "Sstar", 18272 | stan::model::index_uni(mm))), 18273 | (stan::model::rvalue(N, "N", stan::model::index_uni(mm)) - 18274 | 1), 18275 | stan::model::rvalue(Sigma, "Sigma", 18276 | stan::model::index_uni(mm))), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 1, -1, true>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:167:5: required from ‘struct boost::CopyConstructible<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:125:16: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 125 | struct IncrementableIteratorConcept : CopyConstructible | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ In file included from /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:31: /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::CopyConstructible<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/iterator/iterator_concepts.hpp:114:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/iterator/iterator_concepts.hpp:114:7: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::incrementable_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:136:13: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:233:5: required from ‘struct boost::EqualityComparable<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::EqualityComparable<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:152:13: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:152:13: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:278:9: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::single_pass_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:278:9: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:278:9: required from ‘struct boost::SinglePassRangeConcept > > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::SinglePassRangeConcept > > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/algorithm/equal.hpp:174:13: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::range_detail::SinglePassIteratorConcept::~SinglePassIteratorConcept() [with Iterator = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 158 | BOOST_CONCEPT_USAGE(SinglePassIteratorConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: required from ‘struct boost::SinglePassRangeConcept > > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::SinglePassRangeConcept > > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/algorithm/equal.hpp:174:13: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::SinglePassRangeConcept > > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::SinglePassRangeConcept > > >]’: /usr/local/lib/R/library/BH/include/boost/range/algorithm/equal.hpp:174:13: required from ‘bool boost::range::equal(const SinglePassRange1&, const SinglePassRange2&) [with SinglePassRange1 = boost::iterator_range<__gnu_cxx::__normal_iterator > >; SinglePassRange2 = boost::iterator_range<__gnu_cxx::__normal_iterator > >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/iterator_range_core.hpp:644:32: required from ‘bool boost::operator==(const iterator_range&, const iterator_range&) [with Iterator1T = __gnu_cxx::__normal_iterator >; Iterator2T = __gnu_cxx::__normal_iterator >]’ 644 | return boost::equal( l, r ); | ~~~~~~~~~~~~^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/find_iterator.hpp:359:0: required from ‘bool boost::algorithm::split_iterator::equal(const boost::algorithm::split_iterator&) const [with IteratorT = __gnu_cxx::__normal_iterator >]’ 359 | m_Match==Other.m_Match && /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:649:26: required from ‘static bool boost::iterators::iterator_core_access::equal(const Facade1&, const Facade2&, mpl_::true_) [with Facade1 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; Facade2 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; mpl_::true_ = mpl_::bool_]’ 649 | return f1.equal(f2); | ~~~~~~~~^~~~ /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:981:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator==(const iterator_facade&, const iterator_facade&) [with Derived1 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; V1 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >; TC1 = forward_traversal_tag; Reference1 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >&; Difference1 = long int; Derived2 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; V2 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >; TC2 = forward_traversal_tag; Reference2 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >&; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/local/lib/R/library/BH/include/boost/iterator/iterator_adaptor.hpp:305:29: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::SinglePassRangeConcept::~SinglePassRangeConcept() [with T = const boost::iterator_range<__gnu_cxx::__normal_iterator > >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 284 | BOOST_CONCEPT_USAGE(SinglePassRangeConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:74: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = false; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Functor = assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:337: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h: In instantiation of ‘static void Eigen::internal::selfadjoint_matrix_vector_product::run(Index, const Scalar*, Index, const Scalar*, Scalar*, Scalar) [with Scalar = double; Index = long int; int StorageOrder = 0; int UpLo = 1; bool ConjugateLhs = false; bool ConjugateRhs = false; int Version = 0]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:229:7: required from ‘static void Eigen::internal::selfadjoint_product_impl::run(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::Block, -1, -1, false>; int LhsMode = 17; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Scalar = double]’ 227 | internal::selfadjoint_matrix_vector_product::Flags&RowMajorBit) ? RowMajor : ColMajor, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 228 | int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 229 | ( | ^ 230 | lhs.rows(), // size | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 231 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 232 | actualRhsPtr, // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 233 | actualDestPtr, // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 234 | actualAlpha // scale factor | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:805:109: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; int ProductTag = 7; Scalar = double]’ 805 | selfadjoint_product_impl::run(dst, lhs.nestedExpression(), rhs, alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:62:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 62 | conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:62:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:63:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 63 | conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:63:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, 1, -1, false>; U = Eigen::Block, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > >, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, 1, -1, true>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator >, 1, -1, true>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_rhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::blas_data_mapper; int nr = 4; bool Conjugate = false; bool PanelMode = true]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverMatrix.h:155:19: required from ‘static void Eigen::internal::triangular_solve_matrix::run(Index, Index, const Scalar*, Index, Scalar*, Index, Index, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 1; bool Conjugate = false; int TriStorageOrder = 0; int OtherInnerStride = 1]’ 155 | pack_rhs(blockB+actual_kc*j2, other.getSubMapper(startBlock,j2), actualPanelWidth, actual_cols, actual_kc, blockBOffset); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:102:12: required from ‘static void Eigen::internal::triangular_solver_selector::run(const Lhs&, Rhs&) [with Lhs = const Eigen::Matrix; Rhs = Eigen::Matrix; int Side = 1; int Mode = 1]’ 100 | triangular_solve_matrix | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 | ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.innerStride(), rhs.outerStride(), blocking); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:182:21: required from ‘void Eigen::TriangularViewImpl<_MatrixType, _Mode, Eigen::Dense>::solveInPlace(const Eigen::MatrixBase&) const [with int Side = 1; OtherDerived = Eigen::Matrix; _MatrixType = const Eigen::Matrix; unsigned int _Mode = 1]’ 181 | internal::triangular_solver_selector::type, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 182 | Side, Mode>::run(derived().nestedExpression(), otherCopy); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:522:37: required from ‘void Eigen::TriangularViewImpl<_MatrixType, _Mode, Eigen::Dense>::solveInPlace(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; _MatrixType = const Eigen::Matrix; unsigned int _Mode = 1]’ 522 | { return solveInPlace(other); } | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:520:25: required from ‘void Eigen::LLT::solveInPlace(const Eigen::MatrixBase&) const [with Derived = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 520 | matrixL().solveInPlace(bAndX); | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:56:0: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4445:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2459:62: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2459 | PacketBlock kernel; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:22: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:37: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; int ProductTag = 6; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1632:27: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; int ProductTag = 6; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1632:27: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:22: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:37: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; int ProductTag = 6; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1632:27: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; int ProductTag = 6; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1632:27: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, member_sum, 0>; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 0> >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:533:57: required from ‘void Eigen::PartialPivLU::compute() [with _MatrixType = Eigen::Matrix]’ 533 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:133:14: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, -1, 2, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, -1, 2, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, -1, 2, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Matrix >, -1, 2, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Matrix >, -1, 2, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Matrix >, -1, 2, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:203:15: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Matrix >, -1, 2, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Matrix >, -1, 2, true> >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:217:20: required from ‘PacketType Eigen::internal::evaluator >::packet(Eigen::Index) const [with int LoadMode = 0; PacketType = __vector(2) double; ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 0; Eigen::Index = long int]’ 217 | PanelEvaluator panel_eval(panel); | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:251:78: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 0> >; Scalar = double]’ 251 | PacketScalar packet_res0 = eval.template packet(alignedStart); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 0>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Matrix >, -1, 1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Matrix >, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Matrix >, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:183:72: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, Eigen::Matrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, Eigen::Matrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, Eigen::Matrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 0>, Eigen::Matrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 0>, Eigen::Matrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, Eigen::Transpose >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, Eigen::Transpose >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, Eigen::Transpose >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 0>, Eigen::Transpose >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 0>, Eigen::Transpose >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:444:18: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::Matrix; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::Matrix; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::Matrix; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::Matrix; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::Matrix; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:511:85: required from ‘void Eigen::ColPivHouseholderQR::computeInPlace() [with _MatrixType = Eigen::Matrix]’ 511 | RealScalar threshold_helper = numext::abs2(m_colNormsUpdated.maxCoeff() * NumTraits::epsilon()) / RealScalar(rows); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:477:3: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, -1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, -1, false>, 1, -1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_lhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::blas_data_mapper; int Pack1 = 4; int Pack2 = 2; Packet = __vector(2) double; bool Conjugate = false; bool PanelMode = true]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverMatrix.h:319:27: required from ‘static void Eigen::internal::triangular_solve_matrix::run(Index, Index, const Scalar*, Index, Scalar*, Index, Index, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 2; bool Conjugate = false; int TriStorageOrder = 1; int OtherInnerStride = 1]’ 319 | pack_lhs_panel(blockA, lhs.getSubMapper(i2,absolute_j2), | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 320 | actualPanelWidth, actual_mc, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 321 | actual_kc, j2); | ~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:102:12: required from ‘static void Eigen::internal::triangular_solver_selector::run(const Lhs&, Rhs&) [with Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; int Side = 2; int Mode = 2]’ 100 | triangular_solve_matrix | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 | ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.innerStride(), rhs.outerStride(), blocking); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:182:21: required from ‘void Eigen::TriangularViewImpl<_MatrixType, _Mode, Eigen::Dense>::solveInPlace(const Eigen::MatrixBase&) const [with int Side = 2; OtherDerived = Eigen::Block, -1, -1, false>; _MatrixType = const Eigen::Transpose, -1, -1, false> >; unsigned int _Mode = 2]’ 181 | internal::triangular_solver_selector::type, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 182 | Side, Mode>::run(derived().nestedExpression(), otherCopy); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:364:96: required from ‘static Eigen::Index Eigen::internal::llt_inplace::blocked(MatrixType&) [with MatrixType = Eigen::Matrix; Scalar = double; Eigen::Index = long int]’ 364 | if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:408:68: required from ‘static bool Eigen::internal::LLT_Traits::inplace_decomposition(MatrixType&) [with MatrixType = Eigen::Matrix]’ 408 | { return llt_inplace::blocked(m)==-1; } | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:456:42: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2100:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2100 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2102:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2102 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2103 | QuarterPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> > >, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> > >, -1, 1, true>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false> > >, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false> > >, -1, 1, true>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, 1, -1, true>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, 1, -1, true>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false> >, 1, -1, true>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false> >, 1, -1, true>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Transpose > > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Transpose > > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Transpose > > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Transpose > > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Transpose > > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Transpose > > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > > >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > > >, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase > > >, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense > > >, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase > >, 1, -1, false>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense > >, 1, -1, false>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:29:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>’ 113 | LhsNested m_lhs; | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:29:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 2, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 2, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:610:38: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::CopyConstructible<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:167:5: required from ‘struct boost::CopyConstructible<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:125:16: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 125 | struct IncrementableIteratorConcept : CopyConstructible | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::CopyConstructible::~CopyConstructible() [with TT = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:167:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 167 | BOOST_CONCEPT_USAGE(CopyConstructible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::incrementable_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:136:13: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::range_detail::IncrementableIteratorConcept::~IncrementableIteratorConcept() [with Iterator = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:136:13: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 136 | BOOST_CONCEPT_USAGE(IncrementableIteratorConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::EqualityComparable<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:233:5: required from ‘struct boost::EqualityComparable<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::EqualityComparable::~EqualityComparable() [with TT = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:233:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 233 | BOOST_CONCEPT_USAGE(EqualityComparable) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::single_pass_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::range_detail::SinglePassIteratorConcept::~SinglePassIteratorConcept() [with Iterator = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 158 | BOOST_CONCEPT_USAGE(SinglePassIteratorConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::SinglePassRangeConcept > > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: required from ‘struct boost::SinglePassRangeConcept > > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::SinglePassRangeConcept > > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::SinglePassRangeConcept::~SinglePassRangeConcept() [with T = const boost::iterator_range<__gnu_cxx::__normal_iterator > >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 284 | BOOST_CONCEPT_USAGE(SinglePassRangeConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:303:32: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:166: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/Memory.h: In instantiation of ‘Index Eigen::internal::first_default_aligned(const Scalar*, Index) [with Scalar = double; Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:89:68: required from ‘static void Eigen::internal::selfadjoint_matrix_vector_product::run(Index, const Scalar*, Index, const Scalar*, Scalar*, Scalar) [with Scalar = double; Index = long int; int StorageOrder = 0; int UpLo = 1; bool ConjugateLhs = false; bool ConjugateRhs = false; int Version = 0]’ 89 | Index alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:229:7: required from ‘static void Eigen::internal::selfadjoint_product_impl::run(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::Block, -1, -1, false>; int LhsMode = 17; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Scalar = double]’ 227 | internal::selfadjoint_matrix_vector_product::Flags&RowMajorBit) ? RowMajor : ColMajor, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 228 | int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 229 | ( | ^ 230 | lhs.rows(), // size | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 231 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 232 | actualRhsPtr, // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 233 | actualDestPtr, // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 234 | actualAlpha // scale factor | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:805:109: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; int ProductTag = 7; Scalar = double]’ 805 | selfadjoint_product_impl::run(dst, lhs.nestedExpression(), rhs, alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/Memory.h:500:60: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 500 | return first_aligned::alignment>(array, size); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:167:27: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:170:53: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:170:34: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:129:41: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:132:29: required from ‘void Eigen::MatrixBase::applyHouseholderOnTheLeft(const EssentialPart&, const Scalar&, Scalar*) [with EssentialPart = Eigen::Block, -1, 1, false>; Derived = Eigen::Block, -1, -1, false>; Scalar = double]’ 132 | bottom.noalias() -= tau * essential * tmp; | ~~~~^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/HouseholderSequence.h:307:42: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:132:41: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::Matrix; Src = Eigen::Product, Eigen::Matrix, 0>; Func = assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Matrix; Src = Eigen::Product, Eigen::Matrix, 0>]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:779:32: required from ‘Derived& Eigen::PlainObjectBase::_set(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 779 | internal::call_assignment(this->derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:225:24: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 225 | return Base::_set(other); | ~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:26:0: required from here 26 | g = eigenvectors * eigenprojections; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose >; Rhs = Eigen::Transpose > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:44:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 44 | arena_B.adj() += arena_A_val.transpose() * res.adj_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:70: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:44:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 44 | arena_B.adj() += arena_A_val.transpose() * res.adj_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:114:15: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:114:15: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:88:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 88 | lp -= 0.5 * nu_ref * log_determinant_ldlt(ldlt_S); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:610:38: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:88:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 88 | lp -= 0.5 * nu_ref * log_determinant_ldlt(ldlt_S); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:114:15: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Solve >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Solve >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:79:51: required from ‘class Eigen::internal::visitor_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> > >’ 79 | CoeffReadCost = internal::evaluator::CoeffReadCost | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:123:17: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:79:51: required from ‘class Eigen::internal::visitor_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> > >’ 79 | CoeffReadCost = internal::evaluator::CoeffReadCost | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:123:17: required from ‘void Eigen::DenseBase::visit(Visitor&) const [with Visitor = Eigen::internal::max_coeff_visitor, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >, 0>; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false> >]’ 123 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:374:14: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:46: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:110:23: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::norm() const [with Derived = Eigen::Block, -1, 1, true>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 110 | return numext::sqrt(squaredNorm()); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:507:52: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false> >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false> >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl > > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl > >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:41:67: required from ‘Derived& Eigen::DenseBase::operator/=(const Scalar&) [with Derived = Eigen::Block, 1, 1, false>; Scalar = double]’ 41 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:599:18: required from ‘void Eigen::LDLT::_solve_impl_transposed(const RhsType&, DstType&) const [with bool Conjugate = true; RhsType = Eigen::Matrix; DstType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 599 | dst.row(i) /= vecD(i); | ~~~~~~~~~~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:569:31: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>; U = Eigen::Block >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block >, -1, 1, true>, -1, 1, true>; Derived = Eigen::Block, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>, 1, -1, true>; U = Eigen::Block >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block >, -1, 1, true>; Derived = Eigen::Block, 1, -1, true>, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_rhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int nr = 4; bool Conjugate = false; bool PanelMode = true]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:346:25: required from ‘static void Eigen::internal::product_triangular_matrix_matrix::run(Index, Index, Index, const Scalar*, Index, const Scalar*, Index, Scalar*, Index, Index, const Scalar&, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 1; int LhsStorageOrder = 1; bool ConjugateLhs = false; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int Version = 0]’ 346 | pack_rhs_panel(blockB+j2*actual_kc, | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ 347 | rhs.getSubMapper(actual_k2+panelOffset, actual_j2), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 348 | panelLength, actualPanelWidth, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | actual_kc, panelOffset); | ~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:443:12: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = false; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Dest::Scalar = double]’ 438 | internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 441 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 442 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, Dest::InnerStrideAtCompileTime> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 443 | ::run( | ~~~~~^ 444 | stripedRows, stripedCols, stripedDepth, // sizes | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 445 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 446 | &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 447 | &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 448 | actualAlpha, blocking | ~~~~~~~~~~~~~~~~~~~~~ 449 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>; int ProductTag = 8; Scalar = double]’ 783 | triangular_product_impl::run(dst, lhs, rhs.nestedExpression(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>; Derived = Eigen::internal::generic_product_impl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, Eigen::DenseShape, Eigen::TriangularShape, 8>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>; Derived = Eigen::internal::generic_product_impl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, Eigen::DenseShape, Eigen::TriangularShape, 8>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2459:62: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2459 | PacketBlock kernel; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:99:96: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 2>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 2>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 2>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 2>, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 2>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 2>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:101:66: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, 1>, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, 1>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, 1>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:102:66: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 5>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 5>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 5>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, 5>, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, 5>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, 5>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:103:22: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block > >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block > >, -1, 1, true>, -1, 1, true>; Derived = Eigen::Block >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>, 1, -1, true>; U = Eigen::Block > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block > >, -1, 1, true>; Derived = Eigen::Block >, 1, -1, true>, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:70: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:70: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:70: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; SrcXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; Functor = swap_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; SrcXprType = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; Functor = Eigen::internal::swap_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; Src = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; Func = swap_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; Src = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; Func = swap_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:424:22: required from ‘void Eigen::DenseBase::swap(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; Derived = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>]’ 424 | call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:483:24: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::OuterStride<> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::OuterStride<> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::OuterStride<> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 0, Eigen::OuterStride<> >, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, 0, Eigen::OuterStride<> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Ref, 0, Eigen::OuterStride<> >; Lhs = Eigen::Ref, 0, Eigen::OuterStride<> >; Rhs = Eigen::Ref, 0, Eigen::OuterStride<> >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:464:20: required from ‘static void Eigen::internal::generic_product_impl::subTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Ref, 0, Eigen::OuterStride<> >; Lhs = Eigen::Ref, 0, Eigen::OuterStride<> >; Rhs = Eigen::Ref, 0, Eigen::OuterStride<> >]’ 464 | scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:178:42: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Ref, 0, Eigen::OuterStride<> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Ref, 0, Eigen::OuterStride<> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Ref, 0, Eigen::OuterStride<> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Ref, 0, Eigen::OuterStride<> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Ref, 0, Eigen::OuterStride<> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Ref, 0, Eigen::OuterStride<> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Ref, 0, Eigen::OuterStride<> >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Ref, 0, Eigen::OuterStride<> >; Lhs = Eigen::Ref, 0, Eigen::OuterStride<> >; Rhs = Eigen::Ref, 0, Eigen::OuterStride<> >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:464:20: required from ‘static void Eigen::internal::generic_product_impl::subTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Ref, 0, Eigen::OuterStride<> >; Lhs = Eigen::Ref, 0, Eigen::OuterStride<> >; Rhs = Eigen::Ref, 0, Eigen::OuterStride<> >]’ 464 | scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:178:42: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:234:28: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose >, Eigen::Transpose > > >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:42:17: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~~~ 40 | .solve(Eigen::Matrix(b) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 41 | .transpose()) | ~~~~~~~~~~~~~ 42 | .transpose(); | ~~~~~~~~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl > >, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: required from ‘Derived& Eigen::MatrixBase::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 66 | internal::call_assignment(derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_vector.hpp:22:11: required from ‘Eigen::Matrix::type, -1, 1> stan::math::to_vector(const EigMat&) [with EigMat = Eigen::Product, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 22 | res_map = matrix; | ~~~~~~~~^~~~~~~~ stanExports_stanmarg.h:15802:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15802 | stan::math::to_vector( 15803 | stan::math::multiply( 15804 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15805 | stan::model::index_uni(g)), 15806 | stan::model::rvalue(Alpha, "Alpha", 15807 | stan::model::index_uni(g), 15808 | stan::model::index_min_max(1, m), 15809 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, false> >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = div_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = Eigen::internal::div_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:41:28: required from ‘Derived& Eigen::DenseBase::operator/=(const Scalar&) [with Derived = Eigen::Block, -1, -1, false>, -1, 1, false>; Scalar = double]’ 41 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:333:21: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, 1, -1, true>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, 1, -1, true>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false> >, 1, -1, true>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false> >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, -1, false> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, 1, -1, false>; U = Eigen::Block > > >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl > >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block > > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block > > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block > > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block > > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block > > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block > > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 457 | dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Diagonal, 0>; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Diagonal, 0>]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:303:42: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, true>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, 1, true>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:63:90: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:63:57: required from ‘void Eigen::internal::make_block_householder_triangular_factor(TriangularFactorType&, const VectorsType&, const CoeffsType&) [with TriangularFactorType = Eigen::Matrix; VectorsType = Eigen::Block, -1, -1, false>; CoeffsType = Eigen::VectorBlock, -1>]’ 63 | triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint() | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:92:55: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:64:57: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:73:50: required from ‘void Eigen::internal::make_block_householder_triangular_factor(TriangularFactorType&, const VectorsType&, const CoeffsType&) [with TriangularFactorType = Eigen::Matrix; VectorsType = Eigen::Block, -1, -1, false>; CoeffsType = Eigen::VectorBlock, -1>]’ 73 | triFactor.row(i).tail(nbVecs-j-1) += z * triFactor.row(j).tail(nbVecs-j-1); | ~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:92:55: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, Eigen::Matrix, 0>, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, Eigen::Matrix, 0>, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Product, Eigen::Matrix, 0>; Rhs = Eigen::Transpose >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, Eigen::Matrix, 0>; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:44:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 44 | arena_B.adj() += arena_A_val.transpose() * res.adj_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:44:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 44 | arena_B.adj() += arena_A_val.transpose() * res.adj_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:48:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 48 | arena_B.adj() += arena_A_val.transpose() * res_adj; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:366:43: required from ‘static void Eigen::internal::gemv_dense_selector<2, 0, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>; Dest = Eigen::Block, -1, 1, true>; typename Dest::Scalar = double]’ 366 | dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Dest = Eigen::Block, 1, -1, false>; int StorageOrder = 1; bool BlasCompatible = true; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Dest = Eigen::Block, 1, -1, false>; int StorageOrder = 0; bool BlasCompatible = false; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:366:52: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:366:43: required from ‘static void Eigen::internal::gemv_dense_selector<2, 0, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >; Rhs = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; Dest = Eigen::Block, -1, 1, true>; typename Dest::Scalar = double]’ 366 | dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Dest = Eigen::Block, 1, -1, false>; int StorageOrder = 0; bool BlasCompatible = false; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, 1, -1, false>; Rhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Dest = Eigen::Block, 1, -1, false>; int StorageOrder = 1; bool BlasCompatible = false; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:610:38: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 2, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:577:26: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Matrix >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Matrix >, -1, 1, false> >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Block, const Eigen::Matrix >, -1, 1, false>; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::Block, const Eigen::Matrix >, -1, 1, false>; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:114:1: required from ‘ResultType Eigen::internal::member_sum::operator()(const XprType&) const [with XprType = Eigen::Block, const Eigen::Matrix >, -1, 1, false>; ResultType = double; Scalar = double]’ 97 | { return mat.MEMBER(); } \ | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:183:21: required from ‘const Eigen::internal::evaluator >::Scalar Eigen::internal::evaluator >::coeff(Eigen::Index) const [with ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 0; Scalar = double; Eigen::Index = long int]’ 183 | return m_functor(m_arg.template subVector(index)); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:268:34: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/Memory.h:639:76: required from ‘void Eigen::internal::outer_product_selector_run(Dst&, const Lhs&, const Rhs&, const Func&, const true_type&) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>; Lhs = Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>; Rhs = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>; Func = generic_product_impl, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, Eigen::DenseShape, Eigen::DenseShape, 5>::sub]’ 639 | bool MapExternalBuffer = nested_eval::Evaluate && Xpr::MaxSizeAtCompileTime==Dynamic | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:329:41: required from ‘static void Eigen::internal::generic_product_impl::subTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>; Lhs = Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>; Rhs = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>]’ 329 | internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:178:42: required from ‘static void Eigen::internal::Assignment, Eigen::internal::sub_assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::sub_assign_op&) [with DstXprType = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>; Lhs = Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>; Rhs = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>]’ 178 | generic_product_impl::subTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>; Src = Eigen::Product, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/NoAlias.h:59:31: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:293:48: required from ‘void Eigen::internal::outer_product_selector_run(Dst&, const Lhs&, const Rhs&, const Func&, const true_type&) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>; Lhs = Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>; Rhs = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>; Func = generic_product_impl, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, false>, Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, Eigen::DenseShape, Eigen::DenseShape, 5>::sub]’ 293 | func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:329:41: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::OuterStride<> >, Eigen::Ref, 0, Eigen::OuterStride<> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, true>, -1, 1, false> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, true>, -1, 1, false> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, false> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, false>, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1, -1, false> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, 1, -1, false> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Matrix; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:17369:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17369 | stan::math::tcrossprod( 17370 | stan::math::to_matrix( 17371 | stan::math::subtract( 17372 | stan::model::rvalue(YXstar_rep, "YXstar_rep", 17373 | stan::model::index_uni(ii)), 17374 | stan::model::rvalue(mean_d_rep, "mean_d_rep", 17375 | stan::model::index_uni(clusidx)))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 2; bool LhsIsTriangular = false; Lhs = Eigen::Matrix; Rhs = const Eigen::Transpose >; typename Dest::Scalar = double]’ 457 | dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 2; bool LhsIsTriangular = false; Lhs = Eigen::Matrix; Rhs = const Eigen::Transpose >; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:150:68: required from ‘static void Eigen::internal::product_triangular_matrix_matrix::run(Index, Index, Index, const Scalar*, Index, const Scalar*, Index, Scalar*, Index, Index, const Scalar&, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 1; int LhsStorageOrder = 0; bool ConjugateLhs = false; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; int Version = 0]’ 150 | Matrix triangularBuffer(a); | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:443:12: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 438 | internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 441 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 442 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, Dest::InnerStrideAtCompileTime> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 443 | ::run( | ~~~~~^ 444 | stripedRows, stripedCols, stripedDepth, // sizes | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 445 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 446 | &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 447 | &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 448 | actualAlpha, blocking | ~~~~~~~~~~~~~~~~~~~~~ 449 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:32: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:179:81: required from ‘class Eigen::DenseBase, 0> >’ 179 | typedef typename internal::find_best_packet::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:32: required from ‘static void Eigen::internal::product_triangular_matrix_matrix::run(Index, Index, Index, const Scalar*, Index, const Scalar*, Index, Scalar*, Index, Index, const Scalar&, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 1; int LhsStorageOrder = 0; bool ConjugateLhs = false; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; int Version = 0]’ 153 | triangularBuffer.diagonal().setZero(); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:443:12: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 438 | internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 441 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 442 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, Dest::InnerStrideAtCompileTime> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 443 | ::run( | ~~~~~^ 444 | stripedRows, stripedCols, stripedDepth, // sizes | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 445 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 446 | &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 447 | &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 448 | actualAlpha, blocking | ~~~~~~~~~~~~~~~~~~~~~ 449 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Lhs = Eigen::Block, -1, -1, false>, -1, -1, false>; Rhs = Eigen::Block, -1, 1, false>; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/NoAlias.h:43:31: required from ‘ExpressionType& Eigen::NoAlias::operator=(const StorageBase&) [with OtherDerived = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>; ExpressionType = Eigen::Map, 0, Eigen::Stride<0, 0> >; StorageBase = Eigen::MatrixBase]’ 43 | call_assignment_no_alias(m_expression, other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:167:19: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:769:69: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, Eigen::Transpose >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, Eigen::Transpose >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, Eigen::Transpose >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, Eigen::Transpose >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, Eigen::Transpose >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:38:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 38 | arena_t res = arena_A_val * arena_B_val; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:70: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:57:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 57 | arena_t res = arena_A * arena_B.val_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:68:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 68 | arena_t res = arena_A.val_op() * arena_B; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, 0, Eigen::Stride<0, 0> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:43: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:80: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:59: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >; Dest = Eigen::Transpose, 1, -1, false> >; typename Dest::Scalar = double]’ 379 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:12: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>, 1, -1, true>; U = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:43: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:59: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >; Dest = Eigen::Transpose, 1, -1, false> >; typename Dest::Scalar = double]’ 379 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:12: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:366:52: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:366:43: required from ‘static void Eigen::internal::gemv_dense_selector<2, 0, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >; Rhs = Eigen::Transpose, 1, -1, false> >; Dest = Eigen::Transpose, 1, -1, false> >; typename Dest::Scalar = double]’ 366 | dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:12: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:80: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:59: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >; Dest = Eigen::Transpose >; typename Dest::Scalar = double]’ 379 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:12: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::OuterStride<> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::OuterStride<> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::OuterStride<> >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose > >, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: required from ‘Derived& Eigen::MatrixBase::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 66 | internal::call_assignment(derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_vector.hpp:22:11: required from ‘Eigen::Matrix::type, -1, 1> stan::math::to_vector(const EigMat&) [with EigMat = Eigen::Product, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 22 | res_map = matrix; | ~~~~~~~~^~~~~~~~ stanExports_stanmarg.h:15802:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15802 | stan::math::to_vector( 15803 | stan::math::multiply( 15804 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15805 | stan::model::index_uni(g)), 15806 | stan::model::rvalue(Alpha, "Alpha", 15807 | stan::model::index_uni(g), 15808 | stan::model::index_min_max(1, m), 15809 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false> >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, true>, -1, 1, false> >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, true>, -1, 1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >, 1, -1, true>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >, 1, -1, true>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >, 1, -1, true>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >, 1, -1, true>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::Product, Eigen::Matrix, 0>; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3272:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3272 | stan::model::assign(Sigma_yz_zi, 3273 | stan::math::multiply(Sigma_yz, Sigma_zz_inv), 3274 | "assigning variable Sigma_yz_zi"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::Product, Eigen::Matrix, 0>; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3272:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3272 | stan::model::assign(Sigma_yz_zi, 3273 | stan::math::multiply(Sigma_yz, Sigma_zz_inv), 3274 | "assigning variable Sigma_yz_zi"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > > >, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > > >, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator > >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator > >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator > >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator > >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block > > >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:125:66: required from ‘static void Eigen::internal::triangular_solve_vector::run(Index, const LhsScalar*, Index, RhsScalar*) [with LhsScalar = double; RhsScalar = double; Index = long int; int Mode = 5; bool Conjugate = false]’ 125 | Map >(rhs+s,r) -= rhs[i] * cjLhs.col(i).segment(s,r); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:73:12: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::OuterStride<> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:39:18: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:78:57: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:78:72: required from ‘static void Eigen::internal::triangular_solve_vector::run(Index, const LhsScalar*, Index, RhsScalar*) [with LhsScalar = double; RhsScalar = double; Index = long int; int Mode = 6; bool Conjugate = false]’ 78 | rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map >(rhs+s,k))).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:73:12: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:303:32: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:75: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: required from ‘void Eigen::internal::generic_dense_assignment_kernel::assignCoeff(Eigen::Index, Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator >; SrcEvaluatorTypeT = Eigen::internal::evaluator, Eigen::Transpose >, 1> >; Functor = Eigen::internal::assign_op; int Version = 1; Eigen::Index = long int]’ 654 | m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:668:16: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:75: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose >; Rhs = Eigen::Transpose > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: required from ‘void Eigen::internal::generic_dense_assignment_kernel::assignCoeff(Eigen::Index, Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator >; SrcEvaluatorTypeT = Eigen::internal::evaluator >, Eigen::Transpose > >, 1> >; Functor = Eigen::internal::assign_op; int Version = 1; Eigen::Index = long int]’ 654 | m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:668:16: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Transpose > >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:18036:0: required from here 18036 | stan::math::divide(stan::math::crossprod(YXsmat), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:44:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 44 | arena_B.adj() += arena_A_val.transpose() * res.adj_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:366:43: required from ‘static void Eigen::internal::gemv_dense_selector<2, 0, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Dest = Eigen::Matrix; typename Dest::Scalar = double]’ 366 | dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:68:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 68 | arena_t res = arena_A.val_op() * arena_B; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>; U = Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Product >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15744:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15744 | stan::math::quad_form_sym( 15745 | stan::model::rvalue(Psi_r, "Psi_r", stan::model::index_uni(g)), 15746 | stan::model::rvalue(Psi_sd, "Psi_sd", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, const Eigen::Block, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, const Eigen::Block, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, const Eigen::Block, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, const Eigen::Block, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, const Eigen::Block, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, const Eigen::Block, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, 1, -1, true>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, 1, -1, true>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, 1, -1, true>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, 1, -1, false>; U = Eigen::Block, 1, -1, false> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, -1, -1, false>, 1, -1, false>; U = Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Transpose, -1, -1, false> > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, -1, -1, false> >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose, -1, -1, false> > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::Product, Eigen::Matrix, 0>; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3272:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3272 | stan::model::assign(Sigma_yz_zi, 3273 | stan::math::multiply(Sigma_yz, Sigma_zz_inv), 3274 | "assigning variable Sigma_yz_zi"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block > > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose > >; Rhs = Eigen::Transpose > > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose > > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Transpose >; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = div_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = Eigen::internal::div_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:41:28: required from ‘Derived& Eigen::DenseBase::operator/=(const Scalar&) [with Derived = Eigen::Block, 1, 1, false>; Scalar = double]’ 41 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:599:18: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:151:29: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Diagonal, 0>; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Diagonal, 0>]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:42: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::Block, -1, -1, false>, -1, 1, true>; Functor = add_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::Block, -1, -1, false>, -1, 1, true>; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, -1, -1, false>, -1, 1, true>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, -1, -1, false>, -1, 1, true>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, -1, -1, false>, -1, 1, true>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:168:9: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:74: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector, -1, -1>, std::allocator, -1, -1> > >; bool Jacobian = true; LP = stan::math::var_value; Sizes = {int}; stan::require_std_vector_t* = 0; T = stan::math::var_value; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:12986:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12984 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 12985 | std::vector>, 12986 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 12987 | Psi_r_mat_1_3dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = false; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector, -1, -1>, std::allocator, -1, -1> > >; bool Jacobian = true; LP = stan::math::var_value; Sizes = {int}; stan::require_std_vector_t* = 0; T = stan::math::var_value; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:12986:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12984 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 12985 | std::vector>, 12986 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 12987 | Psi_r_mat_1_3dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:38:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 38 | arena_t res = arena_A_val * arena_B_val; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:38:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 38 | arena_t res = arena_A_val * arena_B_val; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; U = Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:57:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 57 | arena_t res = arena_A * arena_B.val_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:68:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 68 | arena_t res = arena_A.val_op() * arena_B; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:68:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 68 | arena_t res = arena_A.val_op() * arena_B; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > > >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose > >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = div_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = Eigen::internal::div_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:41:28: required from ‘Derived& Eigen::DenseBase::operator/=(const Scalar&) [with Derived = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; Scalar = double]’ 41 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:599:18: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:88:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 88 | lp -= 0.5 * nu_ref * log_determinant_ldlt(ldlt_S); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Functor = add_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Derived = Eigen::Block, -1, 1, false>]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:296:25: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, const Eigen::Block, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, const Eigen::Block, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, const Eigen::Block, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, const Eigen::Block, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, const Eigen::Block, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, const Eigen::Block, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 1, -1, false>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, 1, -1, false>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, 1, -1, false>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, 1, -1, false>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, 1, -1, false>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, 1, -1, false>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: required from ‘Derived& Eigen::MatrixBase::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 66 | internal::call_assignment(derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_vector.hpp:22:11: required from ‘Eigen::Matrix::type, -1, 1> stan::math::to_vector(const EigMat&) [with EigMat = Eigen::Product, Eigen::Block, -1, 1, true>, -1, 1, false>, 0>; stan::require_eigen_t* = 0; typename stan::value_type::type = double]’ 22 | res_map = matrix; | ~~~~~~~~^~~~~~~~ stanExports_stanmarg.h:15802:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15802 | stan::math::to_vector( 15803 | stan::math::multiply( 15804 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15805 | stan::model::index_uni(g)), 15806 | stan::model::rvalue(Alpha, "Alpha", 15807 | stan::model::index_uni(g), 15808 | stan::model::index_min_max(1, m), 15809 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:4181:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4181 | stan::model::assign(T2p11, 4182 | stan::math::subtract(Sig11, 4183 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4184 | stan::math::transpose(Sig12))), "assigning variable T2p11"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:4181:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4181 | stan::model::assign(T2p11, 4182 | stan::math::subtract(Sig11, 4183 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4184 | stan::math::transpose(Sig12))), "assigning variable T2p11"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, -1, false> > >, -1, 1, true>, -1, 1, true>; Derived = Eigen::Block, -1, -1, false> >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false> >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, -1, false> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, -1, false> > >, -1, 1, true>; Derived = Eigen::Block, -1, -1, false> >, 1, -1, true>, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:301:29: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false> >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:48:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 48 | arena_B.adj() += arena_A_val.transpose() * res_adj; stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:37: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:80: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, 1, -1, true>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:59: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >; Dest = Eigen::Transpose, 1, -1, false> >; typename Dest::Scalar = double]’ 379 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:12: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 1, -1, true> >; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Functor = add_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 1, -1, true> >; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Transpose, 1, -1, true> >; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Matrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Matrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Matrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Matrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Matrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Matrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Derived = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:305:153: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false> >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:542:10: required from ‘const Eigen::LLT::PlainObject> Eigen::MatrixBase::llt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 542 | return LLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:24:47: required from ‘Eigen::MatrixXd stan::math::wishart_rng(double, const Eigen::MatrixXd&, RNG&) [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::MatrixXd = Eigen::Matrix]’ 24 | Eigen::LLT llt_of_S = S.llt(); | ~~~~~^~ stanExports_stanmarg.h:17122:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17122 | stan::math::wishart_rng( 17123 | (stan::model::rvalue(N, "N", stan::model::index_uni(g)) - 1), 17124 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g)), 17125 | base_rng__), "assigning variable Sigma_rep_sat", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:70: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:4192:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4192 | stan::model::assign(ymis, 4193 | stan::math::add( 4194 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx), 4195 | stan::model::index_multi( 4196 | stan::model::rvalue(obsidx, "obsidx", 4197 | stan::model::index_min_max( 4198 | (stan::model::rvalue(Nobs, "Nobs", 4199 | stan::model::index_uni(mm)) + 1), p)))), 4200 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4201 | stan::math::subtract( 4202 | stan::model::rvalue(YXstar, "YXstar", 4203 | stan::model::index_uni(jj), 4204 | stan::model::index_min_max(1, 4205 | stan::model::rvalue(Nobs, "Nobs", 4206 | stan::model::index_uni(mm)))), 4207 | stan::model::rvalue(Mu, "Mu", 4208 | stan::model::index_uni(grpidx), 4209 | stan::model::index_multi( 4210 | stan::model::rvalue(obsidx, "obsidx", 4211 | stan::model::index_min_max(1, 4212 | stan::model::rvalue(Nobs, "Nobs", 4213 | stan::model::index_uni(mm))))))))), 4214 | "assigning variable ymis"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::Product, Eigen::Matrix, 0>; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3272:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3272 | stan::model::assign(Sigma_yz_zi, 3273 | stan::math::multiply(Sigma_yz, Sigma_zz_inv), 3274 | "assigning variable Sigma_yz_zi"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::Product, Eigen::Matrix, 0>; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3272:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3272 | stan::model::assign(Sigma_yz_zi, 3273 | stan::math::multiply(Sigma_yz, Sigma_zz_inv), 3274 | "assigning variable Sigma_yz_zi"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, false> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, false> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >; Functor = add_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_stanmarg_namespace::model_stanmarg; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_stanmarg.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:57:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Matrix, -1, -1>; T2 = Eigen::VectorBlock, -1, -1>, -1, 1, true>, -1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 57 | arena_t res = arena_A * arena_B.val_op(); stanExports_stanmarg.h:13638:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 13638 | stan::math::multiply( 13639 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 13640 | stan::model::index_uni(g)), 13641 | stan::model::rvalue(Alpha, "Alpha", 13642 | stan::model::index_uni(g), 13643 | stan::model::index_min_max(1, m), 13644 | stan::model::index_uni(1))))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>, -1, 1, true>; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >; Functor = add_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:3306:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix, -1, -1>; T3__ = double; T9__ = Eigen::Matrix, -1, 1>; T10__ = Eigen::Matrix, -1, -1>; T11__ = Eigen::Matrix, -1, 1>; T12__ = Eigen::Matrix, -1, -1>; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 3306 | stan::math::crossprod( 3307 | stan::math::transpose( 3308 | stan::math::to_matrix( 3309 | stan::math::subtract( 3310 | stan::model::rvalue(mean_d, "mean_d", 3311 | stan::model::index_uni(clz)), Mu_full)))), stanExports_stanmarg.h:14275:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14275 | lp_accum__.add(twolevel_logdens( 14276 | stan::model::rvalue(mean_d, "mean_d", 14277 | stan::model::index_min_max(r3, r4)), 14278 | stan::model::rvalue(cov_d, "cov_d", 14279 | stan::model::index_min_max(r3, r4)), 14280 | stan::model::rvalue(S_PW, "S_PW", 14281 | stan::model::index_uni(grpidx)), 14282 | stan::model::rvalue(YX, "YX", 14283 | stan::model::index_min_max(rr1, rr2)), 14284 | stan::model::rvalue(nclus, "nclus", 14285 | stan::model::index_uni(grpidx), 14286 | stan::model::index_omni()), 14287 | stan::model::rvalue(cluster_size, 14288 | "cluster_size", 14289 | stan::model::index_min_max(r1, r2)), 14290 | stan::model::rvalue(cluster_sizes, 14291 | "cluster_sizes", 14292 | stan::model::index_min_max(r3, r4)), 14293 | stan::model::rvalue(ncluster_sizes, 14294 | "ncluster_sizes", 14295 | stan::model::index_uni(grpidx)), 14296 | stan::model::rvalue(cluster_size_ns, 14297 | "cluster_size_ns", 14298 | stan::model::index_min_max(r3, r4)), 14299 | stan::model::rvalue(Mu, "Mu", 14300 | stan::model::index_uni(grpidx)), 14301 | stan::model::rvalue(Sigma, "Sigma", 14302 | stan::model::index_uni(grpidx)), 14303 | stan::model::rvalue(Mu_c, "Mu_c", 14304 | stan::model::index_uni(grpidx)), 14305 | stan::model::rvalue(Sigma_c, "Sigma_c", 14306 | stan::model::index_uni(grpidx)), ov_idx1, 14307 | ov_idx2, within_idx, between_idx, both_idx, 14308 | p_tilde, N_within, N_between, N_both, pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = div_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = Eigen::internal::div_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:41:28: required from ‘Derived& Eigen::DenseBase::operator/=(const Scalar&) [with Derived = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, 1, false>; Scalar = double]’ 41 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:599:18: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> > >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4502:0: required from ‘stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> model_stanmarg_namespace::multi_normal_suff(const T0__&, const T1__&, const T2__&, const T3__&, const int&, std::ostream*) [with T0__ = Eigen::VectorBlock, -1>; T1__ = Eigen::Block, -1, -1, false>; T2__ = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T3__ = Eigen::Block, -1, -1>, -1, -1, false>; stan::require_all_t, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; stan::promote_args_t::type, typename stan::base_type::type, typename stan::base_type::type, typename stan::base_type::type> = stan::math::var_value; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4502 | stan::math::multiply(stan::math::subtract(xbar, Mu), 4503 | stan::math::transpose(stan::math::subtract(xbar, Mu)))))) stanExports_stanmarg.h:14485:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14485 | lp_accum__.add(multi_normal_suff( 14486 | stan::model::rvalue(YXbarstar, 14487 | "YXbarstar", stan::model::index_uni(mm), 14488 | stan::model::index_min_max(1, 14489 | stan::model::rvalue(Nobs, "Nobs", 14490 | stan::model::index_uni(mm)))), 14491 | stan::model::rvalue(Sstar, "Sstar", 14492 | stan::model::index_uni(mm), 14493 | stan::model::index_min_max(1, 14494 | stan::model::rvalue(Nobs, "Nobs", 14495 | stan::model::index_uni(mm))), 14496 | stan::model::index_min_max(1, 14497 | stan::model::rvalue(Nobs, "Nobs", 14498 | stan::model::index_uni(mm)))), 14499 | stan::model::rvalue(Mu, "Mu", 14500 | stan::model::index_uni(grpidx), 14501 | stan::model::index_multi( 14502 | stan::model::rvalue(obsidx, "obsidx", 14503 | stan::model::index_min_max(1, 14504 | stan::model::rvalue(Nobs, "Nobs", 14505 | stan::model::index_uni(mm)))))), 14506 | stan::model::rvalue(Sigmainv, "Sigmainv", 14507 | stan::model::index_uni(mm), 14508 | stan::model::index_min_max(1, 14509 | (stan::model::rvalue(Nobs, "Nobs", 14510 | stan::model::index_uni(mm)) + 1)), 14511 | stan::model::index_min_max(1, 14512 | (stan::model::rvalue(Nobs, "Nobs", 14513 | stan::model::index_uni(mm)) + 1))), 14514 | ((r2 - r1) + 1), pstream__)); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true> >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Ref, 0, Eigen::OuterStride<> >; Rhs = Eigen::Ref, 0, Eigen::OuterStride<> >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Ref, 0, Eigen::OuterStride<> >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Ref, 0, Eigen::OuterStride<> >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, true>, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, true>, -1, 1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; Derived = Eigen::Block, -1, 1, true>, -1, 1, false> >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:669:10: required from ‘const Eigen::ColPivHouseholderQR::PlainObject> Eigen::MatrixBase::colPivHouseholderQr() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 669 | return ColPivHouseholderQR(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_determinant.hpp:27:31: required from ‘stan::value_type_t stan::math::log_determinant(const EigMat&) [with EigMat = Eigen::Matrix; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 27 | return m.colPivHouseholderQr().logAbsDeterminant(); | ~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:16309:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16309 | stan::math::log_determinant( 16310 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:78:127: required from ‘static void Eigen::internal::triangular_solve_vector::run(Index, const LhsScalar*, Index, RhsScalar*) [with LhsScalar = double; RhsScalar = double; Index = long int; int Mode = 6; bool Conjugate = false]’ 78 | rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map >(rhs+s,k))).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:73:12: required from ‘static void Eigen::internal::triangular_solver_selector::run(const Lhs&, Rhs&) [with Lhs = const Eigen::Transpose >; Rhs = Eigen::Matrix; int Side = 1; int Mode = 6]’ 71 | triangular_solve_vector | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 73 | ::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:182:21: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, -1, -1, false>, 1, -1, false>; U = Eigen::Block, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, false> >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, false> >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Block, -1, -1, false>; int Mode = 5; bool LhsIsTriangular = true; Lhs = const Eigen::Block, -1, -1, false>; Rhs = Eigen::Matrix; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::CwiseNullaryOp, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::CwiseNullaryOp, Eigen::Matrix >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::CwiseNullaryOp, Eigen::Matrix > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/QR/ColPivHouseholderQR.h:644:39: required from ‘static void Eigen::internal::Assignment >, Eigen::internal::assign_op::Scalar>, Eigen::internal::Dense2Dense>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op::Scalar>&) [with DstXprType = Eigen::Matrix; MatrixType = Eigen::Matrix; SrcXprType = Eigen::Inverse > >; typename DstXprType::Scalar = double; typename Eigen::ColPivHouseholderQR::Scalar = double]’ 644 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant.hpp:23:0: required from ‘stan::math::var stan::math::log_determinant(const T&) [with T = Eigen::Matrix, -1, -1>; stan::require_rev_matrix_t* = 0; var = var_value]’ 23 | auto arena_m_inv_transpose = to_arena(m_hh.inverse().transpose()); stanExports_stanmarg.h:14144:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14144 | stan::math::log_determinant( 14145 | stan::model::rvalue(Sigma, "Sigma", stan::model::index_uni(g))), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 1, -1, false> >; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >; Functor = add_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 1, -1, false> >; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > > >, -1, 1, true> >; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_lpdf.hpp:92:0: required from ‘stan::return_type_t stan::math::wishart_lpdf(const T_y&, const T_dof&, const T_scale&) [with bool propto = false; T_y = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; T_dof = int; T_scale = Eigen::Matrix, -1, -1>; stan::require_stan_scalar_t* = 0; stan::require_all_matrix_t* = 0; stan::return_type_t = var_value]’ 92 | lp -= 0.5 * trace(mdivide_left_ldlt(ldlt_S, W_ref)); stanExports_stanmarg.h:14327:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14327 | lp_accum__.add(stan::math::wishart_lpdf( 14328 | stan::math::multiply( 14329 | (stan::model::rvalue(N, "N", 14330 | stan::model::index_uni(g)) - 1), 14331 | stan::model::rvalue(Sstar, "Sstar", 14332 | stan::model::index_uni(g))), 14333 | (stan::model::rvalue(N, "N", 14334 | stan::model::index_uni(g)) - 1), 14335 | stan::model::rvalue(Sigma, "Sigma", 14336 | stan::model::index_uni(g)))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >; Derived = Eigen::Block, 0, Eigen::OuterStride<> >, -1, -1, false>, 1, -1, true>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:305:153: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/LU/PartialPivLU.h:619:10: required from ‘const Eigen::PartialPivLU::PlainObject> Eigen::MatrixBase::lu() const [with Derived = Eigen::Transpose >; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 619 | return PartialPivLU(eval()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:39:10: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, 1, -1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block > >, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:4181:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4181 | stan::model::assign(T2p11, 4182 | stan::math::subtract(Sig11, 4183 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4184 | stan::math::transpose(Sig12))), "assigning variable T2p11"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:4181:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4181 | stan::model::assign(T2p11, 4182 | stan::math::subtract(Sig11, 4183 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4184 | stan::math::transpose(Sig12))), "assigning variable T2p11"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:4192:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4192 | stan::model::assign(ymis, 4193 | stan::math::add( 4194 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx), 4195 | stan::model::index_multi( 4196 | stan::model::rvalue(obsidx, "obsidx", 4197 | stan::model::index_min_max( 4198 | (stan::model::rvalue(Nobs, "Nobs", 4199 | stan::model::index_uni(mm)) + 1), p)))), 4200 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4201 | stan::math::subtract( 4202 | stan::model::rvalue(YXstar, "YXstar", 4203 | stan::model::index_uni(jj), 4204 | stan::model::index_min_max(1, 4205 | stan::model::rvalue(Nobs, "Nobs", 4206 | stan::model::index_uni(mm)))), 4207 | stan::model::rvalue(Mu, "Mu", 4208 | stan::model::index_uni(grpidx), 4209 | stan::model::index_multi( 4210 | stan::model::rvalue(obsidx, "obsidx", 4211 | stan::model::index_min_max(1, 4212 | stan::model::rvalue(Nobs, "Nobs", 4213 | stan::model::index_uni(mm))))))))), 4214 | "assigning variable ymis"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false> > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:75: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Transpose, -1, -1, false> > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, -1, -1, false> >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose, -1, -1, false> > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: required from ‘void Eigen::internal::generic_dense_assignment_kernel::assignCoeff(Eigen::Index, Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator >; SrcEvaluatorTypeT = Eigen::internal::evaluator, -1, -1, false> >, Eigen::Transpose, -1, -1, false> > >, 1> >; Functor = Eigen::internal::assign_op; int Version = 1; Eigen::Index = long int]’ 654 | m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:668:16: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Block, -1, -1, false>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ stanExports_stanmarg.h:4245:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4245 | stan::math::crossprod( 4246 | stan::model::rvalue(YXfull, "YXfull", 4247 | stan::model::index_min_max(r1, r2), stan::model::index_omni())), stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, const Eigen::Block, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, const Eigen::Block, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, const Eigen::Block, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, const Eigen::Block, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, const Eigen::Block, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, const Eigen::Block, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; Rhs = Eigen::Matrix; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; Rhs = Eigen::Matrix]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::OuterStride<> >, -1, 1, true>, -1, 1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:32: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:48: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Block, 1, -1, true>, 1, -1, false>; int Mode = 5; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >; Rhs = const Eigen::Block, -1, -1, false>, -1, -1, false>; typename Dest::Scalar = double]’ 194 | ::run(rhs.transpose(),lhs.transpose(), dstT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose >, Eigen::Transpose > > >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:42:17: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~~~ 40 | .solve(Eigen::Matrix(b) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 41 | .transpose()) | ~~~~~~~~~~~~~ 42 | .transpose(); | ~~~~~~~~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose >, Eigen::Transpose > > >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:42:17: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~~~ 40 | .solve(Eigen::Matrix(b) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 41 | .transpose()) | ~~~~~~~~~~~~~ 42 | .transpose(); | ~~~~~~~~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, 1, false> >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, false> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, false> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 24 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:341:54: required from ‘static void Eigen::internal::trmv_selector::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1, false>, -1, -1, false> >; Rhs = Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >; Dest = Eigen::Transpose, 1, -1, true>, 1, -1, false> >; int Mode = 6; typename Dest::Scalar = double]’ 341 | dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:18: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 6; bool LhsIsTriangular = true; Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; typename Dest::Scalar = double]’ 457 | dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false> >, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false> >, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 6; bool LhsIsTriangular = true; Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/io/deserializer.hpp:979:0: required from ‘auto stan::io::deserializer::read_constrain_corr_matrix(LP&, size_t, Sizes ...) [with Ret = std::vector, -1, -1>, std::allocator, -1, -1> > >; bool Jacobian = true; LP = stan::math::var_value; Sizes = {int}; stan::require_std_vector_t* = 0; T = stan::math::var_value; size_t = long unsigned int]’ 979 | this->read_constrain_corr_matrix, Jacobian>( 980 | lp, sizes...)); stanExports_stanmarg.h:12986:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 12984 | Psi_r_mat_1 = in__.template read_constrain_corr_matrix< 12985 | std::vector>, 12986 | jacobian__>(lp__, Psi_r_mat_1_1dim__, 12987 | Psi_r_mat_1_3dim__); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:75: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: required from ‘void Eigen::internal::generic_dense_assignment_kernel::assignCoeff(Eigen::Index, Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator >; SrcEvaluatorTypeT = Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> > >, Eigen::CwiseUnaryOp, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1> >; Functor = Eigen::internal::assign_op; int Version = 1; Eigen::Index = long int]’ 654 | m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:668:16: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_stanmarg.h:4444:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix, -1, -1>; T4__ = stan::math::var_value; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = stan::math::var_value; typename stan::base_type::type = stan::math::var_value; std::ostream = std::basic_ostream]’ 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", stanExports_stanmarg.h:14152:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14152 | sig_inv_update( 14153 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 14154 | stan::model::index_uni( 14155 | stan::model::rvalue(grpnum, "grpnum", 14156 | stan::model::index_uni(patt)))), 14157 | stan::model::rvalue(Obsvar, "Obsvar", 14158 | stan::model::index_uni(patt), stan::model::index_omni()), 14159 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 14160 | (p + q), 14161 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 14162 | stan::model::index_uni( 14163 | stan::model::rvalue(grpnum, "grpnum", 14164 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::CwiseNullaryOp&>(const Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0> >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:4192:0: required from ‘std::vector::type, -1, -1> > model_stanmarg_namespace::estep(const std::vector >&, const std::vector >&, const std::vector >&, const std::vector&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = double; stan::require_all_t, stan::is_stan_scalar, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type = double; std::ostream = std::basic_ostream]’ 4192 | stan::model::assign(ymis, 4193 | stan::math::add( 4194 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx), 4195 | stan::model::index_multi( 4196 | stan::model::rvalue(obsidx, "obsidx", 4197 | stan::model::index_min_max( 4198 | (stan::model::rvalue(Nobs, "Nobs", 4199 | stan::model::index_uni(mm)) + 1), p)))), 4200 | stan::math::multiply(stan::math::multiply(Sig12, S22inv), 4201 | stan::math::subtract( 4202 | stan::model::rvalue(YXstar, "YXstar", 4203 | stan::model::index_uni(jj), 4204 | stan::model::index_min_max(1, 4205 | stan::model::rvalue(Nobs, "Nobs", 4206 | stan::model::index_uni(mm)))), 4207 | stan::model::rvalue(Mu, "Mu", 4208 | stan::model::index_uni(grpidx), 4209 | stan::model::index_multi( 4210 | stan::model::rvalue(obsidx, "obsidx", 4211 | stan::model::index_min_max(1, 4212 | stan::model::rvalue(Nobs, "Nobs", 4213 | stan::model::index_uni(mm))))))))), 4214 | "assigning variable ymis"); stanExports_stanmarg.h:17860:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 17860 | estep(YXstar, Mu_sat, Sigma_sat, Nobs, Obsvar, startrow, 17861 | endrow, grpnum, Np, Ng, pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:80: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, const Eigen::Transpose, -1, 1, true> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, const Eigen::Transpose, -1, 1, true> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, const Eigen::Transpose, -1, 1, true> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, const Eigen::Transpose, -1, 1, true> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, const Eigen::Transpose, -1, 1, true> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:379:59: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, false>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; Rhs = Eigen::Block, -1, 1, true>; Dest = Eigen::Block, -1, 1, true>; typename Dest::Scalar = double]’ 379 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; Rhs = Eigen::Matrix; Dest = Eigen::Block, 1, -1, false>; int StorageOrder = 0; bool BlasCompatible = true; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::InnerStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::InnerStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::InnerStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 23 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:137:106: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:137:77: required from ‘static void Eigen::internal::triangular_matrix_vector_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, const ResScalar&) [with Index = long int; int Mode = 6; LhsScalar = double; bool ConjLhs = false; RhsScalar = double; bool ConjRhs = false; int Version = 0; ResScalar = double]’ 137 | res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:332:12: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:32: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose > >, 1, -1, false> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose > >; Rhs = Eigen::Matrix; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:412:48: required from ‘Eigen::DenseBase::EvalReturnType Eigen::DenseBase::eval() const [with Derived = Eigen::Product > >, Eigen::Matrix, 0>, Eigen::Transpose >, 0>; EvalReturnType = const Eigen::Matrix]’ 412 | return typename internal::eval::type(derived()); | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/quad_form_sym.hpp:37:47: required from ‘stan::plain_type_t stan::math::quad_form_sym(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::Transpose >; stan::require_all_eigen_t* = 0; stan::require_not_eigen_col_vector_t* = 0; stan::require_vt_same* = 0; stan::require_all_vt_arithmetic* = 0; stan::plain_type_t = Eigen::Matrix]’ 37 | (B_ref.transpose() * A_ref * B_ref).eval()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_stanmarg.h:15786:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15786 | stan::math::quad_form_sym( 15787 | stan::model::rvalue(Psi, "Psi", stan::model::index_uni(g)), 15788 | stan::math::transpose( 15789 | stan::model::rvalue(Lambda_y_A, "Lambda_y_A", 15790 | stan::model::index_uni(g))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>, -1, 1, true>; Derived = Eigen::Block >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block >, 1, -1, true>, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; Derived = Eigen::Block, -1, 1, false> >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>; SrcXprType = Eigen::Block, -1, 1, true>; Functor = swap_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>; SrcXprType = Eigen::Block, -1, 1, true>; Functor = Eigen::internal::swap_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, 1, true>; Src = Eigen::Block, -1, 1, true>; Func = swap_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, 1, true>; Src = Eigen::Block, -1, 1, true>; Func = swap_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:424:22: required from ‘void Eigen::DenseBase::swap(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block, -1, 1, true>]’ 424 | call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:1129:51: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/trace_inv_quad_form_ldlt.hpp:36:42: required from ‘stan::return_type_t stan::math::trace_inv_quad_form_ldlt(LDLT_factor&, const EigMat2&) [with T = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; = void; stan::return_type_t = double]’ 36 | return B.cwiseProduct(mdivide_left_ldlt(A, B)).sum(); | ~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_loc = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T_covar = Eigen::Matrix; stan::return_type_t = double]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:18523:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18523 | stan::math::multi_normal_lpdf( 18524 | stan::model::rvalue(YXstar, "YXstar", 18525 | stan::model::index_uni(jj), 18526 | stan::model::index_multi( 18527 | stan::model::rvalue(xdatidx, "xdatidx", 18528 | stan::model::index_min_max(1, 18529 | stan::model::rvalue(Nx, "Nx", 18530 | stan::model::index_uni(mm)))))), 18531 | stan::model::rvalue(Mu, "Mu", 18532 | stan::model::index_uni(grpidx), 18533 | stan::model::index_multi( 18534 | stan::model::rvalue(xidx, "xidx", 18535 | stan::model::index_min_max(1, 18536 | stan::model::rvalue(Nx, "Nx", 18537 | stan::model::index_uni(mm)))))), 18538 | stan::model::rvalue(Sigma, "Sigma", 18539 | stan::model::index_uni(grpidx), 18540 | stan::model::index_multi( 18541 | stan::model::rvalue(xidx, "xidx", 18542 | stan::model::index_min_max(1, 18543 | stan::model::rvalue(Nx, "Nx", 18544 | stan::model::index_uni(mm))))), 18545 | stan::model::index_multi( 18546 | stan::model::rvalue(xidx, "xidx", 18547 | stan::model::index_min_max(1, 18548 | stan::model::rvalue(Nx, "Nx", 18549 | stan::model::index_uni(mm))))))))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 24 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:151:29: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Derived = Eigen::Block, -1, -1, false>, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Derived = Eigen::Block, -1, -1, false>, -1, -1, true>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:32: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 24 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 25 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 2; bool LhsIsTriangular = true; Lhs = Eigen::Matrix; Rhs = Eigen::Matrix; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 25 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = const Eigen::Transpose >; Rhs = Eigen::Matrix; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; SrcXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; Functor = swap_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; SrcXprType = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; Functor = Eigen::internal::swap_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; Src = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; Func = swap_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; Src = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; Func = swap_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:424:22: required from ‘void Eigen::DenseBase::swap(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>]’ 424 | call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:1129:51: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multi_normal_lpdf.hpp:98:45: required from ‘stan::return_type_t stan::math::multi_normal_lpdf(const T_y&, const T_loc&, const T_covar&) [with bool propto = false; T_y = std::vector, -1, 1>, std::allocator, -1, 1> > >; T_loc = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; T_covar = Eigen::Matrix, -1, -1>; stan::return_type_t = var_value]’ 98 | sum_lp_vec += trace_inv_quad_form_ldlt(ldlt_Sigma, y_col - mu_col); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_stanmarg.h:14424:0: required from ‘stan::scalar_type_t model_stanmarg_namespace::model_stanmarg::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 14424 | lp_accum__.add(stan::math::multi_normal_lpdf( 14425 | stan::model::rvalue(YXstar, "YXstar", 14426 | stan::model::index_min_max(r1, r2), 14427 | stan::model::index_min_max(1, 14428 | stan::model::rvalue(Nobs, "Nobs", 14429 | stan::model::index_uni(mm)))), 14430 | stan::model::rvalue(Mu, "Mu", 14431 | stan::model::index_uni(grpidx), 14432 | stan::model::index_multi( 14433 | stan::model::rvalue(obsidx, "obsidx", 14434 | stan::model::index_min_max(1, 14435 | stan::model::rvalue(Nobs, "Nobs", 14436 | stan::model::index_uni(mm)))))), 14437 | stan::model::rvalue(Sigma, "Sigma", 14438 | stan::model::index_uni(grpidx), 14439 | stan::model::index_multi( 14440 | stan::model::rvalue(obsidx, "obsidx", 14441 | stan::model::index_min_max(1, 14442 | stan::model::rvalue(Nobs, "Nobs", 14443 | stan::model::index_uni(mm))))), 14444 | stan::model::index_multi( 14445 | stan::model::rvalue(obsidx, "obsidx", 14446 | stan::model::index_min_max(1, 14447 | stan::model::rvalue(Nobs, "Nobs", 14448 | stan::model::index_uni(mm)))))))); stanExports_stanmarg.h:22491:0: required from ‘T_ model_stanmarg_namespace::model_stanmarg::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 22491 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_stanmarg_namespace::model_stanmarg; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_stanmarg.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, false>; SrcXprType = Eigen::Block, 1, -1, false>; Functor = swap_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, false>; SrcXprType = Eigen::Block, 1, -1, false>; Functor = Eigen::internal::swap_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 1, -1, false>; Src = Eigen::Block, 1, -1, false>; Func = swap_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 1, -1, false>; Src = Eigen::Block, 1, -1, false>; Func = swap_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:424:22: required from ‘void Eigen::DenseBase::swap(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, 1, -1, false>; Derived = Eigen::Block, 1, -1, false>]’ 424 | call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:1033:18: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose >, Eigen::Transpose > > >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:42:17: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~~~ 40 | .solve(Eigen::Matrix(b) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 41 | .transpose()) | ~~~~~~~~~~~~~ 42 | .transpose(); | ~~~~~~~~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:75: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Transpose >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: required from ‘void Eigen::internal::generic_dense_assignment_kernel::assignCoeff(Eigen::Index, Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator >; SrcEvaluatorTypeT = Eigen::internal::evaluator >, Eigen::Matrix, 1> >; Functor = Eigen::internal::sub_assign_op; int Version = 1; Eigen::Index = long int]’ 654 | m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:668:16: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:442:0: required from ‘void stan::model::assign(Mat1&&, Mat2&&, const char*, index_min_max, index_min_max) [with Mat1 = Eigen::Matrix&; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Product >, Eigen::Matrix, 0> >; stan::require_dense_dynamic_t* = 0]’ 442 | internal::assign_impl( 443 | x.block(row_idx.min_ - 1, col_idx.min_ - 1, row_size, col_size), y, 444 | name); stanExports_stanmarg.h:4435:0: required from ‘Eigen::Matrix::type, T1__>::type, -1, -1> model_stanmarg_namespace::sig_inv_update(const T0__&, const std::vector&, const int&, const int&, const T4__&, std::ostream*) [with T0__ = Eigen::Matrix; T4__ = double; stan::require_all_t, stan::is_vt_not_complex, stan::is_stan_scalar >* = 0; typename boost::math::tools::promote_args::type, T1__>::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 4435 | stan::model::assign(out, 4436 | stan::math::subtract( 4437 | stan::model::rvalue(Sigmainv, "Sigmainv", 4438 | stan::model::index_multi( 4439 | stan::model::rvalue(obsidx, "obsidx", 4440 | stan::model::index_min_max(1, Nobs))), 4441 | stan::model::index_multi( 4442 | stan::model::rvalue(obsidx, "obsidx", 4443 | stan::model::index_min_max(1, Nobs)))), 4444 | stan::math::multiply(stan::math::transpose(A), 4445 | stan::math::mdivide_left_spd(H, A))), "assigning variable out", 4446 | stan::model::index_min_max(1, Nobs), 4447 | stan::model::index_min_max(1, Nobs)); stanExports_stanmarg.h:16317:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 16317 | sig_inv_update( 16318 | stan::model::rvalue(Sigmainv_grp, "Sigmainv_grp", 16319 | stan::model::index_uni( 16320 | stan::model::rvalue(grpnum, "grpnum", 16321 | stan::model::index_uni(patt)))), 16322 | stan::model::rvalue(Obsvar, "Obsvar", 16323 | stan::model::index_uni(patt), stan::model::index_omni()), 16324 | stan::model::rvalue(Nobs, "Nobs", stan::model::index_uni(patt)), 16325 | (p + q), 16326 | stan::model::rvalue(logdetSigma_grp, "logdetSigma_grp", 16327 | stan::model::index_uni( 16328 | stan::model::rvalue(grpnum, "grpnum", 16329 | stan::model::index_uni(patt)))), pstream__), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; Rhs = Eigen::Matrix; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:137:114: required from ‘static void Eigen::internal::triangular_matrix_vector_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, const ResScalar&) [with Index = long int; int Mode = 6; LhsScalar = double; bool ConjLhs = false; RhsScalar = double; bool ConjRhs = false; int Version = 0; ResScalar = double]’ 137 | res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:332:12: required from ‘static void Eigen::internal::trmv_selector::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1, false>, -1, -1, false> >; Rhs = Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >; Dest = Eigen::Transpose, 1, -1, true>, 1, -1, false> >; int Mode = 6; typename Dest::Scalar = double]’ 327 | internal::triangular_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 328 | | ~~~~~~~~~ 332 | ::run(actualLhs.rows(),actualLhs.cols(), | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 333 | actualLhs.data(),actualLhs.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 334 | actualRhsPtr,1, | ~~~~~~~~~~~~~~~ 335 | dest.data(),dest.innerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 336 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:18: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: [ skipping 37 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 35 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Derived = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:341:27: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, false>; SrcXprType = Eigen::Block >, 1, -1, false>; Functor = assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, false>; SrcXprType = Eigen::Block >, 1, -1, false>; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 1, -1, false>; Src = Eigen::Block >, 1, -1, false>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 1, -1, false>; Src = Eigen::Block >, 1, -1, false>; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Block, 1, -1, false>; Src = Eigen::Block >, 1, -1, false>]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose >, Eigen::Transpose > > >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/mdivide_right.hpp:42:17: required from ‘Eigen::Matrix::type, T1::RowsAtCompileTime, T2::ColsAtCompileTime> stan::math::mdivide_right(const EigMat1&, const EigMat2&) [with EigMat1 = Eigen::Matrix; EigMat2 = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_vt_fvar* = 0; typename stan::return_type::type = double]’ 36 | return Eigen::Matrix(A) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 38 | .transpose() | ~~~~~~~~~~~~ 39 | .lu() | ~~~~~ 40 | .solve(Eigen::Matrix(b) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 41 | .transpose()) | ~~~~~~~~~~~~~ 42 | .transpose(); | ~~~~~~~~~~^~ stanExports_stanmarg.h:15736:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 15736 | stan::math::mdivide_right( 15737 | stan::model::rvalue(Lambda_y, "Lambda_y", 15738 | stan::model::index_uni(g)), 15739 | stan::math::subtract(I, 15740 | stan::model::rvalue(B, "B", stan::model::index_uni(g)))), stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:75: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; Rhs = Eigen::Matrix; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: required from ‘void Eigen::internal::generic_dense_assignment_kernel::assignCoeff(Eigen::Index, Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator >; SrcEvaluatorTypeT = Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 1> >; Functor = Eigen::internal::assign_op; int Version = 1; Eigen::Index = long int]’ 654 | m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:668:16: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/assign.hpp:60:0: required from ‘void stan::model::assign(T&&, U&&, const char*) [with T = Eigen::Matrix&; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product >, Eigen::Matrix, 0> > >; stan::require_t::type&, typename std::decay<_Tp2>::type> >* = 0; stan::require_all_not_t, internal::is_tuple >* = 0]’ 60 | internal::assign_impl(x, std::forward(y), name); stanExports_stanmarg.h:3413:0: required from ‘Eigen::Matrix::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type, -1, 1> model_stanmarg_namespace::twolevel_logdens(const std::vector >&, const std::vector >&, const T2__&, const std::vector >&, const std::vector&, const std::vector&, const std::vector&, const int&, const std::vector&, const T9__&, const T10__&, const T11__&, const T12__&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const std::vector&, const int&, const int&, const int&, const int&, std::ostream*) [with T0__ = double; T1__ = double; T2__ = Eigen::Matrix; T3__ = double; T9__ = Eigen::Matrix; T10__ = Eigen::Matrix; T11__ = Eigen::Matrix; T12__ = Eigen::Matrix; stan::require_all_t, stan::is_stan_scalar, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_stan_scalar, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex, stan::is_col_vector, stan::is_vt_not_complex, stan::is_eigen_matrix_dynamic, stan::is_vt_not_complex >* = 0; typename boost::math::tools::promote_args::type, T3__, typename stan::base_type::type, typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename boost::math::tools::promote_args::type, typename stan::base_type::type, typename stan::base_type::type>::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; typename stan::base_type::type = double; std::ostream = std::basic_ostream]’ 3413 | stan::model::assign(Vinv_11, 3414 | stan::math::add(Sigma_zz_inv, 3415 | stan::math::multiply(nj, 3416 | stan::math::multiply(stan::math::transpose(Sigma_yz_zi), 3417 | Sigma_ji_yz_zi))), "assigning variable Vinv_11"); stanExports_stanmarg.h:18174:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’ 18174 | twolevel_logdens( 18175 | stan::model::rvalue(mean_d_full, "mean_d_full", 18176 | stan::model::index_min_max(r1, r2)), 18177 | stan::model::rvalue(cov_d_full, "cov_d_full", 18178 | stan::model::index_min_max(r1, r2)), 18179 | stan::model::rvalue(S_PW, "S_PW", 18180 | stan::model::index_uni(grpidx)), 18181 | stan::model::rvalue(YX, "YX", 18182 | stan::model::index_min_max(r3, r4)), 18183 | stan::model::rvalue(nclus, "nclus", 18184 | stan::model::index_uni(grpidx), stan::model::index_omni()), 18185 | stan::model::rvalue(cluster_size, "cluster_size", 18186 | stan::model::index_min_max(r1, r2)), 18187 | stan::model::rvalue(cluster_size, "cluster_size", 18188 | stan::model::index_min_max(r1, r2)), 18189 | stan::model::rvalue(nclus, "nclus", 18190 | stan::model::index_uni(grpidx), stan::model::index_uni(2)), 18191 | stan::model::rvalue(intone, "intone", 18192 | stan::model::index_min_max(1, 18193 | stan::model::rvalue(nclus, "nclus", 18194 | stan::model::index_uni(grpidx), 18195 | stan::model::index_uni(2)))), 18196 | stan::model::rvalue(Mu, "Mu", stan::model::index_uni(grpidx)), 18197 | stan::model::rvalue(Sigma, "Sigma", 18198 | stan::model::index_uni(grpidx)), 18199 | stan::model::rvalue(Mu_c, "Mu_c", 18200 | stan::model::index_uni(grpidx)), 18201 | stan::model::rvalue(Sigma_c, "Sigma_c", 18202 | stan::model::index_uni(grpidx)), ov_idx1, ov_idx2, 18203 | within_idx, between_idx, both_idx, p_tilde, N_within, 18204 | N_between, N_both, pstream__), "assigning variable log_lik", stanExports_stanmarg.h:22480:0: required from ‘void model_stanmarg_namespace::model_stanmarg::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 22480 | write_array_impl(base_rng, params_r, params_i, vars, 22481 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_stanmarg_namespace::model_stanmarg; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_stanmarg.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 26 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 26 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/callback_vari.hpp:21:0: recursively required from ‘void stan::math::internal::callback_vari::chain() [with T = double; F = stan::math::sum > >(const std::vector, arena_allocator > >&)::]’ 21 | inline void chain() final { rev_functor_(*this); } /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/callback_vari.hpp:21:0: required from here /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/callback_vari.hpp:21:0: recursively required from ‘void stan::math::internal::callback_vari::chain() [with T = double; F = stan::math::trace, -1, -1> >(const Eigen::Matrix, -1, -1>&)::]’ 21 | inline void chain() final { rev_functor_(*this); } /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/callback_vari.hpp:21:0: required from here /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:66:0: required from ‘void stan::math::internal::mdivide_left_spd_vv_vari::chain() [with int R1 = -1; int C1 = -1; int R2 = -1; int C2 = -1]’ 66 | -= adjB * alloc_->C_.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:62:0: required from here 62 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1>, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:89:0: required from ‘void stan::math::internal::quad_form_vari::chain() [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 89 | matrix_d adjC = impl_->C_.adj(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:88:0: required from here 88 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>&>(Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>&>(Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>&>(Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, -1>&>(Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, -1>&>(Eigen::Matrix, -1, -1>&)::::, const Eigen::Matrix, -1, -1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, -1>&>(Eigen::Matrix, -1, -1>&):: [with auto:12 = Eigen::Matrix, -1, -1>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::value_of, -1, -1>&>(Eigen::Matrix, -1, -1>&)::; Args = {Eigen::Matrix, -1, -1, 0, -1, -1>&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:73:21: required from ‘auto stan::math::value_of(EigMat&&) [with EigMat = Eigen::Matrix, -1, -1>&; stan::require_eigen_dense_base_t* = 0; stan::require_not_st_arithmetic* = 0]’ 73 | return make_holder( | ~~~~~~~~~~~^ 74 | [](auto& a) { | ~~~~~~~~~~~~~ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 76 | }, | ~~ 77 | std::forward(M)); | ~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:91:0: required from ‘void stan::math::internal::quad_form_vari::chain() [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 91 | chainAB(impl_->A_, impl_->B_, value_of(impl_->A_), value_of(impl_->B_), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:88:0: required from here 88 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:69:0: required from ‘void stan::math::internal::quad_form_vari::chainB(Eigen::Matrix, Rb, Cb>&, const Eigen::Matrix&, const Eigen::Matrix&, const Eigen::Matrix&) [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 69 | B.adj() += Ad * Bd * adjC.transpose() + Ad.transpose() * Bd * adjC; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:78:0: required from ‘void stan::math::internal::quad_form_vari::chainAB(Eigen::Matrix&, Eigen::Matrix&, const Eigen::Matrix&, const Eigen::Matrix&, const Eigen::Matrix&) [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 78 | chainB(B, Ad, Bd, adjC); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:91:0: required from ‘void stan::math::internal::quad_form_vari::chain() [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 91 | chainAB(impl_->A_, impl_->B_, value_of(impl_->A_), value_of(impl_->B_), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:88:0: required from here 88 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:44: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: required from ‘double stan::mcmc::diag_e_metric::T(stan::mcmc::diag_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 21 | return 0.5 * z.p.dot(z.inv_e_metric_.cwiseProduct(z.p)); /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:20:0: required from here 20 | double T(diag_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:39: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:54: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:51: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: required from ‘double stan::mcmc::diag_e_metric::T(stan::mcmc::diag_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 21 | return 0.5 * z.p.dot(z.inv_e_metric_.cwiseProduct(z.p)); /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:20:0: required from here 20 | double T(diag_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >; Src = Eigen::Product, Eigen::Transpose >, 0>; Func = sub_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:66:0: required from ‘void stan::math::internal::mdivide_left_spd_vv_vari::chain() [with int R1 = -1; int C1 = -1; int R2 = -1; int C2 = -1]’ 65 | Eigen::Map(variRefA_, M_, M_).adj() 66 | -= adjB * alloc_->C_.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:62:0: required from here 62 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >; Src = Eigen::Product, Eigen::Transpose >, 0>; Func = sub_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:66:0: required from ‘void stan::math::internal::mdivide_left_spd_vv_vari::chain() [with int R1 = -1; int C1 = -1; int R2 = -1; int C2 = -1]’ 65 | Eigen::Map(variRefA_, M_, M_).adj() 66 | -= adjB * alloc_->C_.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:62:0: required from here 62 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >; Src = Eigen::Product, Eigen::Transpose >, 0>; Func = sub_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:66:0: required from ‘void stan::math::internal::mdivide_left_spd_vv_vari::chain() [with int R1 = -1; int C1 = -1; int R2 = -1; int C2 = -1]’ 65 | Eigen::Map(variRefA_, M_, M_).adj() 66 | -= adjB * alloc_->C_.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:62:0: required from here 62 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >; Src = Eigen::Product, Eigen::Transpose >, 0>; Func = sub_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:66:0: required from ‘void stan::math::internal::mdivide_left_spd_vv_vari::chain() [with int R1 = -1; int C1 = -1; int R2 = -1; int C2 = -1]’ 65 | Eigen::Map(variRefA_, M_, M_).adj() 66 | -= adjB * alloc_->C_.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:62:0: required from here 62 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::CwiseUnaryView, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> >; Src = Eigen::CwiseBinaryOp, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >; Func = add_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, const Eigen::Product >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >; Derived = Eigen::CwiseUnaryView, -1, -1> >::adj_Op, Eigen::Matrix, -1, -1> >]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:69:0: required from ‘void stan::math::internal::quad_form_vari::chainB(Eigen::Matrix, Rb, Cb>&, const Eigen::Matrix&, const Eigen::Matrix&, const Eigen::Matrix&) [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 69 | B.adj() += Ad * Bd * adjC.transpose() + Ad.transpose() * Bd * adjC; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:78:0: required from ‘void stan::math::internal::quad_form_vari::chainAB(Eigen::Matrix&, Eigen::Matrix&, const Eigen::Matrix&, const Eigen::Matrix&, const Eigen::Matrix&) [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 78 | chainB(B, Ad, Bd, adjC); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:91:0: required from ‘void stan::math::internal::quad_form_vari::chain() [with Ta = stan::math::var_value; int Ra = -1; int Ca = -1; Tb = stan::math::var_value; int Rb = -1; int Cb = -1]’ 91 | chainAB(impl_->A_, impl_->B_, value_of(impl_->A_), value_of(impl_->B_), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:88:0: required from here 88 | virtual void chain() { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; int StorageOrder = 0; bool BlasCompatible = true; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_stanmarg_namespace::model_stanmarg; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ stanExports_stanmarg.h: In member function ‘model_stanmarg_namespace::model_stanmarg::model_stanmarg(stan::io::var_context&, unsigned int, std::basic_ostream >*)’: stanExports_stanmarg.h:5425: note: variable tracking size limit exceeded with ‘-fvar-tracking-assignments’, retrying without 5425 | model_stanmarg(stan::io::var_context& context__, unsigned int /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h: In function ‘Eigen::internal::selfadjoint_product_impl, -1, -1, false>, 17, false, Eigen::CwiseBinaryOp, Eigen::CwiseNullaryOp, Eigen::Matrix const> const, Eigen::Block, -1, 1, true>, -1, 1, false> const>, 0, true>::run, -1, 1, false> >(Eigen::Block, -1, 1, false>&, Eigen::Block, -1, -1, false> const&, Eigen::CwiseBinaryOp, Eigen::CwiseNullaryOp, Eigen::Matrix const> const, Eigen::Block, -1, 1, true>, -1, 1, false> const> const&, double const&)void [clone .isra.0]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:229:7: warning: ‘result_66’ may be used uninitialized [-Wmaybe-uninitialized] 227 | internal::selfadjoint_matrix_vector_product::Flags&RowMajorBit) ? RowMajor : ColMajor, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 228 | int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 229 | ( | ^ 230 | lhs.rows(), // size | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 231 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 232 | actualRhsPtr, // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 233 | actualDestPtr, // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 234 | actualAlpha // scale factor | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:41:6: note: by argument 4 of type ‘const double *’ to ‘Eigen::internal::selfadjoint_matrix_vector_product::run(long, double const*, long, double const*, double*, double)’ declared here 41 | void selfadjoint_matrix_vector_product::run( | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:341: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h: In function ‘Eigen::internal::trmv_selector<6, 1>::run, -1, -1, false> const, -1, -1, false> const>, Eigen::Transpose, Eigen::CwiseNullaryOp, Eigen::Matrix const> const, Eigen::Transpose, -1, -1, false> const, -1, 1, true> const, -1, 1, false> const> const> const>, Eigen::Transpose, 1, -1, true>, 1, -1, false> > >(Eigen::Transpose, -1, -1, false> const, -1, -1, false> const> const&, Eigen::Transpose, Eigen::CwiseNullaryOp, Eigen::Matrix const> const, Eigen::Transpose, -1, -1, false> const, -1, 1, true> const, -1, 1, false> const> const> const> const&, Eigen::Transpose, 1, -1, true>, 1, -1, false> >&, Eigen::Transpose, 1, -1, true>, 1, -1, false> >::Scalar const&)void [clone .isra.0]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:332:12: warning: ‘result_43’ may be used uninitialized [-Wmaybe-uninitialized] 327 | internal::triangular_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 328 | | ~~~~~~~~~ 332 | ::run(actualLhs.rows(),actualLhs.cols(), | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 333 | actualLhs.data(),actualLhs.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 334 | actualRhsPtr,1, | ~~~~~~~~~~~~~~~ 335 | dest.data(),dest.innerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 336 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:105:24: note: by argument 5 of type ‘const double *’ to ‘Eigen::internal::triangular_matrix_vector_product::run(long, long, double const*, long, double const*, long, double*, long, double const&)’ declared here 105 | EIGEN_DONT_INLINE void triangular_matrix_vector_product | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ g++ -std=gnu++17 -shared -L/usr/lib64/R/lib -Wl,-z,relro -Wl,--as-needed -Wl,-z,pack-relative-relocs -Wl,-z,now -specs=/usr/lib/rpm/redhat/redhat-hardened-ld -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -Wl,--build-id=sha1 -o blavaan.so RcppExports.o stanExports_stanmarg.o -L/usr/lib64 -Wl,-rpath,/usr/lib64 -ltbb -ltbbmalloc -L/usr/local/lib/R/library/RcppParallel/lib/ -Wl,-rpath,/usr/local/lib/R/library/RcppParallel/lib/ -ltbb -ltbbmalloc -L/usr/lib64/R/lib -lR In function ‘copy’, inlined from ‘__ct ’ at /usr/include/c++/14/bits/basic_string.h:688:23, inlined from ‘operator+’ at /usr/include/c++/14/bits/basic_string.h:3735:43, inlined from ‘unconstrained_param_names’ at stanExports_stanmarg.h:22237:0: In function ‘copy’, inlined from ‘__ct ’ at /usr/include/c++/14/bits/basic_string.h:688:23, inlined from ‘operator+’ at /usr/include/c++/14/bits/basic_string.h:3735:43, inlined from ‘constrained_param_names’ at stanExports_stanmarg.h:21450:0: /usr/include/c++/14/bits/char_traits.h:427:56: warning: ‘__builtin_memcpy’ writing 22 bytes into a region of size 16 overflows the destination [-Wstringop-overflow=] 427 | return static_cast(__builtin_memcpy(__s1, __s2, __n)); | ^ /usr/include/c++/14/bits/char_traits.h:427:56: warning: ‘__builtin_memcpy’ writing 22 bytes into a region of size 16 overflows the destination [-Wstringop-overflow=] 427 | return static_cast(__builtin_memcpy(__s1, __s2, __n)); | ^ stanExports_stanmarg.h: In member function ‘unconstrained_param_names’: stanExports_stanmarg.h: In member function ‘constrained_param_names’: stanExports_stanmarg.h:21450: note: at offset 16 into destination object ‘’ of size 32 21450 | "Sigma_rep_sat_inv_grp" + '.' + std::to_string(sym3__) + '.' + stanExports_stanmarg.h:22237: note: at offset 16 into destination object ‘’ of size 32 22237 | "Sigma_rep_sat_inv_grp" + '.' + std::to_string(sym3__) + '.' + stanExports_stanmarg.h: In member function ‘__ct_base .constprop’: stanExports_stanmarg.h:5425: note: variable tracking size limit exceeded with ‘-fvar-tracking-assignments’, retrying without 5425 | model_stanmarg(stan::io::var_context& context__, unsigned int In function ‘fixed_param’, inlined from ‘command.isra’ at /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:588:0: /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/fixed_param.hpp:62: warning: ‘__builtin_memcpy’ specified size between 9223372036854775808 and 18446744073709551608 exceeds maximum object size 9223372036854775807 [-Wstringop-overflow=] 62 | cont_params[i] = cont_vector[i]; installing to /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64/usr/local/lib/R/library/00LOCK-blavaan/00new/blavaan/libs ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package ‘blavaan’ finding HTML links ... done bcfa html bgrowth html blavCompare html blavFitIndices html blavInspect html blavPredict html blav_internal html blavaan-class html blavaan html bsem html dpriors html plot.blavaan html ppmc html sampleData html standardizedPosterior html ** building package indices ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (blavaan) + test -d blavaan/src + cd blavaan/src + rm -f RcppExports.o stanExports_stanmarg.o blavaan.so + rm -f /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64/usr/local/lib/R/library/R.css + find /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64/usr/local/lib/R/library -type f -exec sed -i s@/builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64@@g '{}' ';' + /usr/bin/find-debuginfo -j4 --strict-build-id -m -i --build-id-seed 0.5.8-1.fc40.copr8491661 --unique-debug-suffix -0.5.8-1.fc40.copr8491661.x86_64 --unique-debug-src-base R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 -S debugsourcefiles.list /builddir/build/BUILD/blavaan find-debuginfo: starting Extracting debug info from 1 files DWARF-compressing 1 files sepdebugcrcfix: Updated 1 CRC32s, 0 CRC32s did match. Creating .debug symlinks for symlinks to ELF files Copying sources found by 'debugedit -l' to /usr/src/debug/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 2276 blocks find-debuginfo: done + /usr/lib/rpm/check-buildroot + /usr/lib/rpm/redhat/brp-ldconfig + /usr/lib/rpm/brp-compress + /usr/lib/rpm/redhat/brp-strip-lto /usr/bin/strip + /usr/lib/rpm/brp-strip-static-archive /usr/bin/strip + /usr/lib/rpm/redhat/brp-mangle-shebangs + /usr/lib/rpm/brp-remove-la-files + env /usr/lib/rpm/redhat/brp-python-bytecompile '' 1 0 -j4 + /usr/lib/rpm/redhat/brp-python-hardlink Processing files: R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 Provides: R-CRAN-blavaan = 0.5.8-1.fc40.copr8491661 R-CRAN-blavaan(x86-64) = 0.5.8-1.fc40.copr8491661 Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 Requires: ld-linux-x86-64.so.2()(64bit) ld-linux-x86-64.so.2(GLIBC_2.3)(64bit) libR.so()(64bit) libc.so.6()(64bit) libc.so.6(GLIBC_2.11)(64bit) libc.so.6(GLIBC_2.14)(64bit) libc.so.6(GLIBC_2.2.5)(64bit) libc.so.6(GLIBC_2.3.4)(64bit) libc.so.6(GLIBC_2.38)(64bit) libc.so.6(GLIBC_2.4)(64bit) libc.so.6(GLIBC_ABI_DT_RELR)(64bit) libgcc_s.so.1()(64bit) libgcc_s.so.1(GCC_3.0)(64bit) libgcc_s.so.1(GCC_3.3.1)(64bit) libm.so.6()(64bit) libm.so.6(GLIBC_2.2.5)(64bit) libm.so.6(GLIBC_2.29)(64bit) libstdc++.so.6()(64bit) libstdc++.so.6(CXXABI_1.3)(64bit) libstdc++.so.6(CXXABI_1.3.15)(64bit) libstdc++.so.6(CXXABI_1.3.5)(64bit) libstdc++.so.6(CXXABI_1.3.9)(64bit) libstdc++.so.6(GLIBCXX_3.4)(64bit) libstdc++.so.6(GLIBCXX_3.4.11)(64bit) libstdc++.so.6(GLIBCXX_3.4.15)(64bit) libstdc++.so.6(GLIBCXX_3.4.18)(64bit) libstdc++.so.6(GLIBCXX_3.4.19)(64bit) libstdc++.so.6(GLIBCXX_3.4.20)(64bit) libstdc++.so.6(GLIBCXX_3.4.21)(64bit) libstdc++.so.6(GLIBCXX_3.4.26)(64bit) libstdc++.so.6(GLIBCXX_3.4.29)(64bit) libstdc++.so.6(GLIBCXX_3.4.30)(64bit) libstdc++.so.6(GLIBCXX_3.4.32)(64bit) libstdc++.so.6(GLIBCXX_3.4.9)(64bit) libtbb.so.12()(64bit) rtld(GNU_HASH) Processing files: R-CRAN-blavaan-debugsource-0.5.8-1.fc40.copr8491661.x86_64 Provides: R-CRAN-blavaan-debugsource = 0.5.8-1.fc40.copr8491661 R-CRAN-blavaan-debugsource(x86-64) = 0.5.8-1.fc40.copr8491661 Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 Processing files: R-CRAN-blavaan-debuginfo-0.5.8-1.fc40.copr8491661.x86_64 Provides: R-CRAN-blavaan-debuginfo = 0.5.8-1.fc40.copr8491661 R-CRAN-blavaan-debuginfo(x86-64) = 0.5.8-1.fc40.copr8491661 debuginfo(build-id) = c610c76758490e0e64519cf46054ceb4bc52153b Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 Recommends: R-CRAN-blavaan-debugsource(x86-64) = 0.5.8-1.fc40.copr8491661 Checking for unpackaged file(s): /usr/lib/rpm/check-files /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 Wrote: /builddir/build/RPMS/R-CRAN-blavaan-debugsource-0.5.8-1.fc40.copr8491661.x86_64.rpm Wrote: /builddir/build/RPMS/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64.rpm Wrote: /builddir/build/RPMS/R-CRAN-blavaan-debuginfo-0.5.8-1.fc40.copr8491661.x86_64.rpm Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.6amMfH + umask 022 + cd /builddir/build/BUILD + cd blavaan + /usr/bin/rm -rf /builddir/build/BUILDROOT/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.x86_64 + RPM_EC=0 ++ jobs -p + exit 0 Executing(rmbuild): /bin/sh -e /var/tmp/rpm-tmp.RnteKD + umask 022 + cd /builddir/build/BUILD + rm -rf /builddir/build/BUILD/blavaan-SPECPARTS + rm -rf blavaan blavaan.gemspec + RPM_EC=0 ++ jobs -p + exit 0 RPM build warnings: source_date_epoch_from_changelog set but %changelog is missing Finish: rpmbuild R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm Finish: build phase for R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm INFO: chroot_scan: 1 files copied to /var/lib/copr-rpmbuild/results/chroot_scan INFO: /var/lib/mock/fedora-40-x86_64-1736389068.891202/root/var/log/dnf5.log INFO: chroot_scan: creating tarball /var/lib/copr-rpmbuild/results/chroot_scan.tar.gz /bin/tar: Removing leading `/' from member names INFO: Done(/var/lib/copr-rpmbuild/results/R-CRAN-blavaan-0.5.8-1.fc40.copr8491661.src.rpm) Config(child) 13 minutes 28 seconds INFO: Results and/or logs in: /var/lib/copr-rpmbuild/results INFO: Cleaning up build root ('cleanup_on_success=True') Start: clean chroot INFO: unmounting tmpfs. Finish: clean chroot Finish: run Running RPMResults tool Package info: { "packages": [ { "name": "R-CRAN-blavaan-debuginfo", "epoch": null, "version": "0.5.8", "release": "1.fc40.copr8491661", "arch": "x86_64" }, { "name": "R-CRAN-blavaan-debugsource", "epoch": null, "version": "0.5.8", "release": "1.fc40.copr8491661", "arch": "x86_64" }, { "name": "R-CRAN-blavaan", "epoch": null, "version": "0.5.8", "release": "1.fc40.copr8491661", "arch": "src" }, { "name": "R-CRAN-blavaan", "epoch": null, "version": "0.5.8", "release": "1.fc40.copr8491661", "arch": "x86_64" } ] } RPMResults finished